SN65HVD10,SN65HVD10Q,SN75HVD10 SN65HVD11,SN65HVD11Q,SN75HVD11 SN65HVD12,SN75HVD12

SLLS505E - FEBRUARY 2002 - REVISED NOVEMBER 2002

3.3-V RS-485 TRANSCEIVERS

FEATURES

- Operates With a 3.3-V Supply
- Bus-Pin ESD Protection Exceeds 16 kV HBM
- 1/8 Unit-Load Option Available (Up to 256 Nodes on the Bus)
- Optional Driver Output Transition Times for Signaling Ratest of 1 Mbps, 10 Mbps and 25 Mbps
- Meets or Exceeds the Requirements of ANSI TIA/EIA-485-A
- Bus-Pin Short Circuit Protection From -7 V to 12 V
- Low-Current Standby Mode . . . $1 \mu \mathrm{~A}$ Typical
- Open-Circuit and Shorted-Bus Failsafe Receiver
- Thermal Shutdown Protection
- Glitch-Free Power-Up and Power-Down Protection for Hot-Plugging Applications
- SN75176 Footprint

APPLICATIONS

- Digital Motor Control
- Utility Meters
- Chassis-to-Chassis Interconnects
- Electronic Security Stations
- Industrial Process Control
- Building Automation
- Point-of-Sale (POS) Terminals and Networks

DESCRIPTION

The SN65HVD10, SN75HVD10, SN65HVD11, SN75HVD11, SN65HVD12, and SN75HVD12 combine a 3 -state differential line driver and differential input line receiver that operate with a single $3.3-\mathrm{V}$ power supply. They are designed for balanced transmission lines and meet or exceed ANSI standard TIA/EIA-485-A and ISO 8482:1993. These differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus-transmission lines. The drivers and receivers have active-high and active-low enables respectively, that can be externally connected together to function as direction control. Very low device standby supply current can be achieved by disabling the driver and the receiver.
The driver differential outputs and receiver differential inputs connect internally to form a differential input/ output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or $\mathrm{V}_{\mathrm{CC}}=0$. These parts feature wide positive and negative common-mode voltage ranges, making them suitable for party-line applications.

D OR PPACKAGE
(TOP VIEW)

LOGIC DIAGRAM
(POSITIVE LOGIC)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN65HVD12,SN75HVD12
SLLS505E - FEBRUARY 2002 - REVISED NOVEMBER 2002
Thesedevices havelimited built-inESD protection. Theleads shouldbe shorted together or the device placedinconductive foamduring storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

SIGNALING RATE	UNIT LOADS	T_{A}	PACKAGE		SOIC MARKING
			SOIC(1)	PDIP	
25 Mbps	1/2	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SN65HVD10D	SN65HVD10P	VP10
10 Mbps	1/8		SN65HVD11D	SN65HVD11P	VP11
1 Mbps	1/8		SN65HVD12D	SN65HVD12P	VP12
25 Mbps	1/2	$-0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SN75HVD10D	SN75HVD10P	VN10
10 Mbps	1/8		SN75HVD11D	SN75HVD11P	VN11
1 Mbps	1/8		SN75HVD12D	SN75HVD12P	VN12
25 Mbps	1/2	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	SN65HVD10QD	-	VP10Q
10 Mbps	1/8		SN65HVD11QD	-	VP11Q

(1) The D package is available taped and reeled. Add an R suffix to the part number (i.e., SN75HVD11DR).

PACKAGE DISSIPATION RATINGS

PACKAGE	$\begin{gathered} \mathrm{T}_{\mathrm{A}} \leq \mathbf{2 5 ^ { \circ }} \mathrm{C} \\ \text { POWER RATING } \end{gathered}$	DERATING FACTOR $_{(1)}$ ABOVE $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\ \text { POWER RATING } \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ POWER RATING
D(2)	725 mW	$5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	464 mW	377 mW	145 mW
D(3)	1282 mW	$10.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	822 mW	667 mW	255 mW
P	1150 mW	$9.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	736 mW	598 mW	-

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.
(2) Tested in accordance with the Low-K thermal metric definitions of EIA/JESD51-3.
(3) Tested in accordance with the High-K thermal metric definitions of EIA/JESD51-7.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1) (2)

(1) Stressesbeyondthose listedunder "absolute maximum ratings" may cause permanentdamage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM MAX	UNIT
Supply voltage, V_{CC}		3	3.6	V
Voltage at any bus terminal (separately or common mode) $\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\text {IC }}$		-7(1)	12	V
High-level input voltage, V_{IH}	D, DE, $\overline{\mathrm{RE}}$	2	V_{CC}	V
Low-level input voltage, $\mathrm{V}_{\text {IL }}$	D, DE, $\overline{\mathrm{RE}}$	0	0.8	V
Differential input voltage, $\mathrm{V}_{\text {ID }}$ (see Figure 7)		-12	12	V
	Driver	-60		
High-level output current, IOH	Receiver	-8		A
	Driver		60	
Low-level output current, IOL	Receiver		8	mA
	SN65HVD10Q			
	SN65HVD11Q	-40	125	${ }^{\circ} \mathrm{C}$
	SN65HVD10			
	SN65HVD11	-40	85	${ }^{\circ} \mathrm{C}$
Operating free-air tempe	SN65HVD12			
	SN75HVD10			
	SN75HVD11	0	70	${ }^{\circ} \mathrm{C}$
	SN75HVD12			

(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

DRIVER ELECTRICAL CHARACTERISTICS
over recommended operating conditions unless otherwise noted

(1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $3.3-\mathrm{V}$ supply.
(2) For $T_{A}>85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}$ is $\pm 5 \%$.

SLLS505E - FEBRUARY 2002 - REVISED NOVEMBER 2002
DRIVER SWITCHING CHARACTERISTICS
over recommended operating conditions unless otherwise noted

PARAMETER			TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT	
tPLH	Propagation delay time, low-to-high-level output	HVD10	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$ See Figure 4	5	8.5	16	ns	
		HVD11		18	25	40		
		HVD12		135	200	300		
tPHL	Propagation delay time, high-to-low-level output	HVD10		5	8.5	16	ns	
		HVD11		18	25	40		
		HVD12		135	200	300		
tr	Differential output signal rise time	HVD10		3	4.5	10	ns	
		HVD11		10	20	30		
		HVD12		100	170	300		
$\mathrm{tf}_{\text {f }}$	Differential output signal fall time	HVD10		3	4.5	10	ns	
		HVD11		10	20	30		
		HVD12		100	170	300		
${ }_{\text {tsk }}(\mathrm{p})$	Pulse skew (\|tPHL - tpLH)	HVD10				1.5	ns
		HVD11				2.5		
		HVD12				7		
$\mathrm{t}_{\text {sk(pp) }}{ }^{(2)}$	Part-to-part skew	HVD10				6	ns	
		HVD11				11		
		HVD12				100		
tPZH	Propagation delay time, high-impedance-to-high-level output	HVD10	$\mathrm{R}_{\mathrm{L}}=110 \Omega, \overline{\mathrm{RE}} \text { at } 0 \mathrm{~V},$ See Figure 5			31	ns	
		HVD11				55		
		HVD12				300		
tPHZ	Propagation delay time, high-level-to-high-impedance output	HVD10				25	ns	
		HVD11				55		
		HVD12				300		
tPZL	Propagation delay time, high-impedance-to-low-level output	HVD10	$R_{L}=110 \Omega, \overline{R E}$ at 0 V , See Figure 6			26	ns	
		HVD11				55		
		HVD12				300		
tpLZ	Propagation delay time, low-level-to-high-impedance output	HVD10				26	ns	
		HVD11				75		
		HVD12				400		
tPZH	Propagation delay time, standby-to-high-level output		$\mathrm{R}_{\mathrm{L}}=110 \Omega \text {, } \overline{\mathrm{RE}} \text { at } 3 \mathrm{~V},$ See Figure 5			6	$\mu \mathrm{s}$	
tPZL	Propagation delay time, standby-to-low-level output		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=110 \Omega, \overline{\mathrm{RE}} \text { at } 3 \mathrm{~V}, \\ & \text { See Figure } 6 \\ & \hline \end{aligned}$			6	$\mu \mathrm{s}$	

(1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $3.3-\mathrm{V}$ supply.
(2) $t_{\mathrm{sk}}(\mathrm{pp})$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
www.ti.com

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

PARAMETER		TEST CONDITIONS			MIN	TYP(1)	MAX	UNIT
$\mathrm{V}_{1 \text { T }+}$	Positive-going input threshold voltage	$\mathrm{O}=-8 \mathrm{~mA}$			-0.01			V
VIT-	Negative-going inputthreshold voltage	$\mathrm{l}=8 \mathrm{~mA}$			-0.2			
$V_{\text {hys }}$	Hysteresis voltage ($\mathrm{V}_{\mathrm{I}++}-\mathrm{V}_{\mathrm{IT}}$)				35			mV
V_{IK}	Enable-input clamp voltage	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5			V
V_{OH}	High-level output voltage	$\mathrm{V}_{\text {ID }}=200 \mathrm{mV}$,	$\mathrm{IOH}=-8 \mathrm{~mA}$,	See Figure 7	2.4			V
V_{OL}	Low-level output voltage	$\mathrm{V}_{\text {ID }}=-200 \mathrm{mV}$,	$\mathrm{OL}=8 \mathrm{~mA}$,	See Figure 7	0.4			V
l OZ	High-impedance-state outputcurrent	$\mathrm{V}_{\mathrm{O}}=0$ or $\mathrm{V}_{\mathrm{CC}} \quad \overline{\mathrm{RE}}$ at V_{CC}			-1		1	$\mu \mathrm{A}$
リ	Bus input current	V_{A} or $\mathrm{V}_{\mathrm{B}}=12 \mathrm{~V}$		HVD11, HVD12, Other input at 0 V		0.05	0.11	mA
		V_{A} or $\mathrm{V}_{\mathrm{B}}=12 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$				0.06	0.13	
		V_{A} or $\mathrm{V}_{\mathrm{B}}=-7 \mathrm{~V}$			-0.1	-0.05		
		V_{A} or $\mathrm{V}_{\mathrm{B}}=-7 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CC}}=0$			-0.05	-0.04		
		$\mathrm{V}_{\mathrm{A}} \text { or } \mathrm{V}_{\mathrm{B}}=12 \mathrm{~V}$		HVD10, Other input at 0 V		0.2	0.5	mA
		V_{A} or $\mathrm{V}_{\mathrm{B}}=12 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$				0.25	0.5	
		V_{A} or $\mathrm{V}_{\mathrm{B}}=-7 \mathrm{~V}$			-0.4	-0.2		
		V_{A} or $\mathrm{V}_{\mathrm{B}}=-7 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$			-0.4 -0.15			
IIH	High-level input current, $\overline{\mathrm{RE}}$	$\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$			-30		0	$\mu \mathrm{A}$
IIL	Low-level input current, $\overline{\mathrm{RE}}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$			-30		0	$\mu \mathrm{A}$
$\mathrm{CID}^{\text {I }}$	Differential input capacitance	$\mathrm{V}_{\text {ID }}=0.4 \sin (4 \mathrm{E} 6 \pi \mathrm{t})+0.5 \mathrm{~V}$, DE at 0 V			15			pF
ICC	Supply current	$\overline{\mathrm{RE}}$ at 0 V , D \& DE at 0 V , No load	Receiver enabled and driver disabled		48			mA
		$\overline{R E}$ at $V_{C C}$, D at $V_{C C}$, $D E$ at 0 V , No load	Receiver disabled and driver disabled (standby)		15			$\mu \mathrm{A}$
		$\overline{\mathrm{RE}}$ at 0 V , D \& DE at V_{CC}, No load	Receiver enabled and driver enabled			9	15.5	mA

(1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $3.3-\mathrm{V}$ supply.

SLLS505E-FEBRUARY 2002 - REVISED NOVEMBER 2002
RECEIVER SWITCHING CHARACTERISTICS
over recommended operating conditions unless otherwise noted

PARAMETER			TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT	
tPLH	Propagation delay time, low-to-high-level output	HVD10	$\mathrm{V}_{\text {ID }}=-1.5 \mathrm{~V}$ to 1.5 V , $C_{L}=15 \mathrm{pF}$, See Figure 8	12.5	20	25	ns	
tPHL	Propagation delay time, high-to-low-level output	HVD10		12.5	20	25		
tPLH	Propagation delay time, low-to-high-level output	HVD11 HVD12		30	55	70	ns	
tPHL	Propagation delay time, high-to-low-level output	HVD11 HVD12		30	55	70	ns	
$\mathrm{t}_{\text {sk }}(\mathrm{p})$	Pulse skew (\|tPHL - tPLH)	HVD10				1.5	ns
		HVD11				4		
		HVD12				4		
$\mathrm{t}_{\text {sk(pp) }}{ }^{(2)}$	Part-to-part skew	HVD10				8	ns	
		HVD11				15		
		HVD12				15		
tr_{r}	Output signal rise time		$C_{L}=15 \mathrm{pF}$, See Figure 8	1	2	5	ns	
$\mathrm{tf}^{\text {f }}$	Output signal fall time			1	2	5		
tpZH(1)	Output enable time to high level		$C_{L}=15 \mathrm{pF}, \quad \mathrm{DE} \text { at } 3 \mathrm{~V} \text {, }$ See Figure 9			15	ns	
tPZL(1)	Output enable time to low level					15		
tPHZ	Output disable time from high level					20		
tpLZ	Output disable time from low level					15		
tPZH(2)	Propagation delay time, standby-to-high-level output		$\begin{aligned} & C_{\mathrm{L}=15 \mathrm{pF}, \quad \mathrm{DE} \text { at } 0,} \\ & \text { See Figure } 10 \end{aligned}$			6	$\mu \mathrm{s}$	
tPZL(2)	Propagation delay time, standby-to-low-level output					6		

(1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $3.3-\mathrm{V}$ supply.
(2) $\mathrm{t}_{\mathrm{sk}}(\mathrm{pp})$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Driver V_{OD} Test Circuit and Voltage and Current Definitions

C_{L} Includes Fixture and InstrumentationCapacitance

Figure 2. Driver V_{OD} With Common-Mode Loading Test Circuit

Input: PRR $=\mathbf{5 0 0} \mathbf{k H z}, \mathbf{5 0 \%}$ Duty Cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

Generator: $\operatorname{PRR}=500 \mathrm{kHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathbf{o}}=50 \Omega$
Figure 4. Driver Switching Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

Generator: PRR = 500 kHz, 50\% Duty Cycle, $\mathrm{t}_{\mathbf{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$
Figure 5. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms

Generator: $P R R=500 \mathrm{kHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathrm{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
Figure 6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

Figure 7. Receiver Voltage and Current Definitions

PARAMETER MEASUREMENT INFORMATION

Generator: $P R R=500 \mathrm{kHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathbf{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$

Figure 8. Receiver Switching Test Circuit and Voltage Waveforms

Generator: PRR = $\mathbf{5 0 0} \mathbf{k H z}, \mathbf{5 0 \%}$ Duty Cycle, $\mathrm{t}_{\mathbf{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathbf{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathbf{O}}=50 \Omega$

Figure 9. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled

PARAMETER MEASUREMENT INFORMATION

Generator: $P R R=100 \mathrm{kHz}, 50 \%$ Duty Cycle, $\mathrm{t}_{\mathbf{r}}<6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}<6 \mathrm{~ns}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$

Figure 10. Receiver Enable Time From Standby (Driver Disabled)

NOTE: This test is conducted to test survivability only. Data stability at the R output is not specified.
Figure 11. Test Circuit, Transient Over Voltage Test

Function Tables

DRIVER			
INPUT ENABLE OUTPUTS D DE A H H H L H L X L Z Open H H			

RECEIVER

DIFFERENTIAL INPUTS	ENABLE	OUTPUT
$\overline{\mathbf{R E}}$	\mathbf{R}	
$\mathrm{V}_{\text {ID }}=\mathrm{V}_{\mathbf{A}}-\mathrm{V}_{\mathbf{B}}$	L	L
$\mathrm{V}_{\mathrm{ID}} \leq-0.2 \mathrm{~V}$	L	$?$
$-0.2 \mathrm{~V}<\mathrm{V}_{I D}<-0.01 \mathrm{~V}$	L	H
$-0.01 \mathrm{~V} \leq \mathrm{V}_{\text {ID }}$	H	Z
X	L	H
Open Circuit	L	H
Short Circuit		

$\mathrm{H}=$ high level; $\mathrm{L}=$ low level; $\mathrm{Z}=$ high impedance; $\mathrm{X}=$ irrelevant; ? = indeterminate

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

	R1/R2	R3
SN65HVD10	$9 \mathrm{k} \Omega$	$45 \mathrm{k} \Omega$
SN65HVD11	$36 \mathrm{k} \Omega$	$180 \mathrm{k} \Omega$
SN65HVD12	$36 \mathrm{k} \Omega$	$180 \mathrm{k} \Omega$

TYPICAL CHARACTERISTICS

Figure 12

Figure 14

HVD11
RMS SUPPLY CURRENT
vs
SIGNALING RATE

Figure 13

HVD10
BUS INPUT CURRENT
vs
BUS INPUT VOLTAGE

Figure 15

TYPICAL CHARACTERISTICS

Figure 16
LOW-LEVEL OUTPUT CURRENT vs
DRIVER LOW-LEVEL OUTPUT VOLTAGE

Figure 18

HIGH-LEVEL OUTPUT CURRENT vs
DRIVER HIGH-LEVEL OUTPUT VOLTAGE

Figure 17

DRIVER DIFFERENTIAL OUTPUT
vs
FREE-AIR TEMPERATURE

Figure 19

TYPICAL CHARACTERISTICS

Figure 20

APPLICATION INFORMATION

Device	Number of Devices on Bus
HVD10	64
HVD11	256
HVD12	256

NOTE: The line should be terminated at both ends with its characteristic impedance $\left(R_{\top}=Z_{O}\right)$. Stub lengths off the main line should be kept as short as possible.

Figure 21. Typical Application Circuit

Figure 22. HVD12 Input and Output Through 2000 Feet of Cable

An example application for the HVD12 is illustrated in Figure 21. Two HVD12 transceivers are used to communicate data through a 2000 foot (600 m) length of Commscope 5524 category $5 \mathrm{e}+$ twisted pair cable. The
bus is terminated at each end by a $100-\Omega$ resistor, matching the cable characteristic impedance. Figure 22 illustrates operation at a signaling rate of 250 kbps .

INSTRUMENTS

MECHANICAL DATA

D (R-PDSO-G**)

 PACKAGE
PLASTIC SMALL-OUTLINE

8 PINS SHOWN

PINS ${ }^{* *}$	8	14	16
A MAX	0.197 $(5,00)$	0.344 $(8,75)$	0.394 $(10,00)$
	0.189 $(4,80)$	0.337 $(8,55)$	0.386 $(9,80)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

MECHANICAL DATA

P (R-PDIP-T8) PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

