DATA SHEET

BZX585 series

Voltage regulator diodes

Voltage regulator diodes

FEATURES

- Total power dissipation: max. 300 mW
- Two tolerance series: ± 2 \% and ± 5 \%
- Working voltage range: nominal 2.4 V to 75 V (E24 range)
- Non-repetitive peak reverse power dissipation: max. 40 W .

APPLICATIONS

- General regulation functions.

DESCRIPTION

Low-power voltage regulator diodes encapsulated in an ultra small SOD523 plastic SMD package.

The diodes are available in the normalized E24 ± 2 \% (BZX585-B) and ± 5 \% (BZX585-C) tolerance range.

The series consists of 37 types with nominal working voltages from 2.4 V to 75 V .

PINNING

PIN	DESCRIPTION
1	cathode
2	anode

Fig. 1 Simplified outline (SOD523) and symbol.

MARKING

TYPE NUMBER	MARKING CODE						
Marking codes for BZX585-B2V4 to BZX585-B75							
BZX585-B2V4	C1	BZX585-B6V2	E1	BZX585-B16	EA	BZX585-B43	EM
BZX585-B2V7	C2	BZX585-B6V8	E2	BZX585-B18	EB	BZX585-B47	EN
BZX585-B3V0	C3	BZX585-B7V5	E3	BZX585-B20	EC	BZX585-B51	EP
BZX585-B3V3	C4	BZX585-B8V2	E4	BZX585-B22	ED	BZX585-B56	ER
BZX585-B3V6	C5	BZX585-B9V1	E5	BZX585-B24	EE	BZX585-B62	ES
BZX585-B3V9	C6	BZX585-B10	E6	BZX585-B27	EF	BZX585-B68	ET
BZX585-B4V3	C7	BZX585-B11	E7	BZX585-B30	EG	BZX585-B75	EU
BZX585-B4V7	C8	BZX585-B12	E8	BZX585-B33	EH		
BZX585-B5V1	C9	BZX585-B13	E9	BZX585-B36	EK		
BZX585-B5V6	C0	BZX585-B15	E0	BZX585-B39	EL		

TYPE NUMBER	MARKING CODE						
Marking codes for BZX585-C2V4 to BZX585-C75							
BZX585-C2V4	F1	BZX585-C6V2	H1	BZX585-C16	HA	BZX585-C43	HM
BZX585-C2V7	F2	BZX585-C6V8	H2	BZX585-C18	HB	BZX585-C47	HN
BZX585-C3V0	F3	BZX585-C7V5	H3	BZX585-C20	HC	BZX585-C51	HP
BZX585-C3V3	F4	BZX585-C8V2	H4	BZX585-C22	HD	BZX585-C56	HR
BZX585-C3V6	F5	BZX585-C9V1	H5	BZX585-C24	HE	BZX585-C62	HS
BZX585-C3V9	F6	BZX585-C10	H6	BZX585-C27	HF	BZX585-C68	HT
BZX585-C4V3	F7	BZX585-C11	H7	BZX585-C30	HG	BZX585-C75	HU
BZX585-C4V7	F8	BZX585-C12	H8	BZX585-C33	HH		
BZX585-C5V1	F9	BZX585-C13	H9	BZX585-C36	HK		
BZX585-C5V6	F0	BZX585-C15	H0	BZX585-C39	HL		

ORDERING INFORMATION

TYPE NUMBER	NAME	PACKAGE	
	DESCRIPTION BZ to BZX585-B2V4		
BZX585-C2V4 to BZX585-C75	-	Plastic surface mounted package; 2 leads	SOD523

LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I_{F}	continuous forward current		-	200	mA
$\mathrm{I}_{\mathrm{ZSM}}$	non-repetitive peak reverse current	$\mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s} ;$ square wave; $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ prior to surge	see Tables 1 and 2		
$\mathrm{P}_{\mathrm{ZSM}}$	non-repetitive peak reverse power dissipation	$\mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s} ;$ square wave; $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ prior to surge	-	40	W
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ;$ note 1	-	300	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-65	+150	${ }^{\circ} \mathrm{C}$

Note

1. Device mounted on an FR4 printed-circuit board with approximately $35 \mathrm{~mm}^{2} \mathrm{Cu}$ area at cathode tab.

Voltage regulator diodes

ELECTRICAL CHARACTERISTICS

Total BZX585-B and C series
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
V_{F}	forward voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$; see Fig. 2	0.9	V
		$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$; see Fig. 2	1.1	V
I_{R}	reverse current BZX585-B/C2V4 $B Z X 585-B / C 2 V 7$ $B Z X 585-B / C 3 V 0$ $B Z X 585-B / C 3 V 3$ $B Z X 585-B / C 3 V 6$ $B Z X 585-B / C 3 V 9$ $B Z X 585-B / C 4 V 3$ $B Z X 585-B / C 4 V 7$ $B Z X 585-B / C 5 V 1$ $B Z X 585-B / C 5 V 6$ $B Z X 585-B / C 6 V 2$ $B Z X 585-B / C 6 V 8$ $B Z X 585-B / C 7 V 5$ $B Z X 585-B / C 8 V 2$ $B Z X 585-B / C 9 V 1$ $B Z X 585-B / C 10$ $B Z X 585-B / C 11$ $B Z X 585-B / C 12$ $B Z X 585-B / C 13$ $B Z X 585-B / C 15 ~ t o ~$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{R}}=1 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 10 \\ & 5 \\ & 5 \\ & 3 \\ & 3 \end{aligned}$	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$	3	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$	2	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$	3	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$	2	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	700	nA
		$\mathrm{V}_{\mathrm{R}}=6 \mathrm{~V}$	500	nA
		$\mathrm{V}_{\mathrm{R}}=7 \mathrm{~V}$	200	nA
		$\mathrm{V}_{\mathrm{R}}=8 \mathrm{~V}$	100	nA
		$\mathrm{V}_{\mathrm{R}}=8 \mathrm{~V}$	100	nA
		$\mathrm{V}_{\mathrm{R}}=8 \mathrm{~V}$	100	nA
		$\mathrm{V}_{\mathrm{R}}=0.7 \mathrm{~V}_{\mathrm{Znom}}$	50	nA

$\begin{gathered} \text { BZX585- } \\ \text { B or C } \\ \text { XXX } \end{gathered}$	WORKING VOLTAGE$\begin{gathered} \mathrm{V}_{\mathrm{Z}}(\mathrm{~V}) \\ \text { at } \mathrm{I}_{\text {ztest }}=5 \mathrm{~mA} \end{gathered}$				DIFFERENTIAL RESISTANCE$\mathbf{r}_{\text {dif }}(\Omega)$				TEMP. COEFF. $\mathrm{S}_{\mathrm{Z}}(\mathrm{mV} / \mathrm{K})$ at $\mathrm{I}_{\text {Ztest }}=5 \mathrm{~mA}$ (see figs 3 AND 4) TYP.	$\begin{gathered} \text { DIODE CAP. } \\ \mathrm{C}_{\mathrm{d}}(\mathrm{pF}) \\ \text { at } \mathrm{f}=1 \mathrm{MHz} ; \\ \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} \end{gathered} \mathrm{M} .$	NON-REPETITIVE PEAK REVERSE CURRENT $\mathrm{I}_{\text {ZSM }}(\mathrm{A})$ at $\mathrm{t}_{\mathrm{p}}=\mathbf{1 0 0 \mu \mathrm { s }}$
	Tol. \pm 2\% (B)		Tol. $\pm 5 \%$ (C)		at $\mathrm{I}_{\text {zest }}=1 \mathrm{~mA}$		at $\mathrm{I}_{\text {zest }}=5 \mathrm{~mA}$				
	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.			MAX.
2V4	2.35	2.45	2.28	2.52	275	400	70	100	-1.3	450	6.0
2V7	2.65	2.75	2.57	2.84	300	450	75	100	-1.4	440	6.0
3V0	2.94	3.06	2.85	3.15	325	500	80	95	-1.6	425	6.0
3V3	3.23	3.37	3.14	3.47	350	500	85	95	-1.8	410	6.0
3V6	3.53	3.67	3.42	3.78	375	500	85	90	-1.9	390	6.0
3V9	3.82	3.98	3.71	4.10	400	500	85	90	-1.9	370	6.0
4V3	4.21	4.39	4.09	4.52	410	600	80	90	-1.7	350	6.0
4V7	4.61	4.79	4.47	4.94	425	500	50	80	-1.2	325	6.0
5V1	5.00	5.20	4.85	5.36	400	480	40	60	-0.5	300	6.0
5V6	5.49	5.71	5.32	5.88	80	400	15	40	1.0	275	6.0
6V2	6.08	6.32	5.89	6.51	40	150	6	10	2.2	250	6.0
6V8	6.66	6.94	6.46	7.14	30	80	6	15	3.0	215	6.0
7V5	7.35	7.65	7.13	7.88	15	80	2	10	3.6	170	4.0
8V2	8.04	8.36	7.79	8.61	20	80	2	10	4.3	150	4.0
9V1	8.92	9.28	8.65	9.56	20	100	2	10	5.2	120	3.0
10	9.80	10.20	9.50	10.50	20	150	2	10	6.0	110	3.0
11	10.78	11.22	10.45	11.55	25	150	2	10	6.9	110	2.5
12	11.76	12.24	11.40	12.60	25	150	2	10	7.9	105	2.5
13	12.74	13.26	12.35	13.65	25	170	2	10	8.8	105	2.5
15	14.70	15.30	14.25	15.75	25	200	3	15	10.7	100	2.0
16	15.68	16.32	15.20	16.80	50	200	10	40	12.4	90	1.5
18	17.64	18.36	17.10	18.90	50	225	10	45	14.4	80	1.5
20	19.60	20.40	19.00	21.00	60	225	15	55	16.4	70	1.5
22	21.56	22.44	20.90	23.10	60	250	20	55	18.4	60	1.25
24	23.52	24.48	22.80	25.20	60	250	25	70	20.4	55	1.25

$\begin{gathered} \text { BZX585- } \\ \text { B or C } \\ \text { XXX } \end{gathered}$	WORKING VOLTAGE $V_{Z}(V)$ at $I_{\text {ztest }}=2 \mathrm{~mA}$				DIFFERENTIAL RESISTANCE$\mathbf{r}_{\text {dif }}(\Omega)$				TEMP. COEFF. $\mathrm{S}_{\mathrm{Z}}(\mathrm{mV} / \mathrm{K})$ at $\mathrm{I}_{\text {Ztest }}=2 \mathrm{~mA}$ (see figs 3 and 4) TYP.	$\begin{gathered} \text { DIODE CAP. } \\ \begin{array}{c} C_{d}(\mathrm{pF}) \end{array} \\ \text { at } \mathrm{f}=1 \mathrm{MHz} ; \\ \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} \end{gathered}$	NON-REPETITIVE PEAK REVERSE CURRENT $\mathrm{I}_{\text {zsm }}(\mathrm{A}) \text { at } \mathrm{t}_{\mathrm{p}}=100 \mu \mathrm{~s}$ MAX.
	Tol. ± 2 \% (B)		Tol. ± 5 \% (C)		at $\mathrm{l}_{\text {ztest }}=0.5 \mathrm{~mA}$		at $\mathrm{I}_{\text {ztest }}=\mathbf{2 m A}$				
	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.			
27	26.46	27.54	25.65	28.35	65	300	25	80	23.4	50	1.0
30	29.40	30.60	28.50	31.50	70	300	30	80	26.6	50	1.0
33	32.34	33.66	31.35	34.65	75	325	35	80	29.7	45	0.9
36	35.28	36.72	34.20	37.80	80	350	35	90	33.0	45	0.8
39	38.22	39.78	37.05	40.95	80	350	40	130	36.4	45	0.7
43	42.14	43.86	40.85	45.15	85	375	45	150	41.2	40	0.6
47	46.06	47.94	44.65	49.35	85	375	50	170	46.1	40	0.5
51	49.98	52.02	48.45	53.55	90	400	60	180	51.0	40	0.4
56	54.88	57.12	53.20	58.80	100	425	70	200	57.0	40	0.3
62	60.76	63.24	58.90	65.10	120	450	80	215	64.4	35	0.3
68	66.64	69.36	64.60	71.40	150	475	90	240	71.7	35	0.25
75	73.50	76.50	71.25	78.75	170	500	95	255	80.2	35	0.2

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$\mathrm{R}_{\mathrm{th}(j-a)}$	thermal resistance from junction to ambient	note 1	350	K/W
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{s})}$	thermal resistance from junction to solder point	note 2	65	K/W

Notes

1. Device mounted on a FR4 printed-circuit board with approximately $35 \mathrm{~mm}^{2} \mathrm{Cu}$ area at cathode tab.
2. Solder point at cathode tab.

Voltage regulator diodes

BZX585 series

GRAPHICAL DATA

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 2 Forward current as a function of forward voltage; typical values.

BZX585-B/C2V4 to B/C4V7.

$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.

Fig. 3 Temperature coefficient as a function of working current; typical values.

BZX585-B/C5V1 to B/C15.
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.
Fig. 4 Temperature coefficient as a function of working current; typical values.

Voltage regulator diodes

PACKAGE OUTLINE

Plastic surface-mounted package; 2 leads

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	\mathbf{D}	\mathbf{E}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{v}
mm	0.65	0.34	0.17	1.25	0.85	1.65	0.1
	0.58	0.26	0.11	1.15	0.75	1.55	

Note

1. The marking bar indicates the cathode.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOD523			SC-79		-	$02-12-13$

DATA SHEET STATUS

DOCUMENT STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)}$	DEFINITION
Objective data sheet	Development	This document contains data from the objective specification for product development.
Preliminary data sheet	Qualification	This document contains data from the preliminary specification.
Product data sheet	Production	This document contains the product specification.

Notes

1. Please consult the most recently issued document before initiating or completing a design.
2. The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

DISCLAIMERS

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications -Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions
above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.
Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

NXP Semiconductors

Customer notification

This data sheet was changed to reflect the new company name NXP Semiconductors, including new legal definitions and disclaimers. No changes were made to the technical content, except for package outline drawings which were updated to the latest version.

Contact information

For additional information please visit: http://www.nxp.com
For sales offices addresses send e-mail to: salesaddresses@nxp.com

[^0]founded by

[^0]: © NXP B.V. 2009
 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
 The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

