- Integrated Transient Voltage Suppression
- ESD Protection for Bus Terminals Exceeds: ± 30 kV IEC 61000-4-2, Contact Discharge ± 15 kV IEC 61000-4-2, Air-Gap Discharge ± 15 kV EIA/JEDEC Human Body Model
- Circuit Damage Protection of 400-W Peak (Typical) Per IEC 61000-4-5
- Controlled Driver Output-Voltage Slew Rates Allow Longer Cable Stub Lengths
- 250-kbps in Electrically Noisy Environments
- Open-Circuit Fail-Safe Receiver Design
- 1/4 Unit Load Allows for 128 Devices Connected on Bus
- Thermal Shutdown Protection
- Power-Up/-Down Glitch Protection
- Each Transceiver Meets or Exceeds the Requirements of TIA/EIA-485 (RS-485) and ISO/IEC 8482:1993(E) Standards
- Low Disabled Supply Current $300 \mu \mathrm{~A}$ Max
- Pin Compatible With SN75176
- Applications:
- Industrial Networks
- Utility Meters
- Motor Control

description

The SN75LBC184 and SN65LBC184 are differential data line transceivers in the trade-standard footprint of the SN75176 with built-in protection against high-energy noise transients. This feature provides a substantial increase in reliability for better immunity to noise transients coupled to the data cable over most existing devices. Use of these circuits provides a reliable low-cost direct-coupled (with no isolation transformer) data line interface without requiring any external components.
The SN75LBC184 and SN65LBC184 can withstand overvoltage transients of 400-W peak (typical). The conventional combination wave called out in IEC 61000-4-5 simulates the overvoltage transient and models a unidirectional surge caused by overvoltages from switching and secondary lightning transients.

SN65LBC184D (Marked as 6LB184)
SN75LBC184D (Marked as 7LB184)
SN65LBC184P (Marked as 65LBC184)
SN75LBC184P (Marked as 75LBC184)

functional logic diagram (positive logic)

Figure 1. Surge Waveform - Combination Wave

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN65LBC184, SN75LBC184

DIFFERENTIAL TRANSCEIVER

WITH TRANSIENT VOLTAGE SUPPRESSION
SLLS236G - OCTOBER 1996 - REVISED MARCH 2007

description (continued)

A biexponential function defined by separate rise and fall times for voltage and current simulates the combination wave. The standard $1.2 \mu \mathrm{~s} / 50 \mu \mathrm{~s}$ combination waveform is shown in Figure 1 and in the test description in Figure 15.

The device also includes additional desirable features for party-line data buses in electrically noisy environment applications including industrial process control. The differential-driver design incorporates slew-rate-controlled outputs sufficient to transmit data up to 250 kbps . Slew-rate control allows longer unterminated cable runs and longer stub lengths from the main backbone than possible with uncontrolled and faster voltage transitions. A unique receiver design provides a fail-safe output of a high level when the inputs are left floating (open circuit). The SN75LBC184 and SN65LBC184 receiver also includes a high input resistance equivalent to one-fourth unit load allowing connection of up to 128 similar devices on the bus.

The SN75LBC184 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The SN65LBC184 is characterized from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

schematic of inputs and outputs

DRIVER FUNCTION TABLE

INPUT	ENABLE	OUTPUTS	
D	DE	A	B
H	H	H	L
L	H	L	H
X	L	Z	Z

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, ? = indeterminate, $X=$ irrelevant, $Z=$ high impedance (off)

RECEIVER FUNCTION TABLE

DIFFERENTIAL INPUTS	ENABLE	OUTPUT
$\mathbf{A}-\mathbf{B}$	$\overline{\mathbf{R E}}$	\mathbf{R}
$\mathrm{V}_{\mathrm{ID}} \geq 0.2 \mathrm{~V}$	L	H
$-0.2 \mathrm{~V}<\mathrm{V}_{\mathrm{ID}}<0.2 \mathrm{~V}$	L	$?$
$\mathrm{~V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	L	L
X	H	Z
Open	L	H

H = high level, $L=$ low level, ? = indeterminate, $X=$ irrelevant, $Z=$ high impedance (off)

AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	PACKAGE	
	PLASTIC SMALL-OUTLINE \dagger (JEDEC MS-012)	PLASTIC DUAL-IN-LINE PACKAGE (JEDEC MS-001)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SN75LBC184D	SN75LBC184P
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SN65LBC184D	SN65LBC184P

\dagger Add R suffix for taped and reel.

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN65LBC184, SN75LBC184
 DIFFERENTIAL TRANSCEIVER
 WITH TRANSIENT VOLTAGE SUPPRESSION
 SLLS236G - OCTOBER 1996 - REVISED MARCH 2007

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Supply voltage, } \mathrm{V}_{\mathrm{CC}} \text { (see Note 1) . } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. All voltage values, except differential input/output bus voltage, are with respect to network ground terminal } \\
& \text { 2. GND and bus terminal ESD protection is beyond readily available test equipment capabilities for IEC 61000-4-2, EIA/JEDEC test } \\
& \text { method A114-A and MIL-STD-883C method 3015. Ratings listed are limits of test equipment; device performance exceeds these } \\
& \text { limits. } \\
& \text { 3. Tested in accordance with JEDEC Standard 22, Test Method A114-A. } \\
& \text { 4. The driver shuts down at a junction temperature of approximately } 160^{\circ} \mathrm{C} \text {. To operate below this temperature, see the Dissipation } \\
& \text { Rating Table. }
\end{aligned}
$$

DISSIPATION RATING TABLE

PACKAGE	$\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathbf{C}$ POWER RATING	DERATING FACTOR ABOVE TA $^{2}=\mathbf{2 5}^{\circ} \mathbf{C}$	$\mathbf{T}_{\mathbf{A}}=70^{\circ} \mathbf{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{8 5}{ }^{\circ} \mathbf{C}$ POWER RATING
D	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW
P	1150 mW	$9.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	736 mW	598 mW

recommended operating conditions

\ddagger The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet.

DRIVER SECTION

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	ALTERNATE SYMBOLS	TEST CONDITIONS	MIN TYP ${ }^{\text {M }}$ MAX	UNIT
ICC	Supply current	NA	$\mathrm{DE}=\overline{\mathrm{RE}}=5 \mathrm{~V}$, No Load	$12 \quad 25$	mA
			$\mathrm{DE}=0 \mathrm{~V}$, $\overline{\mathrm{RE}}=5 \mathrm{~V}$, No Load	175300	$\mu \mathrm{A}$
IIH	High-level input current (D, DE, $\overline{\mathrm{RE}}$)	NA	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$	50	$\mu \mathrm{A}$
IIL	Low-level input current ($\mathrm{D}, \mathrm{DE}, \overline{\mathrm{RE}}$)	NA	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	-50	$\mu \mathrm{A}$
Ios	Short-circuit output current (see Note 5)	NA	$\mathrm{V}_{\mathrm{O}}=-7 \mathrm{~V}$	-250 -120	mA
			$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$	250	
			$\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$	250	
loz	High-impedance output current	NA		See Receiver II	mA
V_{O}	Output voltage	$\mathrm{V}_{\text {oa }}, \mathrm{V}_{\text {ob }}$	$\mathrm{O}=0$	$0 \quad \mathrm{~V}_{\mathrm{CC}}$	V
VOC(PP)	Peak-to-peak change in commonmode output voltage during state transitions	NA	See Figures 5 and 6	0.8	V
VOC	Common-mode output voltage	\| $\mathrm{V}_{\text {os }} \mid$	See Figure 4	1 3	V
$\mid \triangle \mathrm{V}_{\text {OC(SS }}{ }^{\text {\| }}$	Magnitude of change, commonmode steady-state output voltage	\| $\mathrm{V}_{\text {OS }}-\overline{\mathrm{V}}_{\text {OS }} \mid$	See Figure 5	0.1	V
\|VOD ${ }^{\text {I }}$	Magnitude of differential output voltage $\left\|\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right\|$	V_{0}	$\mathrm{I}=0$	1.56	V
			$\mathrm{R}_{\mathrm{L}}=54 \Omega, \quad$ See Figure 4	1.5	V
$\Delta \mid \mathrm{V}_{\text {OD }}$	Change in differential voltage magnitude between logic states	$\left\|\left\|\mathrm{V}_{\mathrm{t}}\right\|-\left\|\overline{\mathrm{V}}_{\mathrm{t}}\right\|\right\|$	$R_{L}=54 \Omega$	0.1	V

\dagger All typical values are measured with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
NOTE 5: This parameter is measured with only one output being driven at a time.
switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{t}_{\mathrm{d}(\mathrm{DH})}$	Differential output delay time, low-to-high-level output	$\begin{array}{ll} R_{\mathrm{L}}=54 \Omega, & C_{\mathrm{L}}=50 \mathrm{pF}, \\ \text { See Figure } 5 & \end{array}$				1.3	$\mu \mathrm{s}$
$t_{\text {d }}(\mathrm{DL})$	Differential-output delay time, high-to-low-level output					1.3	$\mu \mathrm{S}$
tplH	Propagation delay time, low-to-high-level output				0.5	1.3	$\mu \mathrm{s}$
tPHL	Propagation delay time, high-to-low-level output				0.5	1.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	Pulse skew (\| $\mathrm{t}_{\mathrm{d}}(\mathrm{DH})-\mathrm{t}_{\mathrm{d}(\mathrm{DL}} \mid$)				75	150	ns
tr_{r}	Rise time, single ended			0.25		1.2	$\mu \mathrm{s}$
$\mathrm{tf}_{\text {f }}$	Fall time, single ended			0.25		1.2	$\mu \mathrm{s}$
tPZH	Output enable time to high level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$,	See Figure 2			3.5	$\mu \mathrm{s}$
tPZL	Output enable time to low level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$,	See Figure 3			3.5	$\mu \mathrm{s}$
tPHZ	Output disable time from high level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$,	See Figure 2			2	$\mu \mathrm{s}$
tplZ	Output disable time from low level	$\mathrm{R}_{\mathrm{L}}=110 \Omega$,	See Figure 3			2	$\mu \mathrm{s}$

RECEIVER SECTION

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	TYP†	MAX	UNIT
${ }^{\text {ICC }}$	Supply current (total package)	$\mathrm{DE}=\overline{\mathrm{RE}}=0 \mathrm{~V}$,	No Load				3.9	mA
		$\begin{array}{\|l\|} \hline \overline{\mathrm{RE}}=5 \mathrm{~V}, \\ \text { No Load } \end{array}$	$\mathrm{DE}=0 \mathrm{~V}$,				300	$\mu \mathrm{A}$
1	Input current	Other input $=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}$				250	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}=0$			250	
			$\mathrm{V}_{\mathrm{I}}=-7 \mathrm{~V}$		-200			
			$\mathrm{V}_{\mathrm{I}}=-7 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{CC}}=0$	-200			
loz	High-impedance-state output current	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2.4 V					± 100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {hys }}$	Input hysteresis voltage					70		mV
$\mathrm{V}_{\text {IT }+}$	Positive-going input threshold voltage						200	mV
$\mathrm{V}_{\text {IT- }}$	Negative-going input threshold voltage				-200			mV
V_{OH}	High-level output voltage	$\mathrm{IOH}=-8 \mathrm{~mA}$	Figure 7		2.8			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{I} \mathrm{OL}=4 \mathrm{~mA}$	Figure 7				0.4	V

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
switching characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
tPLH	Propagation delay time, low-to-high-level output	$C_{L}=50 \mathrm{pF}$,	See Figure 7			150	ns	
tPHL	Propagation delay time, high-to-low-level output					150	ns	
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	Pulse skew (\|tpHL - tpLH)					50	ns
tr_{r}	Rise time, single ended	See Figure 7			20		ns	
$\mathrm{tf}^{\text {f }}$	Fall time, single ended				20		ns	
tPZH	Output enable time to high level	See Figure 8				100	ns	
tPZL	Output enable time to low level					100	ns	
tPHZ	Output disable time from high level					100	ns	
tplZ	Output disable time from low level					100	ns	

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT
VOLTAGE WAVEFORMS
NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR $=1.25 \mathrm{kHz}, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
B. C_{L} includes probe and jig capacitance.

Figure 2. Driver t $_{\text {PZH }}$ and tPHZ $^{\text {Test Circuit and Voltage Waveforms }}$

Figure 3. Driver $t_{\text {PZL }}$ and tpLz Test Circuit and Voltage Waveforms

NOTES: A. Resistance values are in ohms and are 1% tolerance.
B. C_{L} includes probe and jig capacitance.

Figure 4. Driver Test Circuit, Voltage, and Current Definitions

PARAMETER MEASUREMENT INFORMATION

Figure 5. Driver Timing, Voltage and Current Waveforms

PARAMETER MEASUREMENT INFORMATION

Inputs

VOC(PP)
NOTES: A. Resistance values are in ohms and are 1% tolerance.
B. C_{L} includes probe and jig capacitance ($\pm 10 \%$).

Figure 6. Driver $\mathrm{V}_{\mathrm{OC}(\mathrm{PP})}$ Test Circuit and Waveforms

NOTE A: This value includes probe and jig capacitance ($\pm 10 \%$).
Figure 7. Receiver $\mathrm{t}_{\text {PLH }}$ and $\mathrm{t}_{\text {PHL }}$ Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

A

NOTE A: This value includes probe and jig capacitance ($\pm 10 \%$).
Figure 8. Receiver $t_{\text {PZL }}$, t $_{\text {PLZ }}$, tPZH , and $t_{\text {PHZ }}$ Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

DRIVER DIFFERENTIAL OUTPUT VOLTAGE
VS
FREE-AIR TEMPERATURE

Figure 9

DRIVER TRANSITION TIME
vs
FREE-AIR TEMPERATURE

Figure 11

DRIVER PROPAGATION DELAY TIME vs
FREE-AIR TEMPERATURE

Figure 10

DIFFERENTIAL OUTPUT VOLTAGE vs OUTPUT CURRENT

Figure 12

TYPICAL CHARACTERISTICS

Figure 13

APPLICATION INFORMATION

NOTE A: The line should be terminated at both ends in its characteristic impedance $\left(R_{T}=Z_{O}\right)$. Stub lengths off the main line should be kept as short as possible.

Figure 14. Typical Application Circuit

APPLICATION INFORMATION

'LBC184 test description

The 'LBC184 is tested against the IEC 61000-4-5 recommended transient identified as the combination wave. The combination wave provides a 1.2-/50- $\mu \mathrm{s}$ open-circuit voltage waveform and a $8-/ 20-\mu \mathrm{s}$ short-circuit current waveform shown in Figure 15. The testing is performed with a combination/hybrid pulse generator with an effective output impedance of 2Ω. The setup for the overvoltage stress is shown in Figure 16 with all testing performed with power applied to the 'LBC184 circuit.

NOTE

High voltage transient testing is done on a sampling basis.

Figure 15. Short-Circuit Current Waveforms
The 'LBC184 is tested and evaluated for both maximum (single pulse) as well as life test (multiple pulse) capabilities. The 'LBC184 is evaluated against transients of both positive and negative polarity and all testing is performed with the worst-case transient polarity. Transient pulses are applied to the bus pins (A \& B) across ground as shown in Figure 16.

Figure 16. Overvoltage-Stress Test Circuit
An example waveform as seen by the 'LBC184 is shown in Figure 17. The bottom trace is current, the middle trace shows the clamping voltage of the device and the top trace is power as calculated from the voltage and current waveforms. This example shows a peak clamping voltage of 33.6 V and peak current of 16 A , thus yielding an absorbed peak power of 538 W .

NOTE

A circuit reset may be required to ensure normal data communications following a transient noise pulse of greater than 250 W peak.

APPLICATION INFORMATION

Figure 17. Typical Surge Waveform Measured At Terminals 5 and 7
www.ti.com

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN65LBC184D | ACTIVE | SOIC | D | 8 | 75 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LBC184DG4 | ACTIVE | SOIC | D | 8 | 75 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LBC184DR | ACTIVE | SOIC | D | 8 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LBC184DRG4 | ACTIVE | SOIC | D | 8 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN65LBC184P | ACTIVE | PDIP | P | 8 | 50 | Pb-Free
 (RoHS) | CU NIPDAU | N/A for Pkg Type |
| SN65LBC184PE4 | ACTIVE | PDIP | P | 8 | 50 | Pb-Free
 (RoHS) | CU NIPDAU | N/A for Pkg Type |
| SN75LBC184D | ACTIVE | SOIC | D | 8 | 75 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN75LBC184DG4 | ACTIVE | SOIC | D | 8 | 75 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN75LBC184DR | ACTIVE | SOIC | D | 8 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN75LBC184DRG4 | ACTIVE | SOIC | D | 8 | 2500 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN75LBC184P | ACTIVE | PDIP | P | 8 | 50 | Pb-Free
 (RoHS) | CU NIPDAU | N/A for Pkg Type |
| SN75LBC184PE4 | ACTIVE | PDIP | P | 8 | 50 | Pb-Free
 (RoHS) | CU NIPDAU | N/A for Pkg Type |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM INSTRUMENTS

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 (mm)	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN65LBC184DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65LBC184DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75LBC184DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN75LBC184DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LBC184DR	SOIC	D	8	2500	346.0	346.0	29.0
SN65LBC184DR	SOIC	D	8	2500	340.5	338.1	20.6
SN75LBC184DR	SOIC	D	8	2500	346.0	346.0	29.0
SN75LBC184DR	SOIC	D	8	2500	340.5	338.1	20.6

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

