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8-bit  
Microcontroller 
with
128K Bytes of
ISP Flash
and
CAN Controller

AT90CAN128 
Automotive

Preliminary
Features
• High-performance, Low-power AVR® 8-bit Microcontroller
• Advanced RISC Architecture

– 133 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers + Peripheral Control Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier

• Non volatile Program and Data Memories
– 128K Bytes of In-System Reprogrammable Flash

Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits

Selectable Boot Size: 1K Bytes, 2K Bytes, 4K Bytes or 8K Bytes
In-System Programming by On-Chip Boot Program (CAN, UART)
True Read-While-Write Operation

– 4K Bytes EEPROM (Endurance: 100,000 Write/Erase Cycles)
– 4K Bytes Internal SRAM
– Up to 64K Bytes Optional External Memory Space
– Programming Lock for Software Security
– Fuses and Lock bits Endurance 1000 Write/Erase Cycles

• JTAG (IEEE std. 1149.1 Compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Programming Flash (Hardware ISP), EEPROM, Lock & Fuse Bits
– Extensive On-chip Debug Support

• CAN Controller 2.0A & 2.0B
– 15 Full Message Objects with Separate Identifier Tags and Masks
– Transmit, Receive, Automatic Reply and Frame Buffer Receive Modes
– 1Mbits/s Maximum Transfer Rate at 8 MHz
– Time stamping, TTC & Listening Mode (Spying or Autobaud)

• Peripheral Features
– Programmable Watchdog Timer with On-chip Oscillator
– 8-bit Synchronous Timer/Counter-0 

10-bit Prescaler
External Event Counter
Output Compare or 8-bit PWM Output

– 8-bit Asynchronous Timer/Counter-2
10-bit Prescaler
External Event Counter
Output Compare or 8-Bit PWM Output
32Khz Oscillator for RTC Operation

– Dual 16-bit Synchronous Timer/Counters-1 & 3 
10-bit Prescaler
Input Capture with Noise Canceler
External Event Counter
3-Output Compare or 16-Bit PWM Output
Output Compare Modulation 

– 8-channel, 10-bit SAR ADC
8 Single-ended channels
7 Differential Channels
2 Differential Channels With Programmable Gain at 1x, 10x, or 200x

– On-chip Analog Comparator
– Byte-oriented Two-wire Serial Interface
– Dual Programmable Serial USART
– Master/Slave SPI Serial Interface

Programming Flash (Hardware ISP)
• Special Microcontroller Features

– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– 8 External Interrupt Sources
– 5 Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down & Standby
– Software Selectable Clock Frequency
– Global Pull-up Disable

• I/O and Packages
– 53 Programmable I/O Lines
– 64-lead TQFP and 64-lead QFN

• Operating Voltages
– 2.7 - 5.5V

• Operating temperature
– Automotive (-40°C to +125°C)

• Maximum Frequency
– 8 MHz at 2.7V - Automotive range
– 16 MHz at 4.5V - Automotive range
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Description The AT90CAN128 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the AT90CAN128 achieves throughputs approaching 1 MIPS per MHz allowing the sys-
tem designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose working registers.
All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two
independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The AT90CAN128 provides the following features: 128K bytes of In-System Program-
mable Flash with Read-While-Write capabilities, 4K bytes EEPROM, 4K bytes SRAM,
53 general purpose I/O lines, 32 general purpose working registers, a CAN controller,
Real Time Counter (RTC), four flexible Timer/Counters with compare modes and PWM,
2 USARTs, a byte oriented Two-wire Serial Interface, an 8-channel 10-bit ADC with
optional differential input stage with programmable gain, a programmable Watchdog
Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test
interface, also used for accessing the On-chip Debug system and programming and five
software selectable power saving modes. 

The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI/CAN ports
and interrupt system to continue functioning. The Power-down mode saves the register
contents but freezes the Oscillator, disabling all other chip functions until the next inter-
rupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run,
allowing the user to maintain a timer base while the rest of the device is sleeping. The
ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous
Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode,
the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This
allows very fast start-up combined with low power consumption. 

The device is manufactured using Atmel’s high-density nonvolatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed in-system
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-Programmable Flash on a monolithic chip, the Atmel AT90CAN128
is a powerful microcontroller that provides a highly flexible and cost effective solution to
many embedded control applications.

The AT90CAN128 AVR is supported with a full suite of program and system develop-
ment tools including: C compilers, macro assemblers, program debugger/simulators, in-
circuit emulators, and evaluation kits.

Applications that use the ATmega128 AVR microcontroller can be made compatible to
use the AT90CAN128, refer to Application Note AVR 096, on the Atmel web site.
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AT90CAN128 Auto
Block Diagram

Figure 1.  Block Diagram
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Automotive Quality 
Grade

The AT90CAN128-15AZ have been developed and manufactured according to the most
stringent requirements of the international standard ISO-TS-16949. This data sheet con-
tains limit values extracted from the results of extensive characterization (Temperature
and Voltage). The quality and reliability of the AT90CAN128-15AZ have been verified
during regular product qualification as per AEC-Q100 grade 1.

As indicated in the ordering information paragraph, the products are available in three
different temperature grades, but with equivalent quality and reliability objectives. Differ-
ent temperature identifiers have been defined as listed in Table 1.

Table 1.  Temperature Grade Identification for Automotive Products

Temperature
Temperature

Identifier Comments

-40 ; +85 T Similar to Industrial Temperature Grade but with 
Automotive Quality

-40 ; +105 T1 Reduced Automotive Temperature Range

-40 ; +125 Z Full AutomotiveTemperature Range
4 AT90CAN128 Auto
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AT90CAN128 Auto
Pin Configurations

Figure 2.  Pinout AT90CAN128- TQFP 
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Figure 3.  Pinout AT90CAN128- QFN 
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AT90CAN128 Auto
Pin Descriptions

VCC Digital supply voltage.

GND Ground.

Port A (PA7..PA0) Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port A pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the AT90CAN128 as
listed on page 70.

Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the AT90CAN128 as
listed on page 72.

Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the AT90CAN128 as listed on
page 74.

Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the AT90CAN128 as
listed on page 76. 

Port E (PE7..PE0) Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the AT90CAN128 as
listed on page 79. 

Port F (PF7..PF0) Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port F output
buffers have symmetrical drive characteristics with both high sink and source capability.
As inputs, Port F pins that are externally pulled low will source current if the pull-up
7      
7522C–AUTO–09/06



      
resistors are activated. The Port F pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Port F also serves the functions of the JTAG interface. If the JTAG interface is enabled,
the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even
if a reset occurs.

Port G (PG4..PG0) Port G is a 5-bit I/O port with internal pull-up resistors (selected for each bit). The Port G
output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the
pull-up resistors are activated. The Port G pins are tri-stated when a reset condition
becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the AT90CAN128 as
listed on page 84.

RESET Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset. The minimum pulse length is given in caracteristics. Shorter pulses are not
guaranteed to generate a reset. The I/O ports of the AVR are immediately reset to their
initial state even if the clock is not running. The clock is needed to reset the rest of the
AT90CAN128.

XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting Oscillator amplifier.

AVCC AVCC is the supply voltage pin for the A/D Converter on Port F. It should be externally
connected to VCC, even if the ADC is not used. If the ADC is used, it should be con-
nected to VCC through a low-pass filter. 

AREF This is the analog reference pin for the A/D Converter.

About Code Examples This documentation contains simple code examples that briefly show how to use various
parts of the device. These code examples assume that the part specific header file is
included before compilation. Be aware that not all C compiler vendors include bit defini-
tions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C compiler documentation for more details.
8 AT90CAN128 Auto
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AT90CAN128 Auto
AVR CPU Core

Introduction This section discusses the AVR core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to
access memories, perform calculations, control peripherals, and handle interrupts.

Architectural Overview Figure 4.  Block Diagram of the AVR Architecture 

In order to maximize performance and parallelism, the AVR uses a Harvard architecture
– with separate memories and buses for program and data. Instructions in the program
memory are executed with a single level pipelining. While one instruction is being exe-
cuted, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle. The program memory is In-
System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with
a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)
operation. In a typical ALU operation, two operands are output from the Register File,
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the operation is executed, and the result is stored back in the Register File – in one
clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing – enabling efficient address calculations. One of the these
address pointers can also be used as an address pointer for look up tables in Flash pro-
gram memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations can also be executed in the ALU. After
an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions,
able to directly address the whole address space. Most AVR instructions have a single
16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and
the Application Program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM (Store Program Memory) instruction that writes into the
Application Flash memory section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the Reset routine (before subroutines
or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional
Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt
Vector in the Interrupt Vector table. The interrupts have priority in accordance with their
Interrupt Vector position. The lower the Interrupt Vector address, the higher is the
priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as
the Data Space locations following those of the Register File, 0x20 - 0x5F. In addition,
the AT90CAN128 has Extended I/O space from 0x60 - 0xFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

ALU – Arithmetic Logic 
Unit

The high-performance AVR ALU operates in direct connection with all the 32 general
purpose working registers. Within a single clock cycle, arithmetic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories – arithmetic, logical, and bit-func-
tions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruc-
tion Set” section for a detailed description.
10 AT90CAN128 Auto
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AT90CAN128 Auto
Status Register The Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to
perform conditional operations. Note that the Status Register is updated after all ALU
operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and
more compact code.

The Status Register is not automatically stored when entering an interrupt routine and
restored when returning from an interrupt. This must be handled by software.

The AVR Status Register – SREG – is defined as:

• Bit 7 – I: Global Interrupt Enable

The Global Interrupt Enable bit must be set to enabled the interrupts. The individual
interrupt enable control is then performed in separate control registers. If the Global
Interrupt Enable Register is cleared, none of the interrupts are enabled independent of
the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt
has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-
bit can also be set and cleared by the application with the SEI and CLI instructions, as
described in the instruction set reference.

• Bit 6 – T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or
destination for the operated bit. A bit from a register in the Register File can be copied
into T by the BST instruction, and a bit in T can be copied into a bit in a register in the
Register File by the BLD instruction.

• Bit 5 – H: Half Carry Flag 

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is
useful in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V

The S-bit is always an exclusive or between the negative flag N and the Two’s Comple-
ment Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See
the “Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See
the “Instruction Set Description” for detailed information.

• Bit 1 – Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
11      
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• Bit 0 – C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruc-
tion Set Description” for detailed information.

General Purpose 
Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to
achieve the required performance and flexibility, the following input/output schemes are
supported by the Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 5 shows the structure of the 32 general purpose working registers in the CPU.

Figure 5.  AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers,
and most of them are single cycle instructions.

As shown in Figure 5, each register is also assigned a data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to
index any register in the file.

The X-register, Y-register, and 
Z-register

The registers R26..R31 have some added functions to their general purpose usage.
These registers are 16-bit address pointers for indirect addressing of the data space.
The three indirect address registers X, Y, and Z are defined as described in Figure 6.

Figure 6.  The X-, Y-, and Z-registers

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)
12 AT90CAN128 Auto
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AT90CAN128 Auto
In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment, and automatic decrement (see the instruction set
reference for details).

RAM Page Z Select Register – 
RAMPZ

• Bits 7..2 – Res: Reserved Bits

These are reserved bits and will always read as zero. When writing to this address loca-
tion, write these bits to zero for compatibility with future devices.

• Bit 1 – RAMPZ0: Extended RAM Page Z-pointer

The RAMPZ Register is normally used to select which 64K RAM Page is accessed by
the Z-pointer. As the AT90CAN128 does not support more than 64K of SRAM memory,
this register is used only to select which page in the program memory is accessed when
the ELPM/SPM instruction is used. The different settings of the RAMPZ0 bit have the
following effects:

Note that LPM is not affected by the RAMPZ setting.

Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Regis-
ter always points to the top of the Stack. Note that the Stack is implemented as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above 0xFF. The Stack Pointer is decremented by one
when data is pushed onto the Stack with the PUSH instruction, and it is decremented by
two when the return address is pushed onto the Stack with subroutine call or interrupt.
The Stack Pointer is incremented by one when data is popped from the Stack with the
POP instruction, and it is incremented by two when data is popped from the Stack with
return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The num-
ber of bits actually used is implementation dependent. Note that the data space in some

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Bit 7 6 5 4 3 2 1 0

– – – – – – – RAMPZ0 RAMPZ

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

RAMPZ0 = 0: Program memory address 0x0000 - 0x7FFF (lower 64K bytes) is
accessed by ELPM/SPM

RAMPZ0 = 1: Program memory address 0x8000 - 0xFFFF (higher 64K bytes) is
accessed by ELPM/SPM
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implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.

Instruction Execution 
Timing

This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 7 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figure 7.  The Parallel Instruction Fetches and Instruction Executions

Figure 8 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 8.  Single Cycle ALU Operation

Reset and Interrupt 
Handling

The AVR provides several different interrupt sources. These interrupts and the separate
Reset Vector each have a separate program vector in the program memory space. All
interrupts are assigned individual enable bits which must be written logic one together

Bit 15 14 13 12 11 10 9 8

SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
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with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 326 for details.

The lowest addresses in the program memory space are by default defined as the Reset
and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 57.
The list also determines the priority levels of the different interrupts. The lower the
address the higher is the priority level. RESET has the highest priority, and next is INT0
– the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of
the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR).
Refer to “Interrupts” on page 57 for more information. The Reset Vector can also be
moved to the start of the Boot Flash section by programming the BOOTRST Fuse, see
“Boot Loader Support – Read-While-Write Self-Programming” on page 312.

Interrupt Behavior When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts
are disabled. The user software can write logic one to the I-bit to enable nested inter-
rupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is
automatically set when a Return from Interrupt instruction – RETI – is executed. 

There are basically two types of interrupts. The first type is triggered by an event that
sets the interrupt flag. For these interrupts, the Program Counter is vectored to the
actual Interrupt Vector in order to execute the interrupt handling routine, and hardware
clears the corresponding interrupt flag. Interrupt flags can also be cleared by writing a
logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding interrupt enable bit is cleared, the interrupt flag will be set and remem-
bered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or
more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the cor-
responding interrupt flag(s) will be set and remembered until the Global Interrupt Enable
bit is set, and will then be executed by order of priority. 

The second type of interrupts will trigger as long as the interrupt condition is present.
These interrupts do not necessarily have interrupt flags. If the interrupt condition disap-
pears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and exe-
cute one more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine, nor restored when returning from an interrupt routine. This must be handled by
software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately
disabled. No interrupt will be executed after the CLI instruction, even if it occurs simulta-
neously with the CLI instruction. The following example shows how this can be used to
avoid interrupts during the timed EEPROM write sequence.
15      
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When using the SEI instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in this example.

Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles the program vector address for the actual interrupt
handling routine is executed. During this four clock cycle period, the Program Counter is
pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack
Pointer is incremented by two, and the I-bit in SREG is set.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI(); 

EECR |= (1<<EEMWE); /* start EEPROM write */

EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

Assembly Code Example

sei ; set Global Interrupt Enable

sleep ; enter sleep, waiting for interrupt

; note: will enter sleep before any pending 

; interrupt(s)

C Code Example

_SEI(); /* set Global Interrupt Enable */

_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
16 AT90CAN128 Auto
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Memories This section describes the different memories in the AT90CAN128. The AVR architec-
ture has two main memory spaces, the Data Memory and the Program Memory space.
In addition, the AT90CAN128 features an EEPROM Memory for data storage. All three
memory spaces are linear and regular.

In-System 
Reprogrammable Flash 
Program Memory 

The AT90CAN128 contains 128K bytes On-chip In-System Reprogrammable Flash
memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the
Flash is organized as 64K x 16. For software security, the Flash Program memory
space is divided into two sections, Boot Program section and Application Program
section. 

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
AT90CAN128 Program Counter (PC) is 16 bits wide, thus addressing the 64K program
memory locations. The operation of Boot Program section and associated Boot Lock
bits for software protection are described in detail in “Boot Loader Support – Read-
While-Write Self-Programming” on page 312. “Memory Programming” on page 326 con-
tains a detailed description on Flash data serial downloading using the SPI pins or the
JTAG interface.

Constant tables can be allocated within the entire program memory address space (see
the LPM – Load Program Memory and ELPM – Extended Load Program Memory
instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execu-
tion Timing” on page 14.

Figure 9.  Program Memory Map

0x0000

0xFFFF

Program Memory

Application Flash Section
 

Boot Flash Section
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SRAM Data Memory Figure 10 shows how the AT90CAN128 SRAM Memory is organized.

The AT90CAN128 is a complex microcontroller with more peripheral units than can be
supported within the 64 locations reserved in the Opcode for the IN and OUT instruc-
tions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used. 

The lower 4,352 data memory locations address both the Register File, the I/O memory,
Extended I/O memory, and the internal data SRAM. The first 32 locations address the
Register File, the next 64 location the standard I/O memory, then 160 locations of
Extended I/O memory, and the next 4096 locations address the internal data SRAM.

An optional external data SRAM can be used with the AT90CAN128. This SRAM will
occupy an area in the remaining address locations in the 64K address space. This area
starts at the address following the internal SRAM. The Register file, I/O, Extended I/O
and Internal SRAM occupies the lowest 4352 bytes, so when using 64 KB (65,536
bytes) of External Memory, 61,184 bytes of External Memory are available. See “Exter-
nal Memory Interface” on page 25 for details on how to take advantage of the external
memory map.

SRAM Data Access When the addresses accessing the SRAM memory space exceeds the internal data
memory locations, the external data SRAM is accessed using the same instructions as
for the internal data memory access. When the internal data memories are accessed,
the read and write strobe pins (PG0 and PG1) are inactive during the whole access
cycle. External SRAM operation is enabled by setting the SRE bit in the XMCRA
Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access
of the internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD,
PUSH, and POP take one additional clock cycle. If the Stack is placed in external
SRAM, interrupts, subroutine calls and returns take three clock cycles extra because the
two-byte program counter is pushed and popped, and external memory access does not
take advantage of the internal pipe-line memory access. When external SRAM interface
is used with wait-state, one-byte external access takes two, three, or four additional
clock cycles for one, two, and three wait-states respectively. Interrupts, subroutine calls
and returns will need five, seven, or nine clock cycles more than specified in the instruc-
tion set manual for one, two, and three wait-states.

The five different addressing modes for the data memory cover: Direct, Indirect with Dis-
placement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In
the Register File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base
address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Regis-
ters, and the 4,096 bytes of internal data SRAM in the AT90CAN128 are all accessible
through all these addressing modes. The Register File is described in “General Purpose
Register File” on page 12.
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Figure 10.  Data Memory Map

SRAM Data Access Times This section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clkCPU cycles as described in Figure
11.

Figure 11.  On-chip Data SRAM Access Cycles

32 Registers
64 I/O Registers

Internal SRAM
(4096 x 8)

0x0000 - 0x001F
0x0020 - 0x005F

0x1100
0x10FF

0xFFFF

0x0060 - 0x00FF

Data Memory

External SRAM
(0 - 64K x 8)

160 Ext I/O Reg.
0x0100

clk

WR

RD

Data

Data

Address Address valid

T1 T2 T3

Compute Address
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rit
e

CPU

Memory Access Instruction Next Instruction
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EEPROM Data Memory The AT90CAN128 contains 4-Kbytes of data EEPROM memory. It is organized as a
separate data space, in which single bytes can be read and written. The EEPROM has
an endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described in the following, specifying the EEPROM Address Registers,
the EEPROM Data Register, and the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM,
see “SPI Serial Programming Overview” on page 338, “JTAG Programming Overview”
on page 343, and “Parallel Programming Overview” on page 330 respectively.

EEPROM Read/Write Access The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 2. A self-timing function, how-
ever, lets the user software detect when the next byte can be written. If the user code
contains instructions that write the EEPROM, some precautions must be taken. In
heavily filtered power supplies, VCC is likely to rise or fall slowly on power-up/down. This
causes the device for some period of time to run at a voltage lower than specified as
minimum for the clock frequency used. See “Preventing EEPROM Corruption” on page
24 for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.

The EEPROM Address 
Registers – EEARH and 
EEARL

• Bits 15..12 – Reserved Bits

These bits are reserved bits in the AT90CAN128 and will always read as zero.

• Bits 11..0 – EEAR11..0: EEPROM Address

The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address
in the 4-Kbytes EEPROM space. The EEPROM data bytes are addressed linearly
between 0 and 4,095. The initial value of EEAR is undefined. A proper value must be
written before the EEPROM may be accessed.

The EEPROM Data Register – 
EEDR

Bit 15 14 13 12 11 10 9 8

– – – – EEAR11 EEAR10 EEAR9 EEAR8 EEARH

EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X X X X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
20 AT90CAN128 Auto
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• Bits 7..0 – EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read oper-
ation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

The EEPROM Control 
Register – EECR

• Bits 7..4 – Reserved Bits

These bits are reserved bits in the AT90CAN128 and will always read as zero.

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEWE is cleared.

• Bit 2 – EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set, setting EEWE within four clock cycles will write data to the
EEPROM at the selected address If EEMWE is zero, setting EEWE will have no effect.
When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

• Bit 1 – EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be written to one to write the
value into the EEPROM. The EEMWE bit must be written to one before a logical one is
written to EEWE, otherwise no EEPROM write takes place. The following procedure
should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):

1. Wait until EEWE becomes zero.

2. Wait until SPMEN (Store Program Memory Enable) in SPMCSR (Store Program 
Memory Control and Status Register) becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.

6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed before initiating a new
EEPROM write. Step 2 is only relevant if the software contains a Boot Loader allowing
the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Boot Loader Support – Read-While-Write Self-Programming” on
page 312 for details about Boot programming. 

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the

Bit 7 6 5 4 3 2 1 0

– – – – EERIE EEMWE EEWE EERE EECR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0
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EEPROM is interrupting another EEPROM access, the EEAR or EEDR Register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The
user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR Register, the EERE bit must be written to a logic
one to trigger the EEPROM read. The EEPROM read access takes one instruction, and
the requested data is available immediately. When the EEPROM is read, the CPU is
halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress, it is neither possible to read the EEPROM, nor to change the EEAR
Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 2 lists the typical
programming time for EEPROM access from the CPU.

Table 2.  EEPROM Programming Time.

Symbol Number of Calibrated RC Oscillator Cycles Typ Programming Time

EEPROM write 
(from CPU)

67 584 8.5 ms
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The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling inter-
rupts globally) so that no interrupts will occur during execution of these functions. The
examples also assume that no Flash Boot Loader is present in the software. If such
code is present, the EEPROM write function must also wait for any ongoing SPM com-
mand to finish.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_write    

; Set up address (r18:r17) in address register

out  EEARH, r18

out  EEARL, r17

; Write data (r16) to data register

out  EEDR,r16

; Write logical one to EEMWE

sbi  EECR,EEMWE

; Start eeprom write by setting EEWE

sbi  EECR,EEWE

ret

C Code Example

void EEPROM_write (unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address and data registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE);

/* Start eeprom write by setting EEWE */

EECR |= (1<<EEWE);

}
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The next code examples show assembly and C functions for reading the EEPROM. The
examples assume that interrupts are controlled so that no interrupts will occur during
execution of these functions.

Preventing EEPROM 
Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using EEPROM, and the same design solutions should
be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage is too low.

EEPROM data corrupt ion can easi ly  be avo ided by fo l lowing  th is  des ign
recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD). If the detection
level of the internal BOD does not match the needed detection level, an external low
VCC reset Protection circuit can be used. If a reset occurs while a write operation is in
progress, the write operation will be completed provided that the power supply voltage is
sufficient.

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEWE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out  EEARH, r18

out  EEARL, r17

; Start eeprom read by writing EERE

sbi  EECR,EERE

; Read data from data register

in  r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEWE))

;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

}

24 AT90CAN128 Auto
7522C–AUTO–09/06



AT90CAN128 Auto
I/O Memory The I/O space definition of the AT90CAN128 is shown in “Register Summary” on page
398.

All AT90CAN128 I/Os and peripherals are placed in the I/O space. All I/O locations may
be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data
between the 32 general purpose working registers and the I/O space. I/O registers
within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI
instructions. In these registers, the value of single bits can be checked by using the
SBIS and SBIC instructions. Refer to the instruction set section for more details. When
using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be
used. When addressing I/O registers as data space using LD and ST instructions, 0x20
must be added to these addresses. The AT90CAN128 is a complex microcontroller with
more peripheral units than can be supported within the 64 location reserved in Opcode
for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike
most other AVR’s, the CBI and SBI instructions will only operate on the specified bit, and
can therefore be used on registers containing such status flags. The CBI and SBI
instructions work with registers 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

External Memory 
Interface

With all the features the External Memory Interface provides, it is well suited to operate
as an interface to memory devices such as External SRAM and Flash, and peripherals
such as LCD-display, A/D, and D/A. The main features are:

• Four different wait-state settings (including no wait-state).

• Independent wait-state setting for different extErnal Memory sectors (configurable 
sector size).

• The number of bits dedicated to address high byte is selectable.

• Bus keepers on data lines to minimize current consumption (optional).

Overview When the eXternal MEMory (XMEM) is enabled, address space outside the internal
SRAM becomes available using the dedicated External Memory pins (see Figure 2 on
page 4, Table 30 on page 70, Table 36 on page 74, and Table 48 on page 84). The
memory configuration is shown in Figure 12.
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Figure 12.  External Memory with Sector Select

Using the External Memory 
Interface

The interface consists of:

• AD7:0: Multiplexed low-order address bus and data bus.

• A15:8: High-order address bus (configurable number of bits).

• ALE: Address latch enable.

• RD: Read strobe.

• WR: Write strobe.

The control bits for the External Memory Interface are located in two registers, the Exter-
nal Memory Control Register A – XMCRA, and the External Memory Control Register B
– XMCRB.

When the XMEM interface is enabled, the XMEM interface will override the setting in the
data direction registers that corresponds to the ports dedicated to the XMEM interface.
For details about the port override, see the alternate functions in section “I/O-Ports” on
page 62. The XMEM interface will auto-detect whether an access is internal or external.
If the access is external, the XMEM interface will output address, data, and the control
signals on the ports according to Figure 14 (this figure shows the wave forms without
wait-states). When ALE goes from high-to-low, there is a valid address on AD7:0. ALE is
low during a data transfer. When the XMEM interface is enabled, also an internal access
will cause activity on address, data and ALE ports, but the RD and WR strobes will not
toggle during internal access. When the External Memory Interface is disabled, the nor-
mal pin and data direction settings are used. Note that when the XMEM interface is
disabled, the address space above the internal SRAM boundary is not mapped into the
internal SRAM. Figure 13 illustrates how to connect an external SRAM to the AVR using
an octal latch (typically “74 x 573” or equivalent) which is transparent when G is high.

0x0000

0x10FF

External Memory
(0-60K x 8)

0xFFFF

Internal memory

SRL[2..0]

SRW11
SRW10

SRW01
SRW00

Lower sector

Upper sector

0x1100
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Address Latch Requirements Due to the high-speed operation of the XRAM interface, the address latch must be
selected with care for system frequencies above 8 MHz @ 4V and 4 MHz @ 2.7V.
When operating at conditions above these frequencies, the typical old style 74HC series
latch becomes inadequate. The External Memory Interface is designed in compliance to
the 74AHC series latch. However, most latches can be used as long they comply with
the main timing parameters. The main parameters for the address latch are:

• D to Q propagation delay (tPD).

• Data setup time before G low (tSU).

• Data (address) hold time after G low (TH).

The External Memory Interface is designed to guaranty minimum address hold time
after G is asserted low of th = 5 ns. Refer to tLAXX_LD/tLLAXX_ST in “Memory Programming”
Tables 143 through Tables 150. The D-to-Q propagation delay (tPD) must be taken into
consideration when calculating the access time requirement of the external component.
The data setup time before G low (tSU) must not exceed address valid to ALE low (tAV-

LLC) minus PCB wiring delay (dependent on the capacitive load).

Figure 13.  External SRAM Connected to the AVR

Pull-up and Bus-keeper The pull-ups on the AD7:0 ports may be activated if the corresponding Port register is
written to one. To reduce power consumption in sleep mode, it is recommended to dis-
able the pull-ups by writing the Port register to zero before entering sleep.

The XMEM interface also provides a bus-keeper on the AD7:0 lines. The bus-keeper
can be disabled and enabled in software as described in “External Memory Control Reg-
ister B – XMCRB” on page 31. When enabled, the bus-keeper will ensure a defined logic
level (zero or one) on the AD7:0 bus when these lines would otherwise be tri-stated by
the XMEM interface.

Timing External Memory devices have different timing requirements. To meet these require-
ments, the AT90CAN128 XMEM interface provides four different wait-states as shown
in Table 4. It is important to consider the timing specification of the External Memory
device before selecting the wait-state. The most important parameters are the access
time for the external memory compared to the set-up requirement of the AT90CAN128.
The access time for the External Memory is defined to be the time from receiving the
chip select/address until the data of this address actually is driven on the bus. The
access time cannot exceed the time from the ALE pulse must be asserted low until data
is stable during a read sequence (See tLLRL+ tRLRH - tDVRH in Tables 143 through Tables
150). The different wait-states are set up in software. As an additional feature, it is pos-
sible to divide the external memory space in two sectors with individual wait-state

D[7:0]

A[7:0]

A[15:8]

RD

WR

SRAM

D Q

G

AD7:0

ALE

A15:8

RD

WR

AVR
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settings. This makes it possible to connect two different memory devices with different
timing requirements to the same XMEM interface. For XMEM interface timing details,
please refer to Tables 143 through Tables 150 and Figure 174 to Figure 177 in the
“External Data Memory Characteristics” on page 366.

Note that the XMEM interface is asynchronous and that the waveforms in the following
figures are related to the internal system clock. The skew between the internal and
external clock (XTAL1) is not guarantied (varies between devices temperature, and sup-
ply voltage). Consequently, the XMEM interface is not suited for synchronous operation.

Figure 14.  External Data Memory Cycles no Wait-state (SRWn1=0 and SRWn0=0)(1)

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper
sector) or SRW00 (lower sector). The ALE pulse in period T4 is only present if the
next instruction accesses the RAM (internal or external). 

Figure 15.  External Data Memory Cycles with SRWn1 = 0 and SRWn0 = 1(1)

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper
sector) or SRW00 (lower sector).
The ALE pulse in period T5 is only present if the next instruction accesses the RAM
(internal or external). 

ALE

T1 T2 T3

W
rit

e
R

ea
d

WR

T4

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataPrev. data Address

DataPrev. data AddressDA7:0 (XMBK = 1)

System Clock (CLKCPU)

XXXXX XXXXXXXX

ALE

T1 T2 T3

W
rit

e
R

ea
d

WR

T5

A15:8 AddressPrev. addr.

DA7:0 Address DataPrev. data XX

RD

DA7:0 (XMBK = 0) DataPrev. data Address

DataPrev. data AddressDA7:0 (XMBK = 1)

System Clock (CLKCPU)

T4
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Figure 16.  External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 0(1)

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper
sector) or SRW00 (lower sector).
The ALE pulse in period T6 is only present if the next instruction accesses the RAM
(internal or external).

Figure 17.  External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 1(1)

Note: 1. SRWn1 = SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper
sector) or SRW00 (lower sector).
The ALE pulse in period T7 is only present if the next instruction accesses the RAM
(internal or external).

XMEM Register Description

External Memory Control 
Register A – XMCRA

• Bit 7 – SRE: External SRAM/XMEM Enable

Writing SRE to one enables the External Memory Interface.The pin functions AD7:0,
A15:8, ALE, WR, and RD are activated as the alternate pin functions. The SRE bit over-
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DA7:0 (XMBK = 0) DataPrev. data Address

DataPrev. data AddressDA7:0 (XMBK = 1)

System Clock (CLKCPU)
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Bit 7 6 5 4 3 2 1 0

SRE SRL2 SRL1 SRL0 SRW11 SRW10 SRW01 SRW00 XMCRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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rides any pin direction settings in the respective data direction registers. Writing SRE to
zero, disables the External Memory Interface and the normal pin and data direction set-
tings are used. Note that when the XMEM interface is disabled, the address space
above the internal SRAM boundary is not mapped into the internal SRAM.

• Bit 6..4 – SRL2, SRL1, SRL0: Wait-state Sector Limit

It is possible to configure different wait-states for different External Memory addresses.
The external memory address space can be divided in two sectors that have separate
wait-state bits. The SRL2, SRL1, and SRL0 bits select the split of the sectors, see Table
3 and Figure 12. By default, the SRL2, SRL1, and SRL0 bits are set to zero and the
entire external memory address space is treated as one sector. When the entire SRAM
address space is configured as one sector, the wait-states are configured by the
SRW11 and SRW10 bits.

• Bit 3..2 – SRW11, SRW10: Wait-state Select Bits for Upper Sector

The SRW11 and SRW10 bits control the number of wait-states for the upper sector of
the external memory address space, see Table 4.

• Bit 1..0 – SRW01, SRW00: Wait-state Select Bits for Lower Sector

The SRW01 and SRW00 bits control the number of wait-states for the lower sector of
the external memory address space, see Table 4.

Table 3.  Sector limits with different settings of SRL2..0

SRL2 SRL1 SRL0 Sector Limits

0 0 0
Lower sector = N/A
Upper sector = 0x1100 - 0xFFFF

0 0 1
Lower sector = 0x1100 - 0x1FFF
Upper sector = 0x2000 - 0xFFFF

0 1 0
Lower sector = 0x1100 - 0x3FFF
Upper sector = 0x4000 - 0xFFFF

0 1 1
Lower sector = 0x1100 - 0x5FFF
Upper sector = 0x6000 - 0xFFFF

1 0 0
Lower sector = 0x1100 - 0x7FFF
Upper sector = 0x8000 - 0xFFFF

1 0 1
Lower sector = 0x1100 - 0x9FFF
Upper sector = 0xA000 - 0xFFFF

1 1 0
Lower sector = 0x1100 - 0xBFFF
Upper sector = 0xC000 - 0xFFFF

1 1 1
Lower sector = 0x1100 - 0xDFFF
Upper sector = 0xE000 - 0xFFFF

Table 4.  Wait States(1)

SRWn1 SRWn0 Wait States

0 0 No wait-states

0 1 Wait one cycle during read/write strobe

1 0 Wait two cycles during read/write strobe

1 1 Wait two cycles during read/write and wait one cycle before driving out 
new address
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Note: 1. n = 0 or 1 (lower/upper sector).
For further details of the timing and wait-states of the External Memory Interface, see
Figures 14 through Figures 17 for how the setting of the SRW bits affects the timing.

External Memory Control 
Register B – XMCRB

• Bit 7– XMBK: External Memory Bus-keeper Enable

Writing XMBK to one enables the bus keeper on the AD7:0 lines. When the bus keeper
is enabled, it will ensure a defined logic level (zero or one) on AD7:0 when they would
otherwise be tri-stated. Writing XMBK to zero disables the bus keeper. XMBK is not
qualified with SRE, so even if the XMEM interface is disabled, the bus keepers are still
activated as long as XMBK is one.

• Bit 6..4 – Reserved Bits

These are reserved bits and will always read as zero. When writing to this address loca-
tion, write these bits to zero for compatibility with future devices.

• Bit 2..0 – XMM2, XMM1, XMM0: External Memory High Mask

When the External Memory is enabled, all Port C pins are default used for the high
address byte. If the full 60KB address space is not required to access the External Mem-
ory, some, or all, Port C pins can be released for normal Port Pin function as described
in Table 5. As described in “Using all 64KB Locations of External Memory” on page 32,
it is possible to use the XMMn bits to access all 64KB locations of the External Memory.

Bit 7 6 5 4 3 2 1 0

XMBK – – – – XMM2 XMM1 XMM0 XMCRB

Read/Write R/W R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 5.  Port C Pins Released as Normal Port Pins when the External Memory is
Enabled

XMM2 XMM1 XMM0 # Bits for External Memory Address Released Port Pins

0 0 0 8 (Full 60 KB space) None

0 0 1 7 PC7

0 1 0 6 PC7 .. PC6

0 1 1 5 PC7 .. PC5

1 0 0 4 PC7 .. PC4

1 0 1 3 PC7 .. PC3

1 1 0 2 PC7 .. PC2

1 1 1 No Address high bits Full Port C
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Using all Locations of 
External Memory Smaller than 
64 KB

Since the external memory is mapped after the internal memory as shown in Figure 12,
the external memory is not addressed when addressing the first 4,352 bytes of data
space. It may appear that the first 4,352 bytes of the external memory are inaccessible
(external memory addresses 0x0000 to 0x10FF). However, when connecting an exter-
nal memory smaller than 64 KB, for example 32 KB, these locations are easily accessed
simply by addressing from address 0x8000 to 0x90FF. Since the External Memory
Address bit A15 is not connected to the external memory, addresses 0x8000 to 0x90FF
will appear as addresses 0x0000 to 0x10FF for the external memory. Addressing above
address 0x90FF is not recommended, since this will address an external memory loca-
tion that is already accessed by another (lower) address. To the Application software,
the external 32 KB memory will appear as one linear 32 KB address space from 0x1100
to 0x90FF. This is illustrated in Figure 18.

Figure 18.  Address Map with 32 KB External Memory

Using all 64KB Locations of 
External Memory

Since the External Memory is mapped after the Internal Memory as shown in Figure 12,
only 60KB of External Memory is available by default (address space 0x0000 to 0x10FF
is reserved for internal memory). However, it is possible to take advantage of the entire
External Memory by masking the higher address bits to zero. This can be done by using
the XMMn bits and control by software the most significant bits of the address. By set-
ting Port C to output 0x00, and releasing the most significant bits for normal Port Pin
operation, the Memory Interface will address 0x0000 - 0x1FFF. See the following code
examples.

(Unused)

Internal Memory

0x0000

0x1100
0x10FF

0xFFFF

AVR Memory Map

External Memory

0x8000
0x7FFF

0x9100
0x90FF

External 32K SRAM

0x0000

0x1100
0x10FF

0x7FFF
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Note: 1. The example code assumes that the part specific header file is included.

Care must be exercised using this option as most of the memory is masked away.

Assembly Code Example(1)

; OFFSET is defined to 0x2000 to ensure
; external memory access
; Configure Port C (address high byte) to
; output 0x00 when the pins are released
; for normal Port Pin operation

ldi r16, 0xFF
out DDRC, r16
ldi r16, 0x00
out PORTC, r16
; release PC7:5
ldi r16, (1<<XMM1)|(1<<XMM0)
sts XMCRB, r16
; write 0xAA to address 0x0001 of external
; memory
ldi r16, 0xaa
sts 0x0001+OFFSET, r16
; re-enable PC7:5 for external memory
ldi r16, (0<<XMM1)|(0<<XMM0)
sts XMCRB, r16
; store 0x55 to address (OFFSET + 1) of
; external memory
ldi r16, 0x55
sts 0x0001+OFFSET, r16

C Code Example(1)

#define OFFSET 0x2000

void XRAM_example(void)
{
unsigned char *p = (unsigned char *) (OFFSET + 1);

DDRC = 0xFF;
PORTC = 0x00;

XMCRB = (1<<XMM1) | (1<<XMM0);

*p = 0xaa;

XMCRB = 0x00;

*p = 0x55;
}
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General Purpose I/O 
Registers

The AT90CAN128 contains three General Purpose I/O Registers. These registers can
be used for storing any information, and they are particularly useful for storing global
variables and status flags.

The General Purpose I/O Register 0, within the address range 0x00 - 0x1F, is directly
bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

General Purpose I/O Register 
2 – GPIOR2

General Purpose I/O Register 
1 – GPIOR1

General Purpose I/O Register 
0 – GPIOR0

Bit 7 6 5 4 3 2 1 0

GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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System Clock

Clock Systems and 
their Distribution

Figure 19 presents the principal clock systems in the AVR and their distribution. All of
the clocks need not be active at a given time. In order to reduce power consumption, the
clocks to unused modules can be halted by using different sleep modes, as described in
“Power Management and Sleep Modes” on page 44. The clock systems are detailed
below.

Figure 19.  Clock Distribution

CPU Clock – clkCPU The CPU clock is routed to parts of the system concerned with operation of the AVR
core. Examples of such modules are the General Purpose Register File, the Status Reg-
ister and the data memory holding the Stack Pointer. Halting the CPU clock inhibits the
core from performing general operations and calculations.

I/O Clock – clkI/O The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, CAN,
USART. The I/O clock is also used by the External Interrupt module, but note that some
external interrupts are detected by asynchronous logic, allowing such interrupts to be
detected even if the I/O clock is halted. Also note that address recognition in the TWI
module is carried out asynchronously when clkI/O is halted, enabling TWI address recep-
tion in all sleep modes.

Flash Clock – clkFLASH The Flash clock controls operation of the Flash interface. The Flash clock is usually
active simultaneously with the CPU clock.

Asynchronous Timer Clock – 
clkASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked
directly from an external clock or an external 32 kHz clock crystal. The dedicated clock
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domain allows using this Timer/Counter as a real-time counter even when the device is
in sleep mode.

ADC Clock – clkADC The ADC is provided with a dedicated clock domain. This allows halting the CPU and
I/O clocks in order to reduce noise generated by digital circuitry. This gives more accu-
rate ADC conversion results.

Clock Sources The device has the following clock source options, selectable by Flash Fuse bits as
shown below. The clock from the selected source is input to the AVR clock generator,
and routed to the appropriate modules.

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the
CPU wakes up from Power-down or Power-save, the selected clock source is used to
time the start-up, ensuring stable Oscillator operation before instruction execution starts.
When the CPU starts from reset, there is an additional delay allowing the power to reach
a stable level before starting normal operation. The Watchdog Oscillator is used for tim-
ing this real-time part of the start-up time. The number of WDT Oscillator cycles used for
each time-out is shown in Table 7. The frequency of the Watchdog Oscillator is voltage
dependent as shown in “AT90CAN128 Typical Characteristics” on page 375.

Default Clock Source The device is shipped with CKSEL = “0010”, SUT = “10”, and CKDIV8 programmed.
The default clock source setting is the Internal RC Oscillator with longest start-up time
and an initial system clock prescaling of 8. This default setting ensures that all users can
make their desired clock source setting using an In-System or Parallel programmer.

Table 6.  Device Clocking Options Select(1)

Device Clocking Option  CKSEL3..0

External Crystal/Ceramic Resonator 1111 - 1000

External Low-frequency Crystal 0111 - 0100

Calibrated Internal RC Oscillator 0010

External Clock 0000

Reserved 0011, 0001

Table 7.  Number of Watchdog Oscillator Cycles

Typ Time-out (VCC = 5.0V) Typ Time-out (VCC = 3.0V) Number of Cycles

4.1 ms 4.3 ms 4K (4,096)

65 ms 69 ms 64K (65,536)
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Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip Oscillator, as shown in Figure 20. Either a quartz
crystal or a ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value
of the capacitors depends on the crystal or resonator in use, the amount of stray capac-
itance, and the electromagnetic noise of the environment. Some initial guidelines for
choosing capacitors for use with crystals are given in Table 8. For ceramic resonators,
the capacitor values given by the manufacturer should be used. For more information on
how to choose capacitors and other details on Oscillator operation, refer to the Multi-
purpose Oscillator Application Note.

Figure 20.  Crystal Oscillator Connections

The Oscillator can operate in three different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..1 as shown in
Table 8.

Notes: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSEL0 Fuse together with the SUT1..0 Fuses select the start-up times as shown
in Table 9.

Table 8.  Crystal Oscillator Operating Modes

CKSEL3..1  Frequency Range (MHz)
Recommended Range for Capacitors C1 

and C2 for Use with Crystals (pF)

100(1) 0.4 - 0.9 12 - 22

101 0.9 - 3.0 12 - 22

110 3.0 - 8.0 12 - 22

111 8.0 - 16.0 12 - 22

XTAL2

XTAL1

GND

C2

C1
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Notes: 1. These options should only be used when not operating close to the maximum fre-
quency of the device, and only if frequency stability at start-up is not important for the
application. These options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure fre-
quency stability at start-up. They can also be used with crystals when not operating
close to the maximum frequency of the device, and if frequency stability at start-up is
not important for the application.

Low-frequency 
Crystal Oscillator

To use a 32.768 kHz watch crystal as the clock source for the device, the low-frequency
crystal Oscillator must be selected by setting the CKSEL Fuses to “0100”, “0101”,
“0110”, or “0111”. The crystal should be connected as shown in Figure 21.

Figure 21.  Low-frequency Crystal Oscillator Connections

12-22 pF capacitors may be necessary if the parasitic impedance (pads, wires & PCB)
is very low.

Table 9.  Start-up Times for the Oscillator Clock Selection

CKSEL0 SUT1..0

Start-up Time from 
Power-down and 

Power-save

Additional Delay 
from Reset 
(VCC = 5.0V) Recommended Usage

0 00 258 CK(1) 14CK + 4.1 ms Ceramic resonator, fast 
rising power

0 01 258 CK(1) 14CK + 65 ms Ceramic resonator, 
slowly rising power

0 10 1K CK(2) 14CK Ceramic resonator, 
BOD enabled

0 11 1K CK(2) 14CK + 4.1 ms Ceramic resonator, fast 
rising power

1 00 1K CK(2) 14CK + 65 ms Ceramic resonator, 
slowly rising power

1
01 16K CK 14CK Crystal Oscillator, BOD 

enabled

1
10 16K CK 14CK + 4.1 ms Crystal Oscillator, fast 

rising power

1
11 16K CK 14CK + 65 ms Crystal Oscillator, 

slowly rising power

XTAL2

XTAL1

GND

12 - 22 pF

12 - 22 pF

32.768 KHz
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When this Oscillator is selected, start-up times are determined by the SUT1..0 fuses as
shown in Table 10 and CKSEL1..0 fuses as shown in Table 11.

Note: 1. These options should only be used if frequency stability at start-up is not important for
the application

Calibrated Internal 
RC Oscillator

The calibrated internal RC Oscillator provides a fixed 8.0 MHz clock. The frequency is
nominal value at 3V and 25°C. If 8 MHz frequency exceeds the specification of the
device (depends on VCC), the CKDIV8 Fuse must be programmed in order to divide the
internal frequency by 8 during start-up. The device is shipped with the CKDIV8 Fuse
programmed. See “System Clock Prescaler” on page 42  for more details. This clock
may be selected as the system clock by programming the CKSEL Fuses as shown in
Table 12. If selected, it will operate with no external components. During reset, hard-
ware loads the calibration byte into the OSCCAL Register and thereby automatically
calibrates the RC Oscillator. At 5V and 25°C, this calibration gives a frequency within ±
10% of the nominal frequency. Using calibration methods as described in application
notes available at www.atmel.com/avr it is possible to achieve ± 2% accuracy at any
given VCC and temperature. When this Oscillator is used as the chip clock, the Watch-
dog Oscillator will still be used for the Watchdog Timer and for the Reset Time-out. For
more information on the pre-programmed calibration value, see the section “Calibration
Byte” on page 329.

Note: 1. The device is shipped with this option selected.

Table 10.  Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1..0  Additional Delay from Reset (VCC = 5.0V) Recommended Usage

00 14CK Fast rising power or BOD enabled

01 14CK + 4.1 ms Slowly rising power

10 14CK + 65 ms Stable frequency at start-up

11 Reserved

Table 11.  Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

CKSEL3..0
Start-up Time from 

Power-down and Power-save Recommended Usage

0100(1) 1K CK

0101 32K CK Stable frequency at start-up

0110(1) 1K CK

0111 32K CK Stable frequency at start-up

Table 12.  Internal Calibrated RC Oscillator Operating Modes(1)

 CKSEL3..0 Nominal Frequency

0010 8.0 MHz
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When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 13.

Note: 1. The device is shipped with this option selected.

Oscillator Calibration Register 
– OSCCAL

• Bit 7 – Reserved Bit

This bit is reserved for future use.

• Bits 6..0 – CAL6..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the internal Oscillator to remove pro-
cess variations from the Oscillator frequency. This is done automatically during Chip
Reset. When OSCCAL is zero, the lowest available frequency is chosen. Writing non-
zero values to this register will increase the frequency of the internal Oscillator. Writing
0x7F to the register gives the highest available frequency. The calibrated Oscillator is
used to time EEPROM and Flash access. If EEPROM or Flash is written, do not cali-
brate to more than 10% above the nominal frequency. Otherwise, the EEPROM or Flash
write may fail. Note that the Oscillator is intended for calibration to 8.0 MHz. Tuning to
other values is not guaranteed, as indicated in Table 14.

External Clock To drive the device from an external clock source, XTAL1 should be driven as shown in
Figure 22. To run the device on an external clock, the CKSEL Fuses must be pro-
grammed to “0000”.

Table 13.  Start-up times for the internal calibrated RC Oscillator clock selection

SUT1..0
Start-up Time from Power-

down and Power-save
Additional Delay from 

Reset (VCC = 5.0V) Recommended Usage

00 6 CK 14CK BOD enabled

01 6 CK 14CK + 4.1 ms Fast rising power

10(1) 6 CK 14CK + 65 ms Slowly rising power

11 Reserved

Bit 7 6 5 4 3 2 1 0

– CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 <----- ------ Device Specific Calibration Value ------ ----->

Table 14.  Internal RC Oscillator Frequency Range.

OSCCAL Value
Min Frequency in Percentage of 

Nominal Frequency
Max Frequency in Percentage of 

Nominal Frequency

0x00 50% 100%

0x3F 75% 150%

0x7F 100% 200%
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Figure 22.  External Clock Drive Configuration

When this clock source is selected, start-up times are determined by the SUT Fuses as
shown in Table 16.

When applying an external clock, it is required to avoid sudden changes in the applied
clock frequency to ensure stable operation of the MCU. A variation in frequency of more
than 2% from one clock cycle to the next can lead to unpredictable behavior. It is
required to ensure that the MCU is kept in Reset during such changes in the clock
frequency.

Note that the System Clock Prescaler can be used to implement run-time changes of
the internal clock frequency while still ensuring stable operation. Refer to “System Clock
Prescaler” on page 42 for details.

Clock Output Buffer When the CKOUT Fuse is programmed, the system Clock will be output on CLKO. This
mode is suitable when chip clock is used to drive other circuits on the system. The clock
will be output also during reset and the normal operation of I/O pin will be overridden
when the fuse is programmed. Any clock source, including internal RC Oscillator, can be
selected when CLKO serves as clock output. If the System Clock Prescaler is used, it is
the divided system clock that is output (CKOUT Fuse programmed). 

Timer/Counter2 
Oscillator

For AVR microcontrollers with Timer/Counter2 Oscillator pins (TOSC1 and TOSC2), the
crystal is connected directly between the pins. The Oscillator is optimized for use with a
32.768 kHz watch crystal. 12-22 pF capacitors may be necessary if the parasitic imped-
ance (pads, wires & PCB) is very low.

Table 15.  External Clock Frequency

CKSEL3..0 Frequency Range

0000 0 - 16 MHz

Table 16.  Start-up Times for the External Clock Selection

SUT1..0
Start-up Time from Power-

down and Power-save
Additional Delay from 

Reset (VCC = 5.0V) Recommended Usage

00 6 CK 14CK BOD enabled

01 6 CK 14CK + 4.1 ms Fast rising power

10 6 CK 14CK + 65 ms Slowly rising power

11 Reserved

XTAL2

XTAL1

GND

NC

External
Clock
Signal
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AT90CAN128 share the Timer/Counter2 Oscillator Pins (TOSC1 and TOSC2) with PG4
and PG3. This  means that both PG4 and PG3 can only be used when the
Timer/Counter2 Oscillator is not enable.

Applying an external clock source to TOSC1 can be done in asynchronous operation if
EXTCLK in the ASSR Register is written to logic one. See “Asynchronous operation of
the Timer/Counter2” on page 155 for further description on selecting external clock as
input instead of a 32 kHz crystal. In this configuration, PG4 cannot be used but PG3 is
available.

System Clock Prescaler The AT90CAN128 system clock can be divided by setting the Clock Prescaler Register
– CLKPR. This feature can be used to decrease power consumption when the require-
ment for processing power is low. This can be used with all clock source options, and it
will affect the clock frequency of the CPU and all synchronous peripherals. clkI/O, clkADC,
clkCPU, and clkFLASH are divided by a factor as shown in Table 17.

Clock Prescaler Register – 
CLKPR

• Bit 7 – CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The
CLKPCE bit is only updated when the other bits in CLKPR are simultaneously written to
zero. CLKPCE is cleared by hardware four cycles after it is written or when CLKPS bits
are written. Rewriting the CLKPCE bit within this time-out period does neither extend the
time-out period, nor clear the CLKPCE bit.

• Bit 6..0 – Reserved Bits

These bits are reserved for future use.

• Bits 3..0 – CLKPS3..0: Clock Prescaler Select Bits 3 - 0

These bits define the division factor between the selected clock source and the internal
system clock. These bits can be written run-time to vary the clock frequency to suit the
application requirements. As the divider divides the master clock input to the MCU, the
speed of all synchronous peripherals is reduced when a division factor is used. The divi-
sion factors are given in Table 17.

To avoid unintentional changes of clock frequency, a special write procedure must be
followed to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits 
in CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to 
CLKPCE. 

Interrupts must be disabled when changing prescaler setting to make sure the write pro-
cedure is not interrupted.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unpro-
grammed, the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits
are reset to “0011”, giving a division factor of 8 at start up. This feature should be used if
the selected clock source has a higher frequency than the maximum frequency of the
device at the present operating conditions. Note that any value can be written to the

Bit 7 6 5 4 3 2 1 0

CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
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CLKPS bits regardless of the CKDIV8 Fuse setting. The Application software must
ensure that a sufficient division factor is chosen if the selected clock source has a higher
frequency than the maximum frequency of the device at the present operating condi-
tions. The device is shipped with the CKDIV8 Fuse programmed.

Note: When the system clock is divided, Timer/Counter2 can be used with Asynchronous clock
only. The frequency of the asynchronous clock must be lower than 1/4th of the frequency
of the scaled down Source clock. Otherwise, interrupts may be lost, and accessing the
Timer/Counter2 registers may fail.

Table 17.  Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved
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Power Management and Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby
saving power. The AVR provides various sleep modes allowing the user to tailor the
power consumption to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one
and a SLEEP instruction must be executed. The SM2, SM1, and SM0 bits in the SMCR
Register select which sleep mode (Idle, ADC Noise Reduction, Power-down,
Power-save, or Standby) will be activated by the SLEEP instruction. See Table 18 for a
summary. If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU
wakes up. The MCU is then halted for four cycles in addition to the start-up time, exe-
cutes the interrupt routine, and resumes execution from the instruction following SLEEP.
The contents of the register file and SRAM are unaltered when the device wakes up
from sleep. If a reset occurs during sleep mode, the MCU wakes up and executes from
the Reset Vector. 

Figure 19 on page 35 presents the different clock systems in the AT90CAN128, and
their distribution. The figure is helpful in selecting an appropriate sleep mode.

Sleep Mode Control Register – 
SMCR

The Sleep Mode Control Register contains control bits for power management.

• Bit 7..4 – Reserved Bits

These bits are reserved for future use.

• Bits 3..1 – SM2..0: Sleep Mode Select Bits 2, 1, and 0

These bits select between the five available sleep modes as shown in Table 18.

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

• Bit 1 – SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is
the programmer’s purpose, it is recommended to write the Sleep Enable (SE) bit to one

Bit 7 6 5 4 3 2 1 0

– – – – SM2 SM1 SM0 SE SMCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 18.  Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 Reserved
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just before the execution of the SLEEP instruction and to clear it immediately after wak-
ing up.

Idle Mode When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter
Idle mode, stopping the CPU but allowing SPI, CAN, USART, Analog Comparator, ADC,
Two-wire Serial Interface, Timer/Counters, Watchdog, and the interrupt system to con-
tinue operating. This sleep mode basically halts clkCPU and clkFLASH, while allowing the
other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as
internal ones like the Timer Overflow and USART Transmit Complete interrupts. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ACD bit in the Analog Comparator Control and Sta-
tus Register – ACSR. This will reduce power consumption in Idle mode. If the ADC is
enabled, a conversion starts automatically when this mode is entered. 

ADC Noise Reduction 
Mode

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter
ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the External
Interrupts, the Two-wire Serial Interface address watch, Timer/Counter2, CAN and the
Watchdog to continue operating (if enabled). This sleep mode basically halts clkI/O,
clkCPU, and clkFLASH, while allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measure-
ments. If the ADC is enabled, a conversion starts automatically when this mode is
entered. Apart from the ADC Conversion Complete interrupt, only an External Reset, a
Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface address match inter-
rupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an External Level
Interrupt on INT7:4, or an External Interrupt on INT3:0 can wake up the MCU from ADC
Noise Reduction mode.

Power-down Mode When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter
Power-down mode. In this mode, the External Oscillator is stopped, while the External
Interrupts, the Two-wire Serial Interface address watch, and the Watchdog continue
operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-out Reset, a
Two-wire Serial Interface address match interrupt, an External Level Interrupt on
INT7:4, or an External Interrupt on INT3:0 can wake up the MCU. This sleep mode basi-
cally halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. Refer to “External Inter-
rupts” on page 89 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition
occurs until the wake-up becomes effective. This allows the clock to restart and become
stable after having been stopped. The wake-up period is defined by the same CKSEL
fuses that define the Reset Time-out period, as described in “Clock Sources” on page
36.

Power-save Mode When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter
Power-save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, i.e., the AS2 bit in ASSR is set,
Timer/Counter2 will run during sleep. The device can wake up from either Timer Over-
f low or Ou tpu t Compare even t from Timer/Counte r2  i f  the corresponding
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Timer/Counter2 interrupt enable bits are set in TIMSK2, and the global interrupt enable
bit in SREG is set. 

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is rec-
ommended instead of Power-save mode because the contents of the registers in the
asynchronous timer should be considered undefined after wake-up in Power-save mode
if AS2 is 0.

This sleep mode basically halts all clocks except clkASY, allowing operation only of asyn-
chronous modules, including Timer/Counter2 if clocked asynchronously.

Standby Mode When the SM2..0 bits are 110 and an External Crystal/Resonator clock option is
selected, the SLEEP instruction makes the MCU enter Standby mode. This mode is
identical to Power-down with the exception that the Oscillator is kept running. From
Standby mode, the device wakes up in 6 clock cycles. 

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If AS2 bit in ASSR is set.
3. Only INT3:0 or level interrupt INT7:4.

Minimizing Power 
Consumption

There are several issues to consider when trying to minimize the power consumption in
an AVR controlled system. In general, sleep modes should be used as much as possi-
ble, and the sleep mode should be selected so that as few as possible of the device’s
functions are operating. All functions not needed should be disabled. In particular, the
following modules may need special consideration when trying to achieve the lowest
possible power consumption.

Analog to Digital Converter If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should
be disabled before entering any sleep mode. When the ADC is turned off and on again,
the next conversion will be an extended conversion. Refer to “Analog to Digital Con-
verter - ADC” on page 266 for details on ADC operation.

Analog Comparator When entering Idle mode, the Analog Comparator should be disabled if not used. When
entering ADC Noise Reduction mode, the Analog Comparator should be disabled. In
other sleep modes, the Analog Comparator is automatically disabled. However, if the
Analog Comparator is set up to use the Internal Voltage Reference as input, the Analog
Comparator should be disabled in all sleep modes. Otherwise, the Internal Voltage Ref-
erence will be enabled, independent of sleep mode. Refer to “Analog Comparator” on
page 263 for details on how to configure the Analog Comparator.

Table 19.  Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources

Sleep Mode clkCPU clkFLASH clkIO clkADC clkASY

Main Clock 
Source 
Enabled

Timer Osc 
Enabled INT7:0

TWI 
Address
Match Timer2

SPM/
EEPROM

Ready ADC
Other

I/O

Idle X X X X X(2) X X X X X X

ADC Noise
Reduction X X X X(2) X(3) X X(2) X X

Power-down X(3) X

Power-save X(2) X(2) X(3) X X(2)

Standby(1) X X(3) X
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Brown-out Detector If the Brown-out Detector is not needed by the application, this module should be turned
off. If the Brown-out Detector is enabled by the BODLEVEL  Fuses, it will be enabled in
all sleep modes, and hence, always consume power. In the deeper sleep modes, this
will contribute significantly to the total current consumption. Refer to “Brown-out Detec-
tion” on page 51 for details on how to configure the Brown-out Detector.

Internal Voltage Reference The Internal Voltage Reference will be enabled when needed by the Brown-out Detec-
tion, the Analog Comparator or the ADC. If these modules are disabled as described in
the sections above, the internal voltage reference will be disabled and it will not be con-
suming power. When turned on again, the user must allow the reference to start up
before the output is used. If the reference is kept on in sleep mode, the output can be
used immediately. Refer to “Internal Voltage Reference” on page 53 for details on the
start-up time.

Watchdog Timer If the Watchdog Timer is not needed in the application, the module should be turned off.
If the Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence,
always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Watchdog Timer” on page 54 for details on how
to configure the Watchdog Timer.

Port Pins When entering a sleep mode, all port pins should be configured to use minimum power.
The most important is then to ensure that no pins drive resistive loads. In sleep modes
where both the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buff-
ers of the device will be disabled. This ensures that no power is consumed by the input
logic when not needed. In some cases, the input logic is needed for detecting wake-up
conditions, and it will then be enabled. Refer to the section “Digital Input Enable and
Sleep Modes” on page 66 for details on which pins are enabled. If the input buffer is
enabled and the input signal is left floating or have an analog signal level close to VCC/2,
the input buffer will use excessive power. 

For analog input pins, the digital input buffer should be disabled at all times. An analog
signal level close to VCC/2 on an input pin can cause significant current even in active
mode. Digital input buffers can be disabled by writing to the Digital Input Disable Regis-
ters (DIDR1 and DIDR0). Refer to “Digital Input Disable Register 1 – DIDR1” on page
265 and “Digital Input Disable Register 0 – DIDR0” on page 284 for details. 

JTAG Interface and 
On-chip Debug System

If the On-chip debug system is enabled by OCDEN Fuse and the chip enter sleep mode,
the main clock source is enabled, and hence, always consumes power. In the deeper
sleep modes, this will contribute significantly to the total current consumption. There are
three alternative ways to avoid this:

• Disable OCDEN Fuse.

• Disable JTAGEN Fuse.

• Write one to the JTD bit in MCUCR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP
controller is not shifting data. If the hardware connected to the TDO pin does not pull up
the logic level, power consumption will increase. Note that the TDI pin for the next
device in the scan chain contains a pull-up that avoids this problem. Writing the JTD bit
in the MCUCR register to one or leaving the JTAG fuse unprogrammed disables the
JTAG interface.
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System Control and Reset

Resetting the AVR During reset, all I/O Registers are set to their initial values, and the program starts exe-
cution from the Reset Vector. The instruction placed at the Reset Vector must be a JMP
– Absolute Jump – instruction to the reset handling routine. If the program never
enables an interrupt source, the Interrupt Vectors are not used, and regular program
code can be placed at these locations. This is also the case if the Reset Vector is in the
Application section while the Interrupt Vectors are in the Boot section or vice versa. The
circuit diagram in Figure 23 shows the reset logic. Table 20 defines the electrical param-
eters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source
goes active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the
internal reset. This allows the power to reach a stable level before normal operation
starts. The time-out period of the delay counter is defined by the user through the SUT
and CKSEL Fuses. The different selections for the delay period are presented in “Clock
Sources” on page 36. 

Reset Sources The AT90CAN128 has five sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on 
Reset threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for 
longer than the minimum pulse length.

• Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and 
the Watchdog is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the 
Brown-out Reset threshold (VBOT) and the Brown-out Detector is enabled.

• JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset 
Register, one of the scan chains of the JTAG system. Refer to the section 
“Boundary-scan IEEE 1149.1 (JTAG)” on page 291 for details.
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Figure 23.  Reset Logic

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below VPOT
(falling)
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Table 20.  Reset Characteristics

Symbol Parameter Condition Min. Typ. Max. Units

VPOT

Power-on Reset Threshold Voltage (rising) 1.4 2.3 V

Power-on Reset Threshold Voltage (falling)(1) 1.3 2.3 V

VRST  RESET Pin Threshold Voltage 0.2 VCC 0.85 VCC V

tRST Minimum pulse width on RESET Pin Vcc = 5 V, temperature = 25 °C 400 ns
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Power-on Reset A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detec-
tion level is defined in Table 20. The POR is activated whenever VCC is below the
detection level. The POR circuit can be used to trigger the start-up Reset, as well as to
detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reach-
ing the Power-on Reset threshold voltage invokes the delay counter, which determines
how long the device is kept in RESET after VCC rise. The RESET signal is activated
again, without any delay, when VCC decreases below the detection level.

Figure 24.  MCU Start-up, RESET Tied to VCC

Figure 25.  MCU Start-up, RESET Extended Externally

External Reset An External Reset is generated by a low level on the RESET pin. Reset pulses longer
than the minimum pulse width (see Table 20) will generate a reset, even if the clock is
not running. Shorter pulses are not guaranteed to generate a reset. When the applied
signal reaches the Reset Threshold Voltage – VRST – on its positive edge, the delay
counter starts the MCU after the Time-out period – tTOUT – has expired.

V
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Figure 26.  External Reset During Operation

Brown-out Detection AT90CAN128 has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC
level during operation by comparing it to a fixed trigger level. The trigger level for the
BOD can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to
ensure spike free Brown-out Detection. The hysteresis on the detection level should be
interpreted as VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

Notes: 1. VBOT may be below nominal minimum operating voltage for some devices. For
devices where this is the case, the device is tested down to VCC = VBOT during the
production test. This guarantees that a Brown-Out Reset will occur before VCC drops
to a voltage where correct operation of the microcontroller is no longer guaranteed.
The test is performed using BODLEVEL = 010 for Low Operating Voltage and
BODLEVEL = 101 for High Operating Voltage .

When the BOD is enabled, and VCC decreases to a value below the trigger level (VBOT-
in Figure 27), the Brown-out Reset is immediately activated. When VCC increases above
the trigger level (VBOT+ in Figure 27), the delay counter starts the MCU after the Time-
out period tTOUT has expired.

CC

Table 21.  BODLEVEL Fuse Coding(1)

BODLEVEL 2..0 Fuses Min VBOT Typ VBOT Max VBOT Units

111 BOD Disabled

110 4.1 V

101 4.0 V

100 3.9 V

011 3.8 V

010 2.7 V

001 2.6 V

000 2.5 V

Table 22.  Brown-out Characteristics

Symbol Parameter Min. Typ. Max. Units

VHYST Brown-out Detector Hysteresis 70 mV

tBOD Min Pulse Width on Brown-out Reset 2 µs
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The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level
for longer than tBOD given in Table 20.

Figure 27.  Brown-out Reset During Operation

Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of one CK cycle dura-
tion. On the falling edge of this pulse, the delay timer starts counting the Time-out period
tTOUT. Refer to page 54 for details on operation of the Watchdog Timer.

Figure 28.  Watchdog Reset During Operation

MCU Status Register – 
MCUSR

The MCU Status Register provides information on which reset source caused an MCU
reset.

• Bit 7..5 – Reserved Bits

These bits are reserved for future use.

VCC

RESET

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

CK

CC

Bit 7 6 5 4 3 2 1 0

– – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
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• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

• Bit 3 – WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to
the flag.

To make use of the Reset flags to identify a reset condition, the user should read and
then reset the MCUSR as early as possible in the program. If the register is cleared
before another reset occurs, the source of the reset can be found by examining the reset
flags.

Internal Voltage 
Reference

AT90CAN128 features an internal bandgap reference. This reference is used for Brown-
out Detection, and it can be used as an input to the Analog Comparator or the ADC.

Voltage Reference Enable 
Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used.
The start-up time is given in Table 23. To save power, the reference is not always turned
on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting 
the ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the
user must always allow the reference to start up before the output from the Analog Com-
parator or ADC is used. To reduce power consumption in Power-down mode, the user
can avoid the three conditions above to ensure that the reference is turned off before
entering Power-down mode.
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Voltage Reference 
Characteristics

Watchdog Timer The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at
1 MHz. This is the typical value at VCC = 5V. See characterization data for typical values
at other VCC levels. By controlling the Watchdog Timer prescaler, the Watchdog Reset
interval can be adjusted as shown in Table 25 on page 55. The WDR – Watchdog Reset
– instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is
disabled and when a Chip Reset occurs. Eight different clock cycle periods can be
selected to determine the reset period. If the reset period expires without another
Watchdog Reset, the AT90CAN128 resets and executes from the Reset Vector. For tim-
ing details on the Watchdog Reset, refer to Table 25 on page 55.

To prevent unintentional disabling of the Watchdog or unintentional change of time-out
period, two different safety levels are selected by the fuse WDTON as shown in Table
24. Refer to “Timed Sequences for Changing the Configuration of the Watchdog Timer”
on page 56 for details.

Figure 29.  Watchdog Timer

Table 23.  Internal Voltage Reference Characteristics

Symbol Parameter Condition Min. Typ. Max. Units

VBG Bandgap reference voltage 1.0 1.1 1.2 V

tBG Bandgap reference start-up time 40 70 µs

IBG
Bandgap reference current 
consumption

15 µA

Table 24.  WDT Configuration as a Function of the Fuse Settings of WDTON

WDTON
Safety 
Level

WDT Initial 
State

How to Disable the 
WDT

How to Change 
Time-out

Unprogrammed 1 Disabled Timed sequence Timed sequence

Programmed 2 Enabled Always enabled Timed sequence

WATCHDOG
OSCILLATOR

~1 MHz
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Watchdog Timer Control 
Register – WDTCR

• Bits 7..5 – Reserved Bits

These bits are reserved bits for future use.

• Bit 4 – WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog
will not be disabled. Once written to one, hardware will clear this bit after four clock
cycles. Refer to the description of the WDE bit for a Watchdog disable procedure. This
bit must also be set when changing the prescaler bits. See “Timed Sequences for
Changing the Configuration of the Watchdog Timer” on page 56 

• Bit 3 – WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is
written to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared
if the WDCE bit has logic level one. To disable an enabled Watchdog Timer, the follow-
ing procedure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be 
written to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the 
Watchdog.

In safety level 2, it is not possible to disable the Watchdog Timer, even with the algo-
rithm described above. See “Timed Sequences for Changing the Configuration of the
Watchdog Timer” on page 56 

• Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDP0 bits determine the Watchdog Timer prescaling when the
Watchdog Timer is enabled. The different prescaling values and their corresponding
Timeout Periods are shown in Table 25.

Bit 7 6 5 4 3 2 1 0

– – – WDCE WDE WDP2 WDP1 WDP0 WDTCR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 25.  Watchdog Timer Prescale Select

WDP2 WDP1 WDP0
Number of WDT 
Oscillator Cycles

Typical Time-out 
at VCC = 3.0V

Typical Time-out 
at VCC = 5.0V

0 0 0 16K cycles 17.1 ms 16.3 ms

0 0 1 32K cycles 34.3 ms 32.5 ms

0 1 0 64K cycles 68.5 ms 65 ms

0 1 1 128K cycles 0.14 s 0.13 s

1 0 0 256K cycles 0.27 s 0.26 s

1 0 1 512K cycles 0.55 s 0.52 s

1 1 0 1,024K cycles 1.1 s 1.0 s

1 1 1 2,048K cycles 2.2 s 2.1 s
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The following code example shows one assembly and one C function for turning off the
WDT. The example assumes that interrupts are controlled (e.g. by disabling interrupts
globally) so that no interrupts will occur during execution of these functions.

Note: 1. The example code assumes that the part specific header file is included.

Timed Sequences for 
Changing the 
Configuration of the 
Watchdog Timer

The sequence for changing configuration differs slightly between the two safety levels.
Separate procedures are described for each level.

Safety Level 1 In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the
WDE bit to 1 without any restriction. A timed sequence is needed when changing the
Watchdog Time-out period or disabling an enabled Watchdog Timer. To disable an
enabled Watchdog Timer, and/or changing the Watchdog Time-out, the following proce-
dure must be followed:

1. In the same operation, write a logic one to WDCE and WDE. A logic one must be 
written to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, in the same operation, write the WDE and 
WDP bits as desired, but with the WDCE bit cleared.

Safety Level 2 In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read
as one. A timed sequence is needed when changing the Watchdog Time-out period. To
change the Watchdog Time-out, the following procedure must be followed:

1. In the same operation, write a logical one to WDCE and WDE. Even though the 
WDE always is set, the WDE must be written to one to start the timed sequence.

2. Within the next four clock cycles, in the same operation, write the WDP bits as 
desired, but with the WDCE bit cleared. The value written to the WDE bit is 
irrelevant.

Assembly Code Example(1)

WDT_off:

; Write logical one to WDCE and WDE

ldi  r16, (1<<WDCE)|(1<<WDE)

sts  WDTCR, r16

; Turn off WDT

ldi  r16, (0<<WDE)

sts  WDTCR, r16

ret

C Code Example(1)

void WDT_off(void)

{

/* Write logical one to WDCE and WDE */

WDTCR = (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCR = 0x00;

}
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Interrupts
This section describes the specifics of the interrupt handling as performed in
AT90CAN128. For a general explanation of the AVR interrupt handling, refer to “Reset
and Interrupt Handling” on page 14.

Interrupt Vectors in 
AT90CAN128

Table 26.  Reset and Interrupt Vectors 

Vector
No.

Program
Address(2) Source Interrupt Definition

1 0x0000(1) RESET
External Pin, Power-on Reset, Brown-out Reset, 
Watchdog Reset, and JTAG AVR Reset

2 0x0002 INT0 External Interrupt Request 0

3 0x0004 INT1 External Interrupt Request 1

4 0x0006 INT2 External Interrupt Request 2

5 0x0008 INT3 External Interrupt Request 3

6 0x000A INT4 External Interrupt Request 4

7 0x000C INT5 External Interrupt Request 5

8 0x000E INT6 External Interrupt Request 6

9 0x0010 INT7 External Interrupt Request 7

10 0x0012 TIMER2 COMP Timer/Counter2 Compare Match

11 0x0014 TIMER2 OVF Timer/Counter2 Overflow

12 0x0016 TIMER1 CAPT Timer/Counter1 Capture Event

13 0x0018 TIMER1 COMPA Timer/Counter1 Compare Match A

14 0x001A TIMER1 COMPB Timer/Counter1 Compare Match B

15 0x001C TIMER1 COMPC Timer/Counter1 Compare Match C 

16 0x001E TIMER1 OVF Timer/Counter1 Overflow

17 0x0020 TIMER0 COMP Timer/Counter0 Compare Match

18 0x0022 TIMER0 OVF Timer/Counter0 Overflow

19 0x0024 CANIT CAN Transfer Complete or Error

20 0x0026 OVRIT CAN Timer Overrun

21 0x0028 SPI, STC SPI Serial Transfer Complete

22 0x002A USART0, RX USART0, Rx Complete

23 0x002C USART0, UDRE USART0 Data Register Empty

24 0x002E USART0, TX USART0, Tx Complete

25 0x0030 ANALOG COMP Analog Comparator

26 0x0032 ADC ADC Conversion Complete

27 0x0034 EE READY EEPROM Ready

28 0x0036 TIMER3 CAPT Timer/Counter3 Capture Event

29 0x0038 TIMER3 COMPA Timer/Counter3 Compare Match A
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Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader
address at reset, see “Boot Loader Support – Read-While-Write Self-Programming”
on page 312.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of
the Boot Flash Section. The address of each Interrupt Vector will then be the address
in this table added to the start address of the Boot Flash Section.

Table 27 shows reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these loca-
tions. This is also the case if the Reset Vector is in the Application section while the
Interrupt Vectors are in the Boot section or vice versa. 

Note: The Boot Reset Address is shown in Table 120 on page 324. For the BOOTRST Fuse
“1” means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector
Addresses in AT90CAN128 is:

;AddressLabels Code Comments

0x0000 jmp RESET ; Reset Handler

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp EXT_INT1 ; IRQ1 Handler

0x0006 jmp EXT_INT2 ; IRQ2 Handler

0x0008 jmp EXT_INT3 ; IRQ3 Handler

0x000A jmp EXT_INT4 ; IRQ4 Handler

0x000C jmp EXT_INT5 ; IRQ5 Handler

0x000E jmp EXT_INT6 ; IRQ6 Handler

0x0010 jmp EXT_INT7 ; IRQ7 Handler

0x0012 jmp TIM2_COMP ; Timer2 Compare Handler

0x0014 jmp TIM2_OVF ; Timer2 Overflow Handler

30 0x003A TIMER3 COMPB Timer/Counter3 Compare Match B

31 0x003C TIMER3 COMPC Timer/Counter3 Compare Match C

32 0x003E TIMER3 OVF Timer/Counter3 Overflow

33 0x0040 USART1, RX USART1, Rx Complete

34 0x0042 USART1, UDRE USART1 Data Register Empty

35 0x0044 USART1, TX USART1, Tx Complete

36 0x0046 TWI Two-wire Serial Interface

37 0x0048 SPM READY Store Program Memory Ready

Table 27.  Reset and Interrupt Vectors Placement(Note:)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x0000 0x0002

1 1 0x0000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x0002

0 1 Boot Reset Address Boot Reset Address + 0x0002

Table 26.  Reset and Interrupt Vectors  (Continued)

Vector
No.

Program
Address(2) Source Interrupt Definition
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0x0016 jmp TIM1_CAPT ; Timer1 Capture Handler

0x0018 jmp TIM1_COMPA ; Timer1 CompareA Handler

0x001A jmp TIM1_COMPB ; Timer1 CompareB Handler

0x001C jmp TIM1_OVF ; Timer1 CompareC Handler

0x001E jmp TIM1_OVF ; Timer1 Overflow Handler

0x0020 jmp TIM0_COMP ; Timer0 Compare Handler

0x0022 jmp TIM0_OVF ; Timer0 Overflow Handler

0x0024 jmp CAN_IT ; CAN Handler

0x0026 jmp CTIM_OVF ; CAN Timer Overflow Handler

0x0028 jmp SPI_STC ; SPI Transfer Complete Handler

0x002A jmp USART0_RXC ; USART0 RX Complete Handler

0x002C jmp USART0_DRE ; USART0,UDR Empty Handler

0x002E jmp USART0_TXC ; USART0 TX Complete Handler

0x0030 jmp ANA_COMP ; Analog Comparator Handler

0x0032 jmp ADC ; ADC Conversion Complete Handler

0x0034 jmp EE_RDY ; EEPROM Ready Handler

0x0036 jmp TIM3_CAPT ; Timer3 Capture Handler

0x0038 jmp TIM3_COMPA ; Timer3 CompareA Handler

0x003A jmp TIM3_COMPB ; Timer3 CompareB Handler

0x003C jmp TIM3_COMPC ; Timer3 CompareC Handler

0x003E jmp TIM3_OVF ; Timer3 Overflow Handler

0x0040 jmp USART1_RXC ; USART1 RX Complete Handler

0x0042 jmp USART1_DRE ; USART1,UDR Empty Handler

0x0044 jmp USART1_TXC ; USART1 TX Complete Handler

0x0046 jmp TWI ; TWI Interrupt Handler

0x0048 jmp SPM_RDY ; SPM Ready Handler

;

0x0049 RESET: ldi r16, high(RAMEND); Main program start

0x004A out SPH,r16 ;Set Stack Pointer to top of RAM

0x004B ldi r16, low(RAMEND)

0x004C out SPL,r16
0x004D sei ; Enable interrupts

0x004E <instr>  xxx

  ...  ...    ...  ... 

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 8K bytes and
the IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

;Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND) ; Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
0x0004 sei ; Enable interrupts

0x0005 <instr>  xxx

;

.org 0xF002

0xF002 jmp EXT_INT0 ; IRQ0 Handler

0xF004 jmp PCINT0 ; PCINT0 Handler
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... ... ... ; 

0xF00C jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 8K bytes, the
most typical and general program setup for the Reset and Interrupt Vector Addresses is:

;Address Labels Code Comments

.org 0x0002

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp PCINT0 ; PCINT0 Handler

... ... ... ; 

0x002C jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0xF000
0xF000 RESET: ldi r16,high(RAMEND) ; Main program start

0xF001 out SPH,r16 ; Set Stack Pointer to top of RAM

0xF002 ldi r16,low(RAMEND)

0xF003 out SPL,r16
0xF004 sei ; Enable interrupts

0xF005 <instr>  xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 8K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typ-
ical and general program setup for the Reset and Interrupt Vector Addresses is:

;Address Labels Code Comments

;

.org 0xF000
0xF000 jmp RESET ; Reset handler
0xF002 jmp EXT_INT0 ; IRQ0 Handler

0xF004 jmp PCINT0 ; PCINT0 Handler

... ... ... ; 

0xF044 jmp SPM_RDY ; Store Program Memory Ready Handler

;

0xF046 RESET: ldi r16,high(RAMEND) ; Main program start

0xF047 out SPH,r16 ; Set Stack Pointer to top of RAM

0xF048 ldi r16,low(RAMEND)

0xF049 out SPL,r16
0xF04A sei ; Enable interrupts

0xF04B <instr>  xxx

Moving Interrupts 
Between Application and 
Boot Space

The General Interrupt Control Register controls the placement of the Interrupt Vector
table.

MCU Control Register – 
MCUCR Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 1 – IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the
Flash memory. When this bit is set (one), the Interrupt Vectors are moved to the begin-
ning of the Boot Loader section of the Flash. The actual address of the start of the Boot
Flash Section is determined by the BOOTSZ Fuses. Refer to the section “Boot Loader
Support – Read-While-Write Self-Programming” on page 312 for details. To avoid unin-
tentional changes of Interrupt Vector tables, a special write procedure must be followed
to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.

2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE. 

Interrupts will automatically be disabled while this sequence is executed. Interrupts are
disabled in the cycle IVCE is set, and they remain disabled until after the instruction fol-
lowing the write to IVSEL. If IVSEL is not written, interrupts remain disabled for four
cycles. The I-bit in the Status Register is unaffected by the automatic disabling.
Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is pro-

grammed, interrupts are disabled while executing from the Application section. If
Interrupt Vectors are placed in the Application section and Boot Lock bit BLB12 is pro-
gramed, interrupts are disabled while executing from the Boot Loader section. Refer to
the section “Boot Loader Support – Read-While-Write Self-Programming” on page 312
for details on Boot Lock bits.

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is
cleared by hardware four cycles after it is written or when IVSEL is written. Setting the
IVCE bit will disable interrupts, as explained in the IVSEL description above. See Code
Example below.

Assembly Code Example

Move_interrupts:

; Get MCUCR

in  r16, MCUCR

mov  r17, r16

; Enable change of Interrupt Vectors

ori  r16, (1<<IVCE)

out  MCUCR, r16

; Move interrupts to Boot Flash section

ori  r17, (1<<IVSEL)

out  MCUCR, r17

ret

C Code Example

void Move_interrupts(void)

{

uchar  temp;

/* Get MCUCR*/

temp = MCUCR;

/* Enable change of Interrupt Vectors */

MCUCR = temp | (1<<IVCE);

/* Move interrupts to Boot Flash section */

MCUCR = temp | (1<<IVSEL);

}
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I/O-Ports

Introduction All AVR ports have true Read-Modify-Write functionality when used as general digital
I/O ports. This means that the direction of one port pin can be changed without uninten-
tionally changing the direction of any other pin with the SBI and CBI instructions. The
same applies when changing drive value (if configured as output) or enabling/disabling
of pull-up resistors (if configured as input). Each output buffer has symmetrical drive
characteristics with both high sink and source capability. All port pins have individually
selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have
protection diodes to both VCC and Ground as indicated in Figure 30. Refer to “Electrical
Characteristics(1)” on page 355 for a complete list of parameters.

Figure 30.  I/O Pin Equivalent Schematic

All registers and bit references in this section are written in general form. A lower case
“x” represents the numbering letter for the port, and a lower case “n” represents the bit
number. However, when using the register or bit defines in a program, the precise form
must be used. For example, PORTB3 for bit no. 3 in Port B, here documented generally
as PORTxn. The physical I/O Registers and bit locations are listed in “Register Descrip-
tion for I/O-Ports”.

Three I/O memory address locations are allocated for each port, one each for the Data
Register – PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The
Port Input Pins I/O location is read only, while the Data Register and the Data Direction
Register are read/write. However, writing a logic one to a bit in the PINx Register, will
result in a toggle in the corresponding bit in the Data Register. In addition, the Pull-up
Disable – PUD bit in MCUCR disables the pull-up function for all pins in all ports when
set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O”.
Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in “Alternate
Port Functions” on page 68. Refer to the individual module sections for a full description
of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use
of the other pins in the port as general digital I/O.

Cpin

Logic

Rpu

See Figure
"General Digital I/O" for

Details

Pxn
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Ports as General Digital 
I/O

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 31 shows a
functional description of one I/O-port pin, here generically called Pxn.

Figure 31.  General Digital I/O(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port.
clkI/O, SLEEP, and PUD are common to all ports.

Configuring the Pin Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in
“Register Description for I/O-Ports” on page 86, the DDxn bits are accessed at the
DDRx I/O address, the PORTxn bits at the PORTx I/O address, and the PINxn bits at
the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written
logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is config-
ured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up
resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic
zero or the pin has to be configured as an output pin

The port pins are tri-stated when reset condition becomes active, even if no clocks are
running.

clk
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RRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx
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RRx: READ PORTx REGISTER
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PUD: PULLUP DISABLE
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If PORTxn is written logic one when the pin is configured as an output pin, the port pin is
driven high (one). If PORTxn is written logic zero when the pin is configured as an out-
put pin, the port pin is driven low (zero).

Toggling the Pin Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of
DDRxn. Note that the SBI instruction can be used to toggle one single bit in a port.

Switching Between Input and 
Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high  ({DDxn,
PORTxn} = 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} =
0b01) or output low ({DDxn, PORTxn} = 0b10) occurs. Normally, the pull-up enabled
state is fully acceptable, as a high-impedant environment will not notice the difference
between a strong high driver and a pull-up. If this is not the case, the PUD bit in the
MCUCR Register can be set to disable all pull-ups in all ports. 

Switching between input with pull-up and output low generates the same problem. The
user must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state
({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 28 summarizes the control signals for the pin value.

Reading the Pin Value Independent of the setting of Data Direction bit DDxn, the port pin can be read through
the PINxn Register bit. As shown in Figure 31, the PINxn Register bit and the preceding
latch constitute a synchronizer. This is needed to avoid metastability if the physical pin
changes value near the edge of the internal clock, but it also introduces a delay. Figure
32 shows a timing diagram of the synchronization when reading an externally applied
pin value. The maximum and minimum propagation delays are denoted tpd,max and tpd,min
respectively.

Table 28.  Port Pin Configurations

DDxn PORTxn
PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No
Default configuration after Reset.

Tri-state (Hi-Z)

0 1 0 Input Yes
Pxn will source current if ext. pulled 
low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)
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Figure 32.  Synchronization when Reading an Externally Applied Pin value

Consider the clock period starting shortly after the first falling edge of the system clock.
The latch is closed when the clock is low, and goes transparent when the clock is high,
as indicated by the shaded region of the “SYNC LATCH” signal. The signal value is
latched when the system clock goes low. It is clocked into the PINxn Register at the suc-
ceeding positive clock edge. As indicated by the two arrows tpd,max and tpd,min, a single
signal transition on the pin will be delayed between ½ and 1½ system clock period
depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as
indicated in Figure 33. The out instruction sets the “SYNC LATCH” signal at the positive
edge of the clock. In this case, the delay tpd through the synchronizer is 1 system clock
period.

Figure 33.  Synchronization when Reading a Software Assigned Pin Value

XXX in r17, PINx

0x00 0xFF

INSTRUCTIONS

SYNC LATCH

PINxn

r17

XXX

SYSTEM CLK

tpd, max

tpd, min

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17
tpd
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The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and
define the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The
resulting pin values are read back again, but as previously discussed, a nop instruction
is included to be able to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time
from pull-ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set,
defining bit 2 and 3 as low and redefining bits 0 and 1 as strong high drivers.

Digital Input Enable and Sleep 
Modes

As shown in Figure 31, the digital input signal can be clamped to ground at the input of
the schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep
Controller in Power-down mode, Power-save mode, and Standby mode to avoid high
power consumption if some input signals are left floating, or have an analog signal level
close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external inter-
rupt request is not enabled, SLEEP is active also for these pins. SLEEP is also
overridden by various other alternate functions as described in “Alternate Port Func-
tions” on page 68.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin config-
ured as “Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the
external interrupt is not enabled, the corresponding External Interrupt Flag will be set
when resuming from the above mentioned sleep modes, as the clamping in these sleep
modes produces the requested logic change.

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16, (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17, (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB, r16

out DDRB, r17

; Insert nop for synchronization

nop

; Read port pins

in r16, PINB

...

C Code Example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

_NOP();

/* Read port pins */

i = PINB;

...
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Unconnected Pins If some pins are unused, it is recommended to ensure that these pins have a defined
level. Even though most of the digital inputs are disabled in the deep sleep modes as
described above, floating inputs should be avoided to reduce current consumption in all
other modes where the digital inputs are enabled (Reset, Active mode and Idle mode).
The simplest method to ensure a defined level of an unused pin, is to enable the internal
pull-up. In this case, the pull-up will be disabled during reset. If low power consumption
during reset is important, it is recommended to use an external pull-up or pull-down.
Connecting unused pins directly to VCC or GND is not recommended, since this may
cause excessive currents if the pin is accidentally configured as an output.
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Alternate Port Functions Most port pins have alternate functions in addition to being general digital I/Os. Figure
34 shows how the port pin control signals from the simplified Figure 31 can be overrid-
den by alternate functions. The overriding signals may not be present in all port pins, but
the figure serves as a generic description applicable to all port pins in the AVR micro-
controller family.

Figure 34.  Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port.
clkI/O, SLEEP, and PUD are common to all ports. All other signals are unique for each
pin.

Table 29 summarizes the function of the overriding signals. The pin and port indexes
from Figure 34 are not shown in the succeeding tables. The overriding signals are gen-
erated internally in the modules having the alternate function.
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The following subsections shortly describe the alternate functions for each port, and
relate the overriding signals to the alternate function. Refer to the alternate function
description for further details.

MCU Control Register – 
MCUCR

Table 29.  Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE Pull-up Override 
Enable

If this signal is set, the pull-up enable is controlled by the 
PUOV signal. If this signal is cleared, the pull-up is 
enabled when {DDxn, PORTxn, PUD} = 0b010. 

PUOV Pull-up Override 
Value

If PUOE is set, the pull-up is enabled/disabled when 
PUOV is set/cleared, regardless of the setting of the 
DDxn, PORTxn, and PUD Register bits.

DDOE Data Direction 
Override Enable

If this signal is set, the Output Driver Enable is controlled 
by the DDOV signal. If this signal is cleared, the Output 
driver is enabled by the DDxn Register bit. 

DDOV Data Direction 
Override Value

If DDOE is set, the Output Driver is enabled/disabled 
when DDOV is set/cleared, regardless of the setting of 
the DDxn Register bit.

PVOE Port Value 
Override Enable

If this signal is set and the Output Driver is enabled, the 
port value is controlled by the PVOV signal. If PVOE is 
cleared, and the Output Driver is enabled, the port Value 
is controlled by the PORTxn Register bit.

PVOV Port Value 
Override Value

If PVOE is set, the port value is set to PVOV, regardless 
of the setting of the PORTxn Register bit.

PTOE Port Toggle 
Override Enable

If PTOE is set, the PORTxn Register bit is inverted.

DIEOE Digital Input 
Enable Override 
Enable

If this bit is set, the Digital Input Enable is controlled by 
the DIEOV signal. If this signal is cleared, the Digital Input 
Enable is determined by MCU state (Normal mode, sleep 
mode).

DIEOV Digital Input 
Enable Override 
Value

If DIEOE is set, the Digital Input is enabled/disabled when 
DIEOV is set/cleared, regardless of the MCU state 
(Normal mode, sleep mode).

DI Digital Input This is the Digital Input to alternate functions. In the 
figure, the signal is connected to the output of the schmitt 
trigger but before the synchronizer. Unless the Digital 
Input is used as a clock source, the module with the 
alternate function will use its own synchronizer.

AIO Analog 
Input/Output

This is the Analog Input/output to/from alternate 
functions. The signal is connected directly to the pad, and 
can be used bi-directionally.

Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 4 – PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn
and PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01).
See “Configuring the Pin” for more details about this feature.

Alternate Functions of Port A The Port A has an alternate function as the address low byte and data lines for the
External Memory Interface.

The Port A pins with alternate functions are shown in Table 30.

The alternate pin configuration is as follows:

• AD7 – Port A, Bit 7

AD7, External memory interface address 7 and Data 7.

• AD6 – Port A, Bit 6

AD6, External memory interface address 6 and Data 6.

• AD5 – Port A, Bit 5

AD5, External memory interface address 5 and Data 5.

• AD4 – Port A, Bit 4

AD4, External memory interface address 4 and Data 4.

• AD3 – Port A, Bit 3

AD3, External memory interface address 3 and Data 3.

• AD2 – Port A, Bit 2

AD2, External memory interface address 2 and Data 2.

• AD1 – Port A, Bit 1

AD1, External memory interface address 1 and Data 1.

• AD0 – Port A, Bit 0

AD0, External memory interface address 0 and Data 0.

Table 30.  Port A Pins Alternate Functions

Port Pin Alternate Function

PA7 AD7 (External memory interface address and data bit 7)

PA6 AD6 (External memory interface address and data bit 6)

PA5 AD5 (External memory interface address and data bit 5)

PA4 AD4 (External memory interface address and data bit 4)

PA3 AD3 (External memory interface address and data bit 3)

PA2 AD2 (External memory interface address and data bit 2)

PA1 AD1 (External memory interface address and data bit 1)

PA0 AD0 (External memory interface address and data bit 0)
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Table 31 and Table 32 relates the alternate functions of Port A to the overriding signals
shown in Figure 34 on page 68. 

Note: 1. ADA is short for ADdress Active and represents the time when address is output. See
“External Memory Interface” on page 25 for details.

Note: 1. ADA is short for ADdress Active and represents the time when address is output. See
“External Memory Interface” on page 25 for details.

Table 31.  Overriding Signals for Alternate Functions in PA7..PA4

Signal Name PA7/AD7 PA6/AD6 PA5/AD5 PA4/AD4

PUOE SRE •
(ADA + WR)

SRE •
(ADA + WR)

SRE •
(ADA + WR)

SRE •
(ADA + WR)

PUOV 0 0 0 0

DDOE SRE SRE SRE SRE

DDOV WR + ADA WR + ADA WR + ADA WR + ADA

PVOE SRE SRE SRE SRE

PVOV A7 • ADA + D7 
OUTPUT • WR

A6 • ADA + D6 
OUTPUT • WR

A5 • ADA + D5 
OUTPUT • WR

A4 • ADA + D4 
OUTPUT • WR

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI D7 INPUT D6 INPUT D5 INPUT D4 INPUT

AIO – – – –

Table 32.  Overriding Signals for Alternate Functions in PA3..PA0

Signal Name PA3/AD3 PA2/AD2 PA1/AD1 PA0/AD0

PUOE SRE •
(ADA + WR)

SRE •
(ADA + WR)

SRE •
(ADA + WR)

SRE •
(ADA + WR)

PUOV 0 0 0 0

DDOE SRE SRE SRE SRE

DDOV WR + ADA WR + ADA WR + ADA WR + ADA

PVOE SRE SRE SRE SRE

PVOV A3 • ADA + D3 
OUTPUT • WR

A2 • ADA + D2 
OUTPUT • WR

A1 • ADA + D1 
OUTPUT • WR

A0 • ADA + D0 
OUTPUT • WR

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI D3 INPUT D2 INPUT D1 INPUT D0 INPUT

AIO – – – –
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Alternate Functions of Port B The Port B pins with alternate functions are shown in Table 33.

The alternate pin configuration is as follows:

• OC0A/OC1C, Bit 7

OC0A, Output Compare Match A output. The PB7 pin can serve as an external output
for the Timer/Counter0 Output Compare A. The pin has to be configured as an output
(DDB7 set “one”) to serve this function. The OC0A pin is also the output pin for the PWM
mode timer function.

OC1C, Output Compare Match C output. The PB7 pin can serve as an external output
for the Timer/Counter1 Output Compare C. The pin has to be configured as an output
(DDB7 set “one”) to serve this function. The OC1C pin is also the output pin for the
PWM mode timer function.

• OC1B, Bit 6

OC1B, Output Compare Match B output. The PB6 pin can serve as an external output
for the Timer/Counter1 Output Compare B. The pin has to be configured as an output
(DDB6 set “one”) to serve this function. The OC1B pin is also the output pin for the PWM
mode timer function.

• OC1A, Bit 5

OC1A, Output Compare Match A output. The PB5 pin can serve as an external output
for the Timer/Counter1 Output Compare A. The pin has to be configured as an output
(DDB5 set “one”) to serve this function. The OC1A pin is also the output pin for the PWM
mode timer function.

• OC2A, Bit 4

OC2A, Output Compare Match A output. The PB4 pin can serve as an external output
for the Timer/Counter2 Output Compare A. The pin has to be configured as an output
(DDB4 set “one”) to serve this function. The OC2A pin is also the output pin for the PWM
mode timer function.

• MISO – Port B, Bit 3

MISO, Master Data input, Slave Data output pin for SPI channel. When the SPI is
enabled as a master, this pin is configured as an input regardless of the setting of
DDB3. When the SPI is enabled as a slave, the data direction of this pin is controlled by

Table 33.  Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7
OC0A/OC1C (Output Compare and PWM Output A for Timer/Counter0 or Output 
Compare and PWM Output C for Timer/Counter1)

PB6 OC1B (Output Compare and PWM Output B for Timer/Counter1)

PB5 OC1A (Output Compare and PWM Output A for Timer/Counter1)

PB4 OC2A (Output Compare and PWM Output A for Timer/Counter2 )

PB3 MISO (SPI Bus Master Input/Slave Output)

PB2 MOSI (SPI Bus Master Output/Slave Input)

PB1 SCK (SPI Bus Serial Clock)

PB0 SS (SPI Slave Select input)
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DDB3. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB3 bit.

• MOSI – Port B, Bit 2

MOSI, SPI Master Data output, Slave Data input for SPI channel. When the SPI is
enabled as a slave, this pin is configured as an input regardless of the setting of DDB2.
When the SPI is enabled as a master, the data direction of this pin is controlled by
DDB2. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB2 bit.

• SCK – Port B, Bit 1

SCK, Master Clock output, Slave Clock input pin for SPI channel. When the SPI is
enabled as a slave, this pin is configured as an input regardless of the setting of DDB1.
When the SPI is enabled as a master, the data direction of this pin is controlled by
DDB1. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB1 bit.

• SS – Port B, Bit 0

SS, Slave Port Select input. When the SPI is enabled as a slave, this pin is configured
as an input regardless of the setting of DDB0. As a slave, the SPI is activated when this
pin is driven low. When the SPI is enabled as a master, the data direction of this pin is
controlled by DDB0. When the pin is forced to be an input, the pull-up can still be con-
trolled by the PORTB0 bit.

Table 34 and Table 35 relate the alternate functions of Port B to the overriding signals
shown in Figure 34 on page 68. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute
the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE
INPUT.

Table 34 and Table 35 relates the alternate functions of Port B to the overriding signals
shown in Figure 34 on page 68. 

Note: 1. See “Output Compare Modulator - OCM” on page 161 for details.

Table 34.  Overriding Signals for Alternate Functions in PB7..PB4

Signal Name PB7/OC0A/OC1C PB6/OC1B PB5/OC1A PB4/OC2A

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC0A/OC1C 
ENABLE(1)

OC1B ENABLE OC1A ENABLE OC2A ENABLE

PVOV OC0A/OC1C(1) OC1B OC1A OC2A

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO – – – –
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Alternate Functions of Port C The Port C has an alternate function as the address high byte for the External Memory
Interface.

The Port C pins with alternate functions are shown in Table 36.

The alternate pin configuration is as follows:

• A15/CLKO – Port C, Bit 7

A15, External memory interface address 15.

CLKO, Divided System Clock: The divided system clock can be output on the PC7 pin.
The divided system clock will be output if the CKOUT Fuse is programmed, regardless
of the PORTC7 and DDC7 settings. It will also be output during reset.

Table 35.  Overriding Signals for Alternate Functions in PB3..PB0

Signal Name PB3/MISO PB2/MOSI PB1/SCK PB0/SS

PUOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

PUOV PORTB3 • PUD PORTB2 • PUD PORTB1 • PUD PORTB0 • PUD

DDOE SPE • MSTR SPE • MSTR SPE • MSTR SPE • MSTR

DDOV 0 0 0 0

PVOE SPE • MSTR SPE • MSTR SPE • MSTR 0

PVOV SPI SLAVE 
OUTPUT

SPI MASTER 
OUTPUT

SCK OUTPUT 0

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI SPI MASTER 
INPUT

SPI SLAVE 
INPUT • RESET

SCK INPUT SPI SS

AIO – – – –

Table 36.  Port C Pins Alternate Functions

Port Pin Alternate Function

PC7
A15/CLKO (External memory interface address 15 or Divided 
System Clock)

PC6 A14 (External memory interface address 14)

PC5 A13 (External memory interface address 13)

PC4 A12 (External memory interface address 12)

PC3 A11 (External memory interface address 11)

PC2 A10 (External memory interface address 10)

PC1 A9 (External memory interface address 9)

PC0 A8 (External memory interface address 8)
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• A14 – Port C, Bit 6

A14, External memory interface address 14.

• A13 – Port C, Bit 5

A13, External memory interface address 13.

• A12 – Port C, Bit 4

A12, External memory interface address 12.

• A11 – Port C, Bit 3

A11, External memory interface address 11.

• A10 – Port C, Bit 2

A10, External memory interface address 10.

• A9 – Port C, Bit 1

A9, External memory interface address 9.

• A8 – Port C, Bit 0

A8, External memory interface address 8.

Table 37 and Table 38 relate the alternate functions of Port C to the overriding signals
shown in Figure 34 on page 68.

Note: 1. CKOUT is one if the CKOUT Fuse is programmed

Table 37.  Overriding Signals for Alternate Functions in PC7..PC4

Signal Name PC7/A15 PC6/A14 PC5/A13 PC4/A12

PUOE SRE • (XMM<1) SRE • (XMM<2) SRE • (XMM<3) SRE • (XMM<4)

PUOV 0 0 0 0

DDOE CKOUT(1) + 
(SRE • (XMM<1))

SRE • (XMM<2) SRE • (XMM<3) SRE • (XMM<4)

DDOV 1 1 1 1

PVOE CKOUT(1) + 
(SRE • (XMM<1))

SRE • (XMM<2) SRE • (XMM<3) SRE • (XMM<4)

PVOV (A15 • CKOUT(1)) + 
(CLKO • CKOUT(1))

A14 A13 A12

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO – – – –
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Alternate Functions of Port D The Port D pins with alternate functions are shown in Table 39.

The alternate pin configuration is as follows:

• T0/CLKO – Port D, Bit 7

T0, Timer/Counter0 counter source.

• RXCAN/T1 – Port D, Bit 6

RXCAN, CAN Receive Data (Data input pin for the CAN). When the CAN controller is
enabled this pin is configured as an input regardless of the value of DDD6. When the
CAN forces this pin to be an input, the pull-up can still be controlled by the PORTD6 bit.

T1, Timer/Counter1 counter source.

Table 38.  Overriding Signals for Alternate Functions in PC3..PC0

Signal Name PC3/A11 PC2/A10 PC1/A9 PC0/A8

PUOE SRE • (XMM<5) SRE • (XMM<6) SRE • (XMM<7) SRE • (XMM<7)

PUOV 0 0 0 0

DDOE SRE • (XMM<5) SRE • (XMM<6) SRE • (XMM<7) SRE • (XMM<7)

DDOV 1 1 1 1

PVOE SRE • (XMM<5) SRE • (XMM<6) SRE • (XMM<7) SRE • (XMM<7)

PVOV A11 A10 A9 A8

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO – – – –

Table 39.  Port D Pins Alternate Functions

Port Pin Alternate Function

PD7 T0 (Timer/Counter0 Clock Input)

PD6 RXCAN/T1 (CAN Receive Pin or Timer/Counter1 Clock Input)

PD5 TXCAN/XCK1 (CAN Transmit Pin or USART1 External Clock Input/Output)

PD4 ICP1 (Timer/Counter1 Input Capture Trigger)

PD3 INT3/TXD1 (External Interrupt3 Input or UART1 Transmit Pin)

PD2 INT2/RXD1 (External Interrupt2 Input or UART1 Receive Pin)

PD1 INT1/SDA (External Interrupt1 Input or TWI Serial DAta)

PD0 INT0/SCL (External Interrupt0 Input or TWI Serial CLock)
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• TXCAN/XCK1 – Port D, Bit 5

TXCAN, CAN Transmit Data (Data output pin for the CAN). When the CAN is enabled,
this pin is configured as an output regardless of the value of DDD5.

XCK1, USART1 External clock. The Data Direction Register (DDD5) controls whether
the clock is output (DDD5 set) or input (DDD45 cleared). The XCK1 pin is active only
when the USART1 operates in Synchronous mode.

• ICP1 – Port D, Bit 4

ICP1, Input Capture Pin1. The PD4 pin can act as an input capture pin for
Timer/Counter1.

• INT3/TXD1 – Port D, Bit 3

INT3, External Interrupt source 3. The PD3 pin can serve as an external interrupt source
to the MCU.

TXD1, Transmit Data (Data output pin for the USART1). When the USART1 Transmitter
is enabled, this pin is configured as an output regardless of the value of DDD3.

• INT2/RXD1 – Port D, Bit 2

INT2, External Interrupt source 2. The PD2 pin can serve as an External Interrupt
source to the MCU.

RXD1, Receive Data (Data input pin for the USART1). When the USART1 receiver is
enabled this pin is configured as an input regardless of the value of DDD2. When the
USART forces this pin to be an input, the pull-up can still be controlled by the PORTD2
bit.

• INT1/SDA – Port D, Bit 1

INT1, External Interrupt source 1. The PD1 pin can serve as an external interrupt source
to the MCU.

SDA, Two-wire Serial Interface Data. When the TWEN bit in TWCR is set (one) to
enable the Two-wire Serial Interface, pin PD1 is disconnected from the port and
becomes the Serial Data I/O pin for the Two-wire Serial Interface. In this mode, there is
a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal, and the
pin is driven by an open drain driver with slew-rate limitation.

• INT0/SCL – Port D, Bit 0

INT0, External Interrupt source 0. The PD0 pin can serve as an external interrupt source
to the MCU.

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to
enable the Two-wire Serial Interface, pin PD0 is disconnected from the port and
becomes the Serial Clock I/O pin for the Two-wire Serial Interface. In this mode, there is
a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal, and the
pin is driven by an open drain driver with slew-rate limitation.
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Table 40 and Table 41 relates the alternate functions of Port D to the overriding signals
shown in Figure 34 on page 68. 

Note: 1. When enabled, the Two-wire Serial Interface enables Slew-Rate controls on the out-
put pins PD0 and PD1. This is not shown in this table. In addition, spike filters are
connected between the AIO outputs shown in the port figure and the digital logic of
the TWI module.

 

Table 40.  Overriding Signals for Alternate Functions PD7..PD4

Signal Name PD7/T0 PD6/T1/RXCAN PD5/XCK1/TXCAN PD4/ICP1

PUOE 0 RXCANEN TXCANEN + 0

PUOV 0 PORTD6 • PUD 0 0

DDOE 0 RXCANEN TXCANEN 0

DDOV 0 0 1 0

PVOE 0 0 TXCANEN + UMSEL1 0

PVOV 0 0 (XCK1 OUTPUT • 
UMSEL1 • TXCANEN) 
+ (TXCAN • TXCANEN)

0

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI T0 INPUT T1 INPUT/RXCAN XCK1 INPUT ICP1 INPUT

AIO – – – –

Table 41.  Overriding Signals for Alternate Functions in PD3..PD0(1)

Signal Name PD3/INT3/TXD1 PD2/INT2/RXD1 PD1/INT1/SDA PD0/INT0/SCL

PUOE TXEN1 RXEN1 TWEN TWEN

PUOV 0 PORTD2 • PUD PORTD1 • PUD PORTD0 • PUD

DDOE TXEN1 RXEN1 0 0

DDOV 1 0 0 0

PVOE TXEN1 0 TWEN TWEN

PVOV TXD1 0 SDA_OUT SCL_OUT

PTOE 0 0 0 0

DIEOE INT3 ENABLE INT2 ENABLE INT1 ENABLE INT0 ENABLE

DIEOV INT3 ENABLE INT2 ENABLE INT1 ENABLE INT0 ENABLE

DI INT3 INPUT INT2 INPUT/RXD1 INT1 INPUT INT0 INPUT

AIO – – SDA INPUT SCL INPUT
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Alternate Functions of Port E The Port E pins with alternate functions are shown in Table 42.

The alternate pin configuration is as follows:

• PCINT7/ICP3 – Port E, Bit 7

INT7, External Interrupt source 7. The PE7 pin can serve as an external interrupt
source.

ICP3, Input Capture Pin3: The PE7 pin can act as an input capture pin for
Timer/Counter3.

• INT6/T3 – Port E, Bit 6

INT6, External Interrupt source 6. The PE6 pin can serve as an external interrupt
source.

T3, Timer/Counter3 counter source.

• INT5/OC3C – Port E, Bit 5

INT5, External Interrupt source 5. The PE5 pin can serve as an External Interrupt
source.

OC3C, Output Compare Match C output. The PE5 pin can serve as an External output
for the Timer/Counter3 Output Compare C. The pin has to be configured as an output
(DDE5 set “one”) to serve this function. The OC3C pin is also the output pin for the
PWM mode timer function.

• INT4/OC3B – Port E, Bit 4

INT4, External Interrupt source 4. The PE4 pin can serve as an External Interrupt
source.

OC3B, Output Compare Match B output. The PE4 pin can serve as an External output
for the Timer/Counter3 Output Compare B. The pin has to be configured as an output
(DDE4 set (one)) to serve this function. The OC3B pin is also the output pin for the PWM
mode timer function.

Table 42.  Port E Pins Alternate Functions

Port Pin Alternate Function

PE7 INT7/ICP3 (External Interrupt 7 Input or Timer/Counter3 Input Capture Trigger)

PE6 INT6/ T3 (External Interrupt 6 Input or Timer/Counter3 Clock Input)

PE5
INT5/OC3C (External Interrupt 5 Input or Output Compare and PWM Output C for 
Timer/Counter3)

PE4
INT4/OC3B (External Interrupt4 Input or Output Compare and PWM Output B for 
Timer/Counter3)

PE3
AIN1/OC3A (Analog Comparator Negative Input or Output Compare and PWM 
Output A for Timer/Counter3)

PE2
AIN0/XCK0 (Analog Comparator Positive Input or USART0 external clock 
input/output)

PE1 PDO/TXD0 (Programming Data Output or UART0 Transmit Pin)

PE0 PDI/RXD0 (Programming Data Input or UART0 Receive Pin)
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• AIN1/OC3A – Port E, Bit 3

AIN1 – Analog Comparator Negative input. This pin is directly connected to the negative
input of the Analog Comparator.

OC3A, Output Compare Match A output. The PE3 pin can serve as an External output
for the Timer/Counter3 Output Compare A. The pin has to be configured as an output
(DDE3 set “one”) to serve this function. The OC3A pin is also the output pin for the PWM
mode timer function.

• AIN0/XCK0 – Port E, Bit 2

AIN0 – Analog Comparator Positive input. This pin is directly connected to the positive
input of the Analog Comparator.

XCK0, USART0 External clock. The Data Direction Register (DDE2) controls whether
the clock is output (DDE2 set) or input (DDE2 cleared). The XCK0 pin is active only
when the USART0 operates in Synchronous mode.

• PDO/TXD0 – Port E, Bit 1

PDO, SPI Serial Programming Data Output. During Serial Program Downloading, this
pin is used as data output line for the AT90CAN128.

TXD0, UART0 Transmit pin.

• PDI/RXD0 – Port E, Bit 0

PDI, SPI Serial Programming Data Input. During Serial Program Downloading, this pin
is used as data input line for the AT90CAN128.

RXD0, USART0 Receive Pin. Receive Data (Data input pin for the USART0). When the
USART0 receiver is enabled this pin is configured as an input regardless of the value of
DDRE0. When the USART0 forces this pin to be an input, a logical one in PORTE0 will
turn on the internal pull-up.

Table 43 and Table 44 relates the alternate functions of Port E to the overriding signals
shown in Figure 34 on page 68. 

Table 43.  Overriding Signals for Alternate Functions PE7..PE4

Signal Name PE7/INT7/ICP3 PE6/INT6/T3 PE5/INT5/OC3C PE4/INT4/OC3B

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 OC3C ENABLE OC3B ENABLE

PVOV 0 0 OC3C OC3B

PTOE 0 0 0 0

DIEOE INT7 ENABLE INT6 ENABLE INT5 ENABLE INT4 ENABLE

DIEOV INT7 ENABLE INT6 ENABLE INT5 ENABLE INT4 ENABLE

DI INT7 INPUT
/ICP3 INPUT

INT6 INPUT
/T3 INPUT

INT5 INPUT INT4 INPUT

AIO – – – –
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Note: 1. AIN0D and AIN1D is described in “Digital Input Disable Register 1 – DIDR1” on page
265.

Alternate Functions of Port F The Port F has an alternate function as analog input for the ADC as shown in Table 45.
If some Port F pins are configured as outputs, it is essential that these do not switch
when a conversion is in progress. This might corrupt the result of the conversion. If the
JTAG interface is enabled, the pull-up resistors on pins PF7 (TDI), PF5 (TMS) and PF4
(TCK) will be activated even if a reset occurs.

The alternate pin configuration is as follows:

• TDI, ADC7 – Port F, Bit 7

ADC7, Analog to Digital Converter, input channel 7.

Table 44.  Overriding Signals for Alternate Functions in PE3..PE0

Signal Name PE3/AIN1/OC3A PE2/AIN0/XCK0 PE1/PDO/TXD0 PE0/PDI/RXD0

PUOE 0 0 TXEN0 RXEN0

PUOV 0 0 0 PORTE0 • PUD

DDOE 0 0 TXEN0 RXEN0

DDOV 0 0 1 0

PVOE OC3A ENABLE UMSEL0 TXEN0 0

PVOV OC3A XCK0 OUTPUT TXD0 0

PTOE 0 0 0 0

DIEOE AIN1D(1) AIN0D(1) 0 0

DIEOV 0 0 0 0

DI 0 XCK0 INPUT – RXD0

AIO AIN1 INPUT AIN0 INPUT – –

Table 45.  Port F Pins Alternate Functions

Port Pin Alternate Function

PF7 ADC7/TDI (ADC input channel 7 or JTAG Data Input)

PF6 ADC6/TDO (ADC input channel 6 or JTAG Data Output)

PF5 ADC5/TMS (ADC input channel 5 or JTAG mode Select)

PF4 ADC4/TCK (ADC input channel 4 or JTAG ClocK)

PF3 ADC3 (ADC input channel 3)

PF2 ADC2 (ADC input channel 2)

PF1 ADC1 (ADC input channel 1)

PF0 ADC0 (ADC input channel 0)
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TDI, JTAG Test Data In. Serial input data to be shifted in to the Instruction Register or
Data Register (scan chains). When the JTAG interface is enabled, this pin can not be
used as an I/O pin.

• TCK, ADC6 – Port F, Bit 6

ADC6, Analog to Digital Converter, input channel 6.

TDO, JTAG Test Data Out. Serial output data from Instruction Register or Data Register.
When the JTAG interface is enabled, this pin can not be used as an I/O pin.

• TMS, ADC5 – Port F, Bit 5

ADC5, Analog to Digital Converter, input channel 5.

TMS, JTAG Test mode Select. This pin is used for navigating through the TAP-controller
state machine. When the JTAG interface is enabled, this pin can not be used as an I/O
pin.

• TDO, ADC4 – Port F, Bit 4

ADC4, Analog to Digital Converter, input channel 4.

TCK, JTAG Test Clock. JTAG operation is synchronous to TCK. When the JTAG inter-
face is enabled, this pin can not be used as an I/O pin.

• ADC3 – Port F, Bit 3

ADC3, Analog to Digital Converter, input channel 3.

• ADC2 – Port F, Bit 2

ADC2, Analog to Digital Converter, input channel 2.

• ADC1 – Port F, Bit 1

ADC1, Analog to Digital Converter, input channel 1.

• ADC0 – Port F, Bit 0

ADC0, Analog to Digital Converter, input channel 0.
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Table 46 and Table 47 relates the alternate functions of Port F to the overriding signals
shown in Figure 34 on page 68.

Table 46.  Overriding Signals for Alternate Functions in PF7..PF4

Signal Name PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK

PUOE JTAGEN JTAGEN JTAGEN JTAGEN

PUOV JTAGEN JTAGEN JTAGEN JTAGEN

DDOE JTAGEN JTAGEN JTAGEN JTAGEN

DDOV 0 SHIFT_IR + 
SHIFT_DR

0 0

PVOE JTAGEN JTAGEN JTAGEN JTAGEN

PVOV 0 TDO 0 0

PTOE 0 0 0 0

DIEOE JTAGEN + 
ADC7D

JTAGEN + 
ADC6D

JTAGEN + 
ADC5D

JTAGEN + 
ADC4D

DIEOV JTAGEN 0 JTAGEN JTAGEN

DI TDI – TMS TCK

AIO ADC7 INPUT ADC6 INPUT ADC5 INPUT ADC4 INPUT

Table 47.  Overriding Signals for Alternate Functions in PF3..PF0

Signal Name PF3/ADC3 PF2/ADC2 PF1/ADC1 PF0/ADC0

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

PTOE 0 0 0 0

DIEOE ADC3D ADC2D ADC1D ADC0D

DIEOV 0 0 0 0

DI – – – –

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT
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Alternate Functions of Port G The alternate pin configuration is as follows:

The alternate pin configuration is as follows:

• TOSC1 – Port G, Bit 4

TOSC2, Timer/Counter2 Oscillator pin 1. When the AS2 bit in ASSR is set (one) to
enable asynchronous clocking of Timer/Counter2, pin PG4 is disconnected from the
port, and becomes the input of the inverting Oscillator amplifier. In this mode, a Crystal
Oscillator is connected to this pin, and the pin can not be used as an I/O pin. 

• TOSC2 – Port G, Bit 3

TOSC2, Timer/Counter2 Oscillator pin 2. When the AS2 bit in ASSR is set (one) to
enable asynchronous clocking of Timer/Counter2, pin PG3 is disconnected from the
port, and becomes the inverting output of the Oscillator amplifier. In this mode, a Crystal
Oscillator is connected to this pin, and the pin can not be used as an I/O pin.

• ALE – Port G, Bit 2

ALE is the external data memory Address Latch Enable signal.

• RD – Port G, Bit 1

RD is the external data memory read control strobe.

• WR – Port G, Bit 0

WR is the external data memory write control strobe.

Table 48.  Port G Pins Alternate Functions

Port Pin Alternate Function

PG4 TOSC1 (RTC Oscillator Timer/Counter2)

PG3 TOSC2 (RTC Oscillator Timer/Counter2)

PG2 ALE (Address Latch Enable to external memory)

PG1 RD (Read strobe to external memory)

PG0 WR (Write strobe to external memory)
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Table 48 and Table 49 relates the alternate functions of Port G to the overriding signals
shown in Figure 34 on page 68.

Table 49.  Overriding Signals for Alternate Function in PG4

Signal Name - - - PG4/TOSC1

PUOE AS2

PUOV 0

DDOE AS2

DDOV 0

PVOE 0

PVOV 0

PTOE 0

DIEOE AS2

DIEOV EXCLK

DI –

AIO T/C2 OSC INPUT

Table 50.  Overriding Signals for Alternate Functions in PG3:0

Signal Name PG3/TOSC2 PG2/ALE PG1/RD PG0/WR

PUOE AS2 • EXCLK SRE SRE SRE

PUOV 0 0 0 0

DDOE AS2 • EXCLK SRE SRE SRE

DDOV 0 1 1 1

PVOE 0 SRE SRE SRE

PVOV 0 ALE RD WR

PTOE 0 0 0 0

DIEOE AS2 0 0 0

DIEOV 0 0 0 0

DI – – – –

AIO T/C2 OSC OUTPUT – – –
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Register Description for 
I/O-Ports

Port A Data Register – PORTA

Port A Data Direction Register 
– DDRA

Port A Input Pins Address – 
PINA

Port B Data Register – PORTB

Port B Data Direction Register 
– DDRB

Port B Input Pins Address – 
PINB

Port C Data Register – PORTC

Port C Data Direction Register 
– DDRC

Bit 7 6 5 4 3 2 1 0

PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 PORTA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 DDRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 PINA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Port C Input Pins Address – 
PINC

Port D Data Register – PORTD

Port D Data Direction Register 
– DDRD

Port D Input Pins Address – 
PIND

Port E Data Register – PORTE

Port E Data Direction Register 
– DDRE

Port E Input Pins Address – 
PINE

Port F Data Register – PORTF

Port F Data Direction Register 
– DDRF

Bit 7 6 5 4 3 2 1 0

PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 PORTE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 DDRE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 PINE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 PORTF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 DDRF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Port F Input Pins Address – 
PINF

Port G Data Register – PORTG

Port G Data Direction Register 
– DDRG

Port G Input Pins Address – 
PING

Bit 7 6 5 4 3 2 1 0

PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 PINF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

– – – PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 PORTG

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – DDG4 DDG3 DDG2 DDG1 DDG0 DDRG

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – PING4 PING3 PING2 PING1 PING0 PING

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 N/A N/A N/A N/A N/A
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External Interrupts
The External Interrupts are triggered by the INT7:0 pins. Observe that, if enabled, the
interrupts will trigger even if the INT7:0 pins are configured as outputs. This feature pro-
vides a way of generating a software interrupt. The External Interrupts can be triggered
by a falling or rising edge or a low level. This is set up as indicated in the specification for
the External Interrupt Control Registers – EICRA (INT3:0) and EICRB (INT7:4). When
the external interrupt is enabled and is configured as level triggered, the interrupt will
trigger as long as the pin is held low. Note that recognition of falling or rising edge inter-
rupts on INT7:4 requires the presence of an I/O clock, described in “Clock Systems and
their Distribution” on page 35. Low level interrupts and the edge interrupt on INT3:0 are
detected asynchronously. This implies that these interrupts can be used for waking the
part also from sleep modes other than Idle mode. The I/O clock is halted in all sleep
modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. This makes the MCU
less sensitive to noise. The changed level is sampled twice by the Watchdog Oscillator
clock. The period of the Watchdog Oscillator is 1 µs (nominal) at 5.0V and 25°C. The
frequency of the Watchdog Oscillator is voltage dependent as shown in the “Electrical
Characteristics(1)” on page 355. The MCU will wake up if the input has the required
level during this sampling or if it is held until the end of the start-up time. The start-up
time is defined by the SUT fuses as described in “System Clock” on page 35. If the level
is sampled twice by the Watchdog Oscillator clock but disappears before the end of the
start-up time, the MCU will still wake up, but no interrupt will be generated. The required
level must be held long enough for the MCU to complete the wake up to trigger the level
interrupt.

External Interrupt Control 
Register A – EICRA

• Bits 7..0 – ISC31, ISC30 – ISC01, ISC00: External Interrupt 3 - 0 Sense Control 
Bits

The External Interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag
and the corresponding interrupt mask in the EIMSK is set. The level and edges on the
external pins that activate the interrupts are defined in Table 51. Edges on INT3..INT0
are registered asynchronously. Pulses on INT3:0 pins wider than the minimum pulse
width given in Table 52 will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. If low level interrupt is selected, the low level must be held until
the completion of the currently executing instruction to generate an interrupt. If enabled,
a level triggered interrupt will generate an interrupt request as long as the pin is held
low. When changing the ISCn bit, an interrupt can occur. Therefore, it is recommended
to first disable INTn by clearing its Interrupt Enable bit in the EIMSK Register. Then, the
ISCn bit can be changed. Finally, the INTn interrupt flag should be cleared by writing a
logical one to its Interrupt Flag bit (INTFn) in the EIFR Register before the interrupt is re-
enabled.

Bit 7 6 5 4 3 2 1 0

ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 EICRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
89      
7522C–AUTO–09/06



      
Note: 1. n = 3, 2, 1or 0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its
Interrupt Enable bit in the EIMSK Register. Otherwise an interrupt can occur when
the bits are changed.

External Interrupt Control 
Register B – EICRB

• Bits 7..0 – ISC71, ISC70 - ISC41, ISC40: External Interrupt 7 - 4 Sense Control 
Bits

The External Interrupts 7 - 4 are activated by the external pins INT7:4 if the SREG I-flag
and the corresponding interrupt mask in the EIMSK is set. The level and edges on the
external pins that activate the interrupts are defined in Table 53. The value on the
INT7:4 pins are sampled before detecting edges. If edge or toggle interrupt is selected,
pulses that last longer than one clock period will generate an interrupt. Shorter pulses
are not guaranteed to generate an interrupt. Observe that CPU clock frequency can be
lower than the XTAL frequency if the XTAL divider is enabled. If low level interrupt is
selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an
interrupt request as long as the pin is held low.

Note: 1. n = 7, 6, 5 or 4.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its
Interrupt Enable bit in the EIMSK Register. Otherwise an interrupt can occur when
the bits are changed.

Table 51.   Interrupt Sense Control(1)

ISCn1 ISCn0 Description

0 0 The low level of INTn generates an interrupt request.

0 1 Reserved

1 0 The falling edge of INTn generates asynchronously an interrupt request.

1 1 The rising edge of INTn generates asynchronously an interrupt request.

Table 52.  Asynchronous External Interrupt Characteristics

Symbol Parameter Condition Min Typ Max Units

tINT
Minimum pulse width for 
asynchronous external interrupt

50 ns

Bit 7 6 5 4 3 2 1 0

ISC71 ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40 EICRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 53.   Interrupt Sense Control(1)

ISCn1 ISCn0 Description

0 0 The low level of INTn generates an interrupt request.

0 1 Any logical change on INTn generates an interrupt request

1 0
The falling edge between two samples of INTn generates an interrupt 
request.

1 1
The rising edge between two samples of INTn generates an interrupt 
request.
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External Interrupt Mask 
Register – EIMSK

• Bits 7..0 – INT7 – INT0: External Interrupt Request 7 - 0 Enable

When an INT7 – INT0 bit is written to one and the I-bit in the Status Register (SREG) is
set (one), the corresponding external pin interrupt is enabled. The Interrupt Sense Con-
trol bits in the External Interrupt Control Registers – EICRA and EICRB – defines
whether the external interrupt is activated on rising or falling edge or level sensed. Activ-
ity on any of these pins will trigger an interrupt request even if the pin is enabled as an
output. This provides a way of generating a software interrupt.

External Interrupt Flag 
Register – EIFR

• Bits 7..0 – INTF7 - INTF0: External Interrupt Flags 7 - 0

When an edge or logic change on the INT7:0 pin triggers an interrupt request, INTF7:0
becomes set (one). If the I-bit in SREG and the corresponding interrupt enable bit,
INT7:0 in EIMSK, are set (one), the MCU will jump to the interrupt vector. The flag is
cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by
writing a logical one to it. These flags are always cleared when INT7:0 are configured as
level interrupt. Note that when entering sleep mode with the INT3:0 interrupts disabled,
the input buffers on these pins will be disabled. This may cause a logic change in inter-
nal signals which will set the INTF3:0 flags. See “Digital Input Enable and Sleep Modes”
on page 66 for more information.

Bit 7 6 5 4 3 2 1 0

INT7 INT6 INT5 INT4 INT3 INT2 INT1 IINT0 EIMSK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 IINTF0 EIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Timer/Counter3/1/0 Prescalers
Timer/Counter3, Timer/Counter1 and Timer/Counter0 share the same prescaler mod-
ule, but the Timer/Counters can have different prescaler settings. The description below
applies to both Timer/Counter3, Timer/Counter1 and Timer/Counter0.

Overview Most bit references in this section are written in general form. A lower case “n” replaces
the Timer/Counter number.

Internal Clock Source The Timer/Counter can be clocked directly by the system clock (by setting the
CSn2:0 = 1). This provides the fastest operation, with a maximum Timer/Counter clock
frequency equal to system clock frequency (fCLK_I/O). Alternatively, one of four taps from
the prescaler can be used as a clock source. The prescaled clock has a frequency of
either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or fCLK_I/O/1024.

Prescaler Reset The prescaler is free running, i.e., operates independently of the Clock Select logic of
the Timer/Counter, and it  is shared by Timer/Counter3, Timer/Counter1 and
Timer/Counter0. Since the prescaler is not affected by the Timer/Counter’s clock select,
the state of the prescaler will have implications for situations where a prescaled clock is
used. One example of prescaling artifacts occurs when the timer is enabled and clocked
by the prescaler (6 > CSn2:0 > 1). The number of system clock cycles from when the
timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles,
where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program
execution. However, care must be taken if the other Timer/Counter that shares the
same prescaler also uses prescaling. A prescaler reset will affect the prescaler period
for all Timer/Counters it is connected to.

External Clock Source An external clock source applied to the T3/T1/T0 pin can be used as Timer/Counter
clock (clkT3/clkT1/clkT0). The T3/T1/T0 pin is sampled once every system clock cycle by
the pin synchronization logic. The synchronized (sampled) signal is then passed through
the edge detector. Figure 35 shows a functional equivalent block diagram of the
T3/T1/T0 synchronization and edge detector logic. The registers are clocked at the pos-
itive edge of the internal system clock (clkI/O). The latch is transparent in the high period
of the internal system clock.

The edge detector generates one clkT3/clkT1/clkT0 pulse for each positive (CSn2:0 = 7)
or negative (CSn2:0 = 6) edge it detects.

Figure 35.  T3/T1/T0 Pin Sampling

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system
clock cycles from an edge has been applied to the T3/T1/T0 pin to the counter is
updated.
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Enabling and disabling of the clock input must be done when T3/T1/T0 has been stable
for at least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock
pulse is generated.

Each half period of the external clock applied must be longer than one system clock
cycle to ensure correct sampling. The external clock must be guaranteed to have less
than half the system clock frequency (fExtClk < fclk_I/O/2) given a 50/50 % duty cycle.
Since the edge detector uses sampling, the maximum frequency of an external clock it
can detect is half the sampling frequency (Nyquist sampling theorem). However, due to
variation of the system clock frequency and duty cycle caused by Oscillator source
(crystal, resonator, and capacitors) tolerances, it is recommended that maximum fre-
quency of an external clock source is less than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 36.  Prescaler for Timer/Counter3, Timer/Counter1 and Timer/Counter0(1)

Note: 1. The synchronization logic on the input pins (T0/T1/T3) is shown in Figure 35.

Timer/Counter0/1/3 
Prescalers 
Register Description

General Timer/Counter 
Control Register – GTCCR

• Bit 7 – TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this
mode, the value that is written to the PSR2 and PSR310 bits is kept, hence keeping the
corresponding prescaler reset signals asserted. This ensures that the corresponding
Timer/Counters are halted and can be configured to the same value without the risk of
one of them advancing during configuration. When the TSM bit is written to zero, the
PSR2 and PSR310 bits are cleared by hardware, and the Timer/Counters start counting
simultaneously.
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Clear
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Synchronization
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Bit 7 6 5 4 3 2 1 0

TSM – – – – – PSR2 PSR310 GTCCR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 0 – PSR310: Prescaler Reset Timer/Counter3, Timer/Counter1 and 
Timer/Counter0

When this bit is one, Timer/Counter3, Timer/Counter1 and Timer/Counter0 prescaler will
be Reset. This bit is normally cleared immediately by hardware, except if the TSM bit is
set. Note that Timer/Counter3, Timer/Counter1 and Timer/Counter0 share the same
prescaler and a reset of this prescaler will affect these three timers.
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8-bit Timer/Counter0 with PWM
Timer/Counter0 is a general purpose, single channel, 8-bit Timer/Counter module. The
main features are:

Features • Single Channel Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• External Event Counter
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV0 and OCF0A)

Overview Many register and bit references in this section are written in general form.

• A lower case “n” replaces the Timer/Counter number, in this case 0. However, when 
using the register or bit defines in a program, the precise form must be used, i.e., 
TCNT0 for accessing Timer/Counter0 counter value and so on.

• A lower case “x” replaces the Output Compare unit channel, in this case A. 
However, when using the register or bit defines in a program, the precise form must 
be used, i.e., OCR0A for accessing Timer/Counter0 output compare channel A 
value and so on.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 37. For the
actual placement of I/O pins, refer to “Pinout AT90CAN128- TQFP” on page 4. CPU
accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-
specific I/O Register and bit locations are listed in the “8-bit Timer/Counter Register
Description” on page 105.

Figure 37.  8-bit Timer/Counter Block Diagram 

Registers The Timer/Counter (TCNT0) and Output Compare Register (OCR0A) are 8-bit registers.
Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer
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Interrupt Flag Register (TIFR0). All interrupts are individually masked with the Timer
Interrupt Mask Register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock
source on the T0 pin. The Clock Select logic block controls which clock source and edge
the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is
inactive when no clock source is selected. The output from the Clock Select logic is
referred to as the timer clock (clkT0).

The double buffered Output Compare Register (OCR0A) is compared with the
Timer/Counter value at all times. The result of the compare can be used by the Wave-
form Generator to generate a PWM or variable frequency output on the Output Compare
pin (OC0A). See “Output Compare Unit” on page 97  for details. The compare match
event will also set the Compare Flag (OCF0A) which can be used to generate an Output
Compare interrupt request.

Definitions The definitions in Table 54 are also used extensively throughout the document.

Timer/Counter Clock 
Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock
source is selected by the Clock Select logic which is controlled by the Clock Select
(CS02:0) bits located in the Timer/Counter Control Register (TCCR0A). For details on
clock sources and prescaler, see “Timer/Counter3/1/0 Prescalers” on page 92.

Counter Unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit.
Figure 38 shows a block diagram of the counter and its surroundings.

Figure 38.  Counter Unit Block Diagram

Signal description (internal signals):

count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

Table 54.  Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value 0xFF (MAX) or the value stored in the OCR0A Register. The
assignment is dependent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

Clock Select

top

Tn
Edge

Detector

( From Prescaler )

clkTn

bottom

direction

clear
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clkTn Timer/Counter clock, referred to as clkT0 in the following.

top Signalize that TCNT0 has reached maximum value.

bottom Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or dec-
remented at each timer clock (clkT0). clkT0 can be generated from an external or internal
clock source, selected by the Clock Select bits (CS02:0). When no clock source is
selected (CS02:0 = 0) the timer is stopped. However, the TCNT0 value can be accessed
by the CPU, regardless of whether clkT0 is present or not. A CPU write overrides (has
priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits
located in the Timer/Counter Control Register (TCCR0A). There are close connections
between how the counter behaves (counts) and how waveforms are generated on the
Output Compare output OC0A. For more details about advanced counting sequences
and waveform generation, see “Modes of Operation” on page 100.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation
selected by the WGM01:0 bits. TOV0 can be used for generating a CPU interrupt.

Output Compare Unit The 8-bit comparator continuously compares TCNT0 with the Output Compare Register
(OCR0A). Whenever TCNT0 equals OCR0A, the comparator signals a match. A match
will set the Output Compare Flag (OCF0A) at the next timer clock cycle. If enabled
(OCIE0A = 1 and Global Interrupt Flag in SREG is set), the Output Compare Flag gen-
erates an Output Compare interrupt. The OCF0A flag is automatically cleared when the
interrupt is executed. Alternatively, the OCF0A flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The Waveform Generator uses the match signal
to generate an output according to operating mode set by the WGM01:0 bits and Com-
pare Output mode (COM0A1:0) bits. The max and bottom signals are used by the
Waveform Generator for handling the special cases of the extreme values in some
modes of operation (See “Modes of Operation” on page 100 ).

Figure 39 shows a block diagram of the Output Compare unit. 

Figure 39.  Output Compare Unit, Block Diagram

OCFnx (Int.Req.)
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The OCR0A Register is double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation,
the double buffering is disabled. The double buffering synchronizes the update of the
OCR0A Compare Register to either top or bottom of the counting sequence. The syn-
chronization prevents the occurrence of odd-length, non-symmetrical PWM pulses,
thereby making the output glitch-free.

The OCR0A Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCR0A Buffer Register, and if double
buffering is disabled the CPU will access the OCR0A directly. 

Force Output Compare In non-PWM waveform generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOC0A) bit. Forcing compare
match will not set the OCF0A flag or reload/clear the timer, but the OC0A pin will be
updated as if a real compare match had occurred (the COM0A1:0 bits settings define
whether the OC0A pin is set, cleared or toggled). 

Compare Match Blocking by 
TCNT0 Write

All CPU write operations to the TCNT0 Register will block any compare match that
occur in the next timer clock cycle, even when the timer is stopped. This feature allows
OCR0A to be initialized to the same value as TCNT0 without triggering an interrupt
when the Timer/Counter clock is enabled.

Using the Output Compare 
Unit

Since writing TCNT0 in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNT0 when using the Output
Compare channel, independently of whether the Timer/Counter is running or not. If the
value written to TCNT0 equals the OCR0A value, the compare match will be missed,
resulting in incorrect waveform generation. Similarly, do not write the TCNT0 value
equal to BOTTOM when the counter is downcounting.

The setup of the OC0A should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OC0A value is to use the Force
Output Compare (FOC0A) strobe bits in Normal mode. The OC0A Register keeps its
value even when changing between Waveform Generation modes.

Be aware that the COM0A1:0 bits are not double buffered together with the compare
value. Changing the COM0A1:0 bits will take effect immediately.
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Compare Match Output 
Unit

The Compare Output mode (COM0A1:0) bits have two functions. The Waveform Gener-
ator uses the COM0A1:0 bits for defining the Output Compare (OC0A) state at the next
compare match. Also, the COM0A1:0 bits control the OC0A pin output source. Figure 40
shows a simplified schematic of the logic affected by the COM0A1:0 bit setting. The I/O
Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the
general I/O port control registers (DDR and PORT) that are affected by the COM0A1:0
bits are shown. When referring to the OC0A state, the reference is for the internal OC0A
Register, not the OC0A pin. If a system reset occur, the OC0A Register is reset to “0”.

Figure 40.  Compare Match Output Unit, Schematic

Compare Output Function The general I/O port function is overridden by the Output Compare (OC0A) from the
Waveform Generator if either of the COM0A1:0 bits are set. However, the OC0A pin
direction (input or output) is still controlled by the Data Direction Register (DDR) for the
port pin. The Data Direction Register bit for the OC0A pin (DDR_OC0A) must be set as
output before the OC0A value is visible on the pin. The port override function is indepen-
dent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC0A state
before the output is enabled. Note that some COM0A1:0 bit settings are reserved for
certain modes of operation. See “8-bit Timer/Counter Register Description” on page 105 

Compare Output Mode and 
Waveform Generation

The Waveform Generator uses the COM0A1:0 bits differently in Normal, CTC, and
PWM modes. For all modes, setting the COM0A1:0 = 0 tells the Waveform Generator
that no action on the OC0A Register is to be performed on the next compare match. For
compare output actions in the non-PWM modes refer to Table 56 on page 106. For fast
PWM mode, refer to Table 57 on page 106, and for phase correct PWM refer to Table
58 on page 107.

A change of the COM0A1:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOC0A strobe bits.
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Modes of Operation The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGM01:0) and
Compare Output mode (COM0A1:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM0A1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COM0A1:0 bits control whether the out-
put should be set, cleared, or toggled at a compare match (See “Compare Match Output
Unit” on page 99 ).

For detailed timing information refer to Figure 44, Figure 45, Figure 46 and Figure 47 in
“Timer/Counter Timing Diagrams” on page 103.

Normal Mode The simplest mode of operation is the Normal mode (WGM01:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then
restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag
(TOV0) will be set in the same timer clock cycle as the TCNT0 becomes zero. The
TOV0 flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV0
flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.

Clear Timer on Compare 
Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM01:0 = 2), the OCR0A Register is used
to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT0) matches the OCR0A. The OCR0A defines the top value for
the counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 41. The counter value
(TCNT0) increases until a compare match occurs between TCNT0 and OCR0A, and
then counter (TCNT0) is cleared.

Figure 41.  CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by
using the OCF0A flag. If the interrupt is enabled, the interrupt handler routine can be
used for updating the TOP value. However, changing TOP to a value close to BOTTOM
when the counter is running with none or a low prescaler value must be done with care
since the CTC mode does not have the double buffering feature. If the new value written
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OCnx
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100 AT90CAN128 Auto
7522C–AUTO–09/06



AT90CAN128 Auto
to OCR0A is lower than the current value of TCNT0, the counter will miss the compare
match. The counter will then have to count to its maximum value (0xFF) and wrap
around starting at 0x00 before the compare match can occur. 

For generating a waveform output in CTC mode, the OC0A output can be set to toggle
its logical level on each compare match by setting the Compare Output mode bits to tog-
gle mode (COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the
data direction for the pin is set to output. The waveform generated will have a maximum
frequency of fOC0A = fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform fre-
quency is defined by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 flag is set in the same timer clock cycle
that the counter counts from MAX to 0x00.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM01:0 = 3) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM
option by its single-slope operation. The counter counts from BOTTOM to MAX then
restarts from BOTTOM. In non-inverting Compare Output mode, the Output Compare
(OC0A) is cleared on the compare match between TCNT0 and OCR0A, and set at BOT-
TOM. In inverting Compare Output mode, the output is set on compare match and
cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the
fast PWM mode can be twice as high as the phase correct PWM mode that use dual-
slope operation. This high frequency makes the fast PWM mode well suited for power
regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX
value. The counter is then cleared at the following timer clock cycle. The timing diagram
for the fast PWM mode is shown in Figure 42. The TCNT0 value is in the timing diagram
shown as a histogram for illustrating the single-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT0
slopes represent compare matches between OCR0A and TCNT0.

Figure 42.  Fast PWM Mode, Timing Diagram
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The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches MAX. If
the interrupt is enabled, the interrupt handler routine can be used for updating the com-
pare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the
OC0A pin. Setting the COM0A1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM0A1:0 to three (See Table 57
on page 106). The actual OC0A value will only be visible on the port pin if the data direc-
tion for the port pin is set as output. The PWM waveform is generated by setting (or
clearing) the OC0A Register at the compare match between OCR0A and TCNT0, and
clearing (or setting) the OC0A Register at the timer clock cycle the counter is cleared
(changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represents special cases when generating
a PWM waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM,
the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A
equal to MAX will result in a constantly high or low output (depending on the polarity of
the output set by the COM0A1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OC0A to toggle its logical level on each compare match (COM0A1:0 = 1). The
waveform generated will have a maximum frequency of fOC0A = fclk_I/O/2 when OCR0A is
set to zero. This feature is similar to the OC0A toggle in CTC mode, except the double
buffer feature of the Output Compare unit is enabled in the fast PWM mode.

Phase Correct PWM Mode The phase correct PWM mode (WGM01:0 = 1) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-
slope operation. The counter counts repeatedly from BOTTOM to MAX and then from
MAX to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC0A)
is cleared on the compare match between TCNT0 and OCR0A while upcounting, and
set on the compare match while downcounting. In inverting Output Compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency
than single slope operation. However, due to the symmetric feature of the dual-slope
PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase
correct PWM mode the counter is incremented until the counter value matches MAX.
When the counter reaches MAX, it changes the count direction. The TCNT0 value will
be equal to MAX for one timer clock cycle. The timing diagram for the phase correct
PWM mode is shown on Figure 43. The TCNT0 value is in the timing diagram shown as
a histogram for illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes repre-
sent compare matches between OCR0A and TCNT0.

f
OCnxPWM

fclk_I/O

N 256⋅
------------------=
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Figure 43.  Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOT-
TOM. The interrupt flag can be used to generate an interrupt each time the counter
reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on
the OC0A pin. Setting the COM0A1:0 bits to two will produce a non-inverted PWM. An
inverted PWM output can be generated by setting the COM0A1:0 to three (See Table 58
on page 107). The actual OC0A value will only be visible on the port pin if the data direc-
tion for the port pin is set as output. The PWM waveform is generated by clearing (or
setting) the OC0A Register at the compare match between OCR0A and TCNT0 when
the counter increments, and setting (or clearing) the OC0A Register at compare match
between OCR0A and TCNT0 when the counter decrements. The PWM frequency for
the output when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCR0A is set equal to
BOTTOM, the output will be continuously low and if set equal to MAX the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.

Timer/Counter Timing 
Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore
shown as a clock enable signal in the following figures. The figures include information
on when interrupt flags are set. Figure 44 contains timing data for basic Timer/Counter
operation. The figure shows the count sequence close to the MAX value in all modes
other than phase correct PWM mode.
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Figure 44.  Timer/Counter Timing Diagram, no Prescaling

Figure 45 shows the same timing data, but with the prescaler enabled.

Figure 45.  Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 46 shows the setting of OCF0A in all modes except CTC mode.

Figure 46.  Timer/Counter Timing Diagram, Setting of OCF0A, with Prescaler (fclk_I/O/8)
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Figure 47 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode.

Figure 47.  Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with
Prescaler (fclk_I/O/8)

8-bit Timer/Counter 
Register Description

Timer/Counter0 Control 
Register A – TCCR0A

• Bit 7 – FOC0A: Force Output Compare A

The FOC0A bit is only active when the WGM00 bit specifies a non-PWM mode. How-
ever, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0A is written when operating in PWM mode. When writing a logical one to the
FOC0A bit, an immediate compare match is forced on the Waveform Generation unit.
The OC0A output is changed according to its COM0A1:0 bits setting. Note that the
FOC0A bit is implemented as a strobe. Therefore it is the value present in the
COM0A1:0 bits that determines the effect of the forced compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode
using OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6, 3 – WGM01:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum
(TOP) counter value, and what type of waveform generation to be used. Modes of oper-
ation supported by the Timer/Counter unit are: Normal mode, Clear Timer on Compare
match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes. See Table
55 and “Modes of Operation” on page 100.

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

Bit 7 6 5 4 3 2 1 0

FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 TCCR0A

Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Note: 1. The CTC0 and PWM0 bit definition names are now obsolete. Use the WGM01:0 def-
initions. However, the functionality and location of these bits are compatible with
previous versions of the timer.

• Bit 5:4 – COM01:0: Compare Match Output Mode

These bits control the Output Compare pin (OC0A) behavior. If one or both of the
COM0A1:0 bits are set, the OC0A output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit cor-
responding to the OC0A pin must be set in order to enable the output driver.

When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the
WGM01:0 bit setting. Table 56 shows the COM0A1:0 bit functionality when the
WGM01:0 bits are set to a normal or CTC mode (non-PWM).

Table 57 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast
PWM mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case,
the compare match is ignored, but the set or clear is done at TOP. See “Fast PWM
Mode” on page 101 for more details.

Table 55.  Waveform Generation Mode Bit Description(1)

Mode
WGM01
(CTC0)

WGM00
(PWM0)

Timer/Counter 
Mode of Operation TOP

Update of 
OCR0A at

TOV0 Flag 
Set on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR0A Immediate MAX

3 1 1 Fast PWM 0xFF TOP MAX

Table 56.  Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on compare match

1 0 Clear OC0A on compare match

1 1 Set OC0A on compare match

Table 57.  Compare Output Mode, Fast PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Reserved

1 0 Clear OC0A on compare match.

Set OC0A at TOP

1 1 Set OC0A on compare match.

Clear OC0A at TOP
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Table 58 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to
phase correct PWM mode.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case,
the compare match is ignored, but the set or clear is done at TOP. See “Phase Cor-
rect PWM Mode” on page 102 for more details.

• Bit 2:0 – CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will
clock the counter even if the pin is configured as an output. This feature allows software
control of the counting.

Timer/Counter0 Register – 
TCNT0

The Timer/Counter Register gives direct access, both for read and write operations, to
the Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes)
the compare match on the following timer clock. Modifying the counter (TCNT0) while
the counter is running, introduces a risk of missing a compare match between TCNT0
and the OCR0A Register.

Table 58.  Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Reserved

1 0 Clear OC0A on compare match when up-counting.

Set OC0A on compare match when downcounting.

1 1 Set OC0A on compare match when up-counting.

Clear OC0A on compare match when downcounting.

Table 59.  Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Output Compare Register A – 
OCR0A

The Output Compare Register A contains an 8-bit value that is continuously compared
with the counter value (TCNT0). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC0A pin.

Timer/Counter0 Interrupt 
Mask Register – TIMSK0

• Bit 7..2 – Reserved Bits

These are reserved bits for future use.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIE0A bit is written to one, and the I-bit in the Status Register is set (one),
the Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt
is executed if a compare match in Timer/Counter0 occurs, i.e., when the OCF0A bit is
set in the Timer/Counter 0 Interrupt Flag Register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter0 occurs, i .e., when the TOV0 bit is set in the
Timer/Counter 0 Interrupt Flag Register – TIFR0.

Timer/Counter0 Interrupt Flag 
Register – TIFR0

• Bit 1 – OCF0A: Output Compare Flag 0 A

The OCF0A bit is set (one) when a compare match occurs between the Timer/Counter0
and the data in OCR0A – Output Compare Register0. OCF0A is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCF0A is
cleared by writ ing a logic one to the f lag. When the I-bit  in SREG, OCIE0A
(Timer/Counter0 Compare match Interrupt Enable), and OCF0A are set (one), the
Timer/Counter0 Compare match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared
by hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV0 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE0
(Timer/Counter0 Overf low Interrupt Enable), and TOV0 are set (one), the
Timer/Counter0 Overflow interrupt is executed. In phase correct PWM mode, this bit is
set when Timer/Counter0 changes counting direction at 0x00.

Bit 7 6 5 4 3 2 1 0

OCR0A[7:0] OCR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – – OCIE0A TOIE0 TIMSK0

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – – – – OCF0A TOV0 TIFR0

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)
The 16-bit Timer/Counter unit allows accurate program execution timing (event man-
agement), wave generation, and signal timing measurement. The main features are:

Features • True 16-bit Design (i.e., Allows 16-bit PWM)
• Three independent Output Compare Units
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1 for Timer/Counter1 

- TOV3, OCF3A, OCF3B, and ICF3 for Timer/Counter3)

Overview Many register and bit references in this section are written in general form.

• A lower case “n” replaces the Timer/Counter number, in this case 1 or 3. However, 
when using the register or bit defines in a program, the precise form must be used, 
i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.

• A lower case “x” replaces the Output Compare unit channel, in this case A, B or C. 
However, when using the register or bit defines in a program, the precise form must 
be used, i.e., OCRnA for accessing Timer/Countern output compare channel A 
value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 48. For the
actual placement of I/O pins, refer to “Pinout AT90CAN128- TQFP” on page 4. CPU
accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-
specific I/O Register and bit locations are listed in the “16-bit Timer/Counter Register
Description” on page 132.
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Figure 48.  16-bit Timer/Counter Block Diagram(1)

Note: 1. Refer to Figure 2 on page 4, Table 33 on page 72, and Table 42 on page 79 for
Timer/Counter1 and 3 pin placement and description. 

Registers The Timer/Counter (TCNTn), Output Compare Registers (OCRnx), and Input Capture
Register (ICRn) are all 16-bit registers. Special procedures must be followed when
accessing the 16-bit registers. These procedures are described in the section “Access-
ing 16-bit Registers” on page 112. The Timer/Counter Control Registers (TCCRnx) are
8-bit registers and have no CPU access restrictions. Interrupt requests (abbreviated to
Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFRn).
All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSKn).
TIFRn and TIMSKn are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock
source on the Tn pin. The Clock Select logic block controls which clock source and edge
the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is
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inactive when no clock source is selected. The output from the Clock Select logic is
referred to as the timer clock (clkTn).

The double buffered Output Compare Registers (OCRnx) are compared with the
Timer/Counter value at all time. The result of the compare can be used by the Waveform
Generator to generate a PWM or variable frequency output on the Output Compare pin
(OCnx). See “Output Compare Units” on page 119 . The compare match event will also
set the Compare Match Flag (OCFnx) which can be used to generate an Output Com-
pare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external
(edge triggered) event on either the Input Capture pin (ICPn) or on the Analog Compar-
ator pins (See “Analog Comparator” on page 263 ) The Input Capture unit includes a
digital filtering unit (Noise Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be
defined by either the OCRnA Register, the ICRn Register, or by a set of fixed values.
When using OCRnA as TOP value in a PWM mode, the OCRnA Register can not be
used for generating a PWM output. However, the TOP value will in this case be double
buffered allowing the TOP value to be changed in run time. If a fixed TOP value is
required, the ICRn Register can be used as an alternative, freeing the OCRnA to be
used as PWM output.

Definitions The following definitions are used extensively throughout the section:

Compatibility The 16-bit Timer/Counter has been updated and improved from previous versions of the
16-bit AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier
version regarding:

• All 16-bit Timer/Counter related I/O Register address locations, including Timer 
Interrupt Registers.

• Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt 
Registers.

• Interrupt Vectors.

The following control bits have changed name, but have same functionality and register
location:

• PWMn0 is changed to WGMn0.

• PWMn1 is changed to WGMn1.

• CTCn is changed to WGMn2.

The following registers are added to the 16-bit Timer/Counter:

• Timer/Counter Control Register C (TCCRnC).

• Output Compare Register C, OCRnCH and OCRnCL, combined OCRnC.

Table 60.  Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65,535).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the 
count sequence. The TOP value can be assigned to be one of the fixed values: 
0x00FF, 0x01FF, or 0x03FF, or to the value stored in the OCRnA or ICRn Regis-
ter. The assignment is dependent of the mode of operation.
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The 16-bit Timer/Counter has improvements that will affect the compatibility in some
special cases.

The following bits are added to the 16-bit Timer/Counter Control Registers:

• COMnC1:0 are added to TCCRnA.

• FOCnA, FOCnB and FOCnC are added to TCCRnC.

• WGMn3 is added to TCCRnB.

Interrupt flag and mask bits for output compare unit C are added.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some
special cases.

Accessing 16-bit 
Registers

The TCNTn, OCRnx, and ICRn are 16-bit registers that can be accessed by the AVR
CPU via the 8-bit data bus. The 16-bit register must be byte accessed using two read or
write operations. Each 16-bit timer has a single 8-bit register for temporary storing of the
high byte of the 16-bit access. The same temporary register is shared between all 16-bit
registers within each 16-bit timer. Accessing the low byte triggers the 16-bit read or write
operation. When the low byte of a 16-bit register is written by the CPU, the high byte
stored in the temporary register, and the low byte written are both copied into the 16-bit
register in the same clock cycle. When the low byte of a 16-bit register is read by the
CPU, the high byte of the 16-bit register is copied into the temporary register in the
same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the
OCRnx 16-bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read,
the low byte must be read before the high byte.
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Code Examples The following code examples show how to access the 16-bit timer registers assuming
that no interrupts updates the temporary register. The same principle can be used
directly for accessing the OCRnx and ICRn Registers. Note that when using “C”, the
compiler handles the 16-bit access.

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an inter-
rupt occurs between the two instructions accessing the 16-bit register, and the interrupt
code updates the temporary register by accessing the same or any other of the 16-bit
timer registers, then the result of the access outside the interrupt will be corrupted.
Therefore, when both the main code and the interrupt code update the temporary regis-
ter, the main code must disable the interrupts during the 16-bit access.

Assembly Code Examples(1)

...

; Set TCNTn to 0x01FF

ldi r17,0x01

ldi r16,0xFF

sts TCNTnH,r17

sts TCNTnL,r16

; Read TCNTn into r17:r16

lds r16,TCNTnL

lds r17,TCNTnH

...

C Code Examples(1)

unsigned int i;

...

/* Set TCNTn to 0x01FF */

TCNTn = 0x1FF;

/* Read TCNTn into i */

i = TCNTn;

...
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The following code examples show how to do an atomic read of the TCNTn Register
contents. Reading any of the OCRnx or ICRn Registers can be done by using the same
principle.

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

Assembly Code Example(1)

TIM16_ReadTCNTn:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNTn into r17:r16

lds r16,TCNTnL

lds r17,TCNTnH

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNTn( void )

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNTn into i */

i = TCNTn;

/* Restore global interrupt flag */

SREG = sreg;

return i;

}
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The following code examples show how to do an atomic write of the TCNTn Register
contents. Writing any of the OCRnx or ICRn Registers can be done by using the same
principle.

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example requires that the r17:r16 register pair contains the value to
be written to TCNTn.

Reusing the Temporary High 
Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers
written, then the high byte only needs to be written once. However, note that the same
rule of atomic operation described previously also applies in this case.

Assembly Code Example(1)

TIM16_WriteTCNTn:

; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNTn to r17:r16

sts TCNTnH,r17

sts TCNTnL,r16

; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNTn( unsigned int i )

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNTn to i */

TCNTn = i;

/* Restore global interrupt flag */

SREG = sreg;

}
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Timer/Counter Clock 
Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock
source is selected by the Clock Select logic which is controlled by the Clock Select
(CSn2:0) bits located in the Timer/Counter control Register B (TCCRnB). For details on
clock sources and prescaler, see “Timer/Counter3/1/0 Prescalers” on page 92.

Counter Unit The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional
counter unit. Figure 49 shows a block diagram of the counter and its surroundings.

Figure 49.  Counter Unit Block Diagram

Signal description (internal signals):

Count Increment or decrement TCNTn by 1.

Direction Select between increment and decrement.

Clear Clear TCNTn (set all bits to zero).

clkTn Timer/Counter clock.

TOP Signalize that TCNTn has reached maximum value.

BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High
(TCNTnH) containing the upper eight bits of the counter, and Counter Low (TCNTnL)
containing the lower eight bits. The TCNTnH Register can only be indirectly accessed
by the CPU. When the CPU does an access to the TCNTnH I/O location, the CPU
accesses the high byte temporary register (TEMP). The temporary register is updated
with the TCNTnH value when the TCNTnL is read, and TCNTnH is updated with the
temporary register value when TCNTnL is written. This allows the CPU to read or write
the entire 16-bit counter value within one clock cycle via the 8-bit data bus. It is impor-
tant to notice that there are special cases of writing to the TCNTn Register when the
counter is counting that will give unpredictable results. The special cases are described
in the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or dec-
remented at each timer clock (clkTn). The clkTn can be generated from an external or
internal clock source, selected by the Clock Select bits (CSn2:0). When no clock source
is selected (CSn2:0 = 0) the timer is stopped. However, the TCNTn value can be
accessed by the CPU, independent of whether clkTn is present or not. A CPU write over-
rides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation mode
bits (WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and
TCCRnB). There are close connections between how the counter behaves (counts) and
how waveforms are generated on the Output Compare outputs OCnx. For more details
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about advanced counting sequences and waveform generation, see “Modes of Opera-
tion” on page 122.

The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation
selected by the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.

Input Capture Unit The Timer/Counter incorporates an Input Capture unit that can capture external events
and give them a time-stamp indicating time of occurrence. The external signal indicating
an event, or multiple events, can be applied via the ICPn pin or alternatively, via the
analog-comparator unit. The time-stamps can then be used to calculate frequency, duty-
cycle, and other features of the signal applied. Alternatively the time-stamps can be
used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 50. The ele-
ments of the block diagram that are not directly a part of the Input Capture unit are gray
shaded.

Figure 50.  Input Capture Unit Block Diagram

Note: The Analog Comparator Output (ACO) can only trigger the Timer/Counter1 IC Unit– not
Timer/Counter3.

When a change of the logic level (an event) occurs on the Input Capture pin (ICPn),
alternatively on the Analog Comparator output (ACO), and this change confirms to the
setting of the edge detector, a capture will be triggered. When a capture is triggered, the
16-bit value of the counter (TCNTn) is written to the Input Capture Register (ICRn). The
Input Capture Flag (ICFn) is set at the same system clock as the TCNTn value is copied
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into ICRn Register. If enabled (ICIEn = 1), the Input Capture Flag generates an Input
Capture interrupt. The ICFn flag is automatically cleared when the interrupt is executed.
Alternatively the ICFn flag can be cleared by software by writing a logical one to its I/O
bit location.

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the
low byte (ICRnL) and then the high byte (ICRnH). When the low byte is read the high
byte is copied into the high byte temporary register (TEMP). When the CPU reads the
ICRnH I/O location it will access the TEMP Register.

The ICRn Register can only be written when using a Waveform Generation mode that
utilizes the ICRn Register for defining the counter’s TOP value. In these cases the
Waveform Generation mode (WGMn3:0) bits must be set before the TOP value can be
written to the ICRn Register. When writing the ICRn Register the high byte must be writ-
ten to the ICRnH I/O location before the low byte is written to ICRnL.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit
Registers” on page 112.

Input Capture Trigger Source The main trigger source for the Input Capture unit is the Input Capture pin (ICPn). Only
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source
for the Input Capture unit. The Analog Comparator is selected as trigger source by set-
ting the Analog Comparator Input Capture (ACIC) bit in the Analog Comparator Control
and Status Register (ACSR). Be aware that changing trigger source can trigger a cap-
ture. The Input Capture Flag must therefore be cleared after the change.

Both the Input Capture pin (ICPn) and the Analog Comparator output (ACO) inputs are
sampled using the same technique as for the Tn pin (Figure 35 on page 92). The edge
detector is also identical. However, when the noise canceler is enabled, additional logic
is inserted before the edge detector, which increases the delay by four system clock
cycles. Note that the input of the noise canceler and edge detector is always enabled
unless the Timer/Counter is set in a Waveform Generation mode that uses ICRn to
define TOP.

An Input Capture can be triggered by software by controlling the port of the ICPn pin.

Noise Canceler The noise canceler improves noise immunity by using a simple digital filtering scheme.
The noise canceler input is monitored over four samples, and all four must be equal for
changing the output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit
in Timer/Counter Control Register B (TCCRnB). When enabled the noise canceler intro-
duces additional four system clock cycles of delay from a change applied to the input, to
the update of the ICRn Register. The noise canceler uses the system clock and is there-
fore not affected by the prescaler.

Using the Input Capture Unit The main challenge when using the Input Capture unit is to assign enough processor
capacity for handling the incoming events. The time between two events is critical. If the
processor has not read the captured value in the ICRn Register before the next event
occurs, the ICRn will be overwritten with a new value. In this case the result of the cap-
ture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the
interrupt handler routine as possible. Even though the Input Capture interrupt has rela-
tively high priority, the maximum interrupt response time is dependent on the maximum
number of clock cycles it takes to handle any of the other interrupt requests.
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Using the Input Capture unit in any mode of operation when the TOP value (resolution)
is actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed
after each capture. Changing the edge sensing must be done as early as possible after
the ICRn Register has been read. After a change of the edge, the Input Capture Flag
(ICFn) must be cleared by software (writing a logical one to the I/O bit location). For
measuring frequency only, the clearing of the ICFn flag is not required (if an interrupt
handler is used).

Output Compare Units The 16-bit comparator continuously compares TCNTn with the Output Compare Regis-
ter (OCRnx). If TCNT equals OCRnx the comparator signals a match. A match will set
the Output Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx =
1), the Output Compare Flag generates an Output Compare interrupt. The OCFnx flag is
automatically cleared when the interrupt is executed. Alternatively the OCFnx flag can
be cleared by software by writing a logical one to its I/O bit location. The Waveform Gen-
erator uses the match signal to generate an output according to operating mode set by
the Waveform Generation mode (WGMn3:0) bits and Compare Output mode
(COMnx1:0) bits. The TOP and BOTTOM signals are used by the Waveform Generator
for handling the special cases of the extreme values in some modes of operation (See
“Modes of Operation” on page 122 )

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP
value (i.e., counter resolution). In addition to the counter resolution, the TOP value
defines the period time for waveforms generated by the Waveform Generator.

Figure 51 shows a block diagram of the Output Compare unit. The elements of the block
diagram that are not directly a part of the Output Compare unit are gray shaded.

Figure 51.  Output Compare Unit, Block Diagram
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The OCRnx Register is double buffered when using any of the twelve Pulse Width Mod-
ulation (PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of
operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCRnx Compare Register to either TOP or BOTTOM of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical
PWM pulses, thereby making the output glitch-free.

The OCRnx Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCRnx Buffer Register, and if double
buffering is disabled the CPU will access the OCRnx directly. The content of the OCRnx
(Buffer or Compare) Register is only changed by a write operation (the Timer/Counter
does not update this register automatically as the TCNT1 and ICRn Register). Therefore
OCRnx is not read via the high byte temporary register (TEMP). However, it is a good
practice to read the low byte first as when accessing other 16-bit registers. Writing the
OCRnx Registers must be done via the TEMP Register since the compare of all 16 bits
is done continuously. The high byte (OCRnxH) has to be written first. When the high
byte I/O location is written by the CPU, the TEMP Register will be updated by the value
written. Then when the low byte (OCRnxL) is written to the lower eight bits, the high byte
will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx Compare Reg-
ister in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit
Registers” on page 112.

Force Output Compare In non-PWM Waveform Generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOCnx) bit. Forcing compare
match will not set the OCFnx flag or reload/clear the timer, but the OCnx pin will be
updated as if a real compare match had occurred (the COMnx1:0 bits settings define
whether the OCnx pin is set, cleared or toggled). 

Compare Match Blocking by 
TCNTn Write

All CPU writes to the TCNTn Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCRnx to be
initialized to the same value as TCNTn without triggering an interrupt when the
Timer/Counter clock is enabled.

Using the Output Compare 
Unit

Since writing TCNTn in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNTn when using any of the
Output Compare channels, independent of whether the Timer/Counter is running or not.
If the value written to TCNTn equals the OCRnx value, the compare match will be
missed, resulting in incorrect waveform generation. Do not write the TCNTn equal to
TOP in PWM modes with variable TOP values. The compare match for the TOP will be
ignored and the counter will continue to 0xFFFF. Similarly, do not write the TCNTn value
equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OCnx value is to use the Force
Output Compare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its
value even when changing between Waveform Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare
value. Changing the COMnx1:0 bits will take effect immediately.
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Compare Match Output 
Unit

The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Gener-
ator uses the COMnx1:0 bits for defining the Output Compare (OCnx) state at the next
compare match. Secondly the COMnx1:0 bits control the OCnx pin output source. Fig-
ure 52 shows a simplified schematic of the logic affected by the COMnx1:0 bit setting.
The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of
the general I/O port control registers (DDR and PORT) that are affected by the
COMnx1:0 bits are shown. When referring to the OCnx state, the reference is for the
internal OCnx Register, not the OCnx pin. If a system reset occur, the OCnx Register is
reset to “0”.

Figure 52.  Compare Match Output Unit, Schematic

Compare Output Function The general I/O port function is overridden by the Output Compare (OCnx) from the
Waveform Generator if either of the COMnx1:0 bits are set. However, the OCnx pin
direction (input or output) is still controlled by the Data Direction Register (DDR) for the
port pin. The Data Direction Register bit for the OCnx pin (DDR_OCnx) must be set as
output before the OCnx value is visible on the pin. The port override function is generally
independent of the Waveform Generation mode, but there are some exceptions. Refer
to Table 61, Table 62 and Table 63 for details.

The design of the Output Compare pin logic allows initialization of the OCnx state before
the output is enabled. Note that some COMnx1:0 bit settings are reserved for certain
modes of operation. See “16-bit Timer/Counter Register Description” on page 132 

The COMnx1:0 bits have no effect on the Input Capture unit.
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Compare Output Mode and 
Waveform Generation

The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no
action on the OCnx Register is to be performed on the next compare match. For com-
pare output actions in the non-PWM modes refer to Table 61 on page 132. For fast
PWM mode refer to Table 62 on page 133, and for phase correct and phase and fre-
quency correct PWM refer to Table 63 on page 133.

A change of the COMnx1:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOCnx strobe bits.

Modes of Operation The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGMn3:0) and
Compare Output mode (COMnx1:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COMnx1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COMnx1:0 bits control whether the out-
put should be set, cleared or toggle at a compare match (See “Compare Match Output
Unit” on page 121 )

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 129.

Normal Mode The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and
then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter Over-
flow Flag (TOVn) will be set in the same timer clock cycle as the TCNTn becomes zero.
The TOVn flag in this case behaves like a 17th bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOVn
flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maxi-
mum interval between the external events must not exceed the resolution of the counter.
If the interval between events are too long, the timer overflow interrupt or the prescaler
must be used to extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.

Clear Timer on Compare 
Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRnA or ICRn
Register are used to manipulate the counter resolution. In CTC mode the counter is
cleared to zero when the counter value (TCNTn) matches either the OCRnA (WGMn3:0
= 4) or the ICRn (WGMn3:0 = 12). The OCRnA or ICRn define the top value for the
counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 53. The counter value
(TCNTn) increases until a compare match occurs with either OCRnA or ICRn, and then
counter (TCNTn) is cleared.
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Figure 53.  CTC Mode, Timing Diagram

An interrupt can be generated at each time the counter value reaches the TOP value by
either using the OCFnA or ICFn flag according to the register used to define the TOP
value. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing the TOP to a value close to BOTTOM when the
counter is running with none or a low prescaler value must be done with care since the
CTC mode does not have the double buffering feature. If the new value written to
OCRnA or ICRn is lower than the current value of TCNTn, the counter will miss the com-
pare match. The counter will then have to count to its maximum value (0xFFFF) and
wrap around starting at 0x0000 before the compare match can occur. In many cases
this feature is not desirable. An alternative will then be to use the fast PWM mode using
OCRnA for defining TOP (WGMn3:0 = 15) since the OCRnA then will be double
buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle
its logical level on each compare match by setting the Compare Output mode bits to tog-
gle mode (COMnA1:0 = 1). The OCnA value will not be visible on the port pin unless the
data direction for the pin is set to output (DDR_OCnA = 1). The waveform generated will
have a maximum frequency of fOCnA = fclk_I/O/2 when OCRnA is set to zero (0x0000). The
waveform frequency is defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVn flag is set in the same timer clock cycle
that the counter counts from MAX to 0x0000.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) pro-
vides a high frequency PWM waveform generation option. The fast PWM differs from
the other PWM options by its single-slope operation. The counter counts from BOTTOM
to TOP then restarts from BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OCnx) is set on the compare match between TCNTn and OCRnx, and
cleared at TOP. In inverting Compare Output mode output is cleared on compare match
and set at TOP. Due to the single-slope operation, the operating frequency of the fast
PWM mode can be twice as high as the phase correct and phase and frequency correct
PWM modes that use dual-slope operation. This high frequency makes the fast PWM
mode well suited for power regulation, rectification, and DAC applications. High fre-
quency allows physically small sized external components (coils, capacitors), hence
reduces total system cost.
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The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either
ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to
0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM
resolution in bits can be calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in
ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15). The counter is then
cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is
shown in Figure 54. The figure shows fast PWM mode when OCRnA or ICRn is used to
define TOP. The TCNTn value is in the timing diagram shown as a histogram for illus-
trating the single-slope operation. The diagram includes non-inverted and inverted PWM
outputs. The small horizontal line marks on the TCNTn slopes represent compare
matches between OCRnx and TCNTn. The OCnx interrupt flag will be set when a com-
pare match occurs.

Figure 54.  Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In
addition the OCnA or ICFn flag is set at the same timer clock cycle as TOVn is set when
either OCRnA or ICRn is used for defining the TOP value. If one of the interrupts are
enabled, the interrupt handler routine can be used for updating the TOP and compare
values.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNTn and the OCRnx. Note that when using fixed TOP values the unused bits are
masked to zero when any of the OCRnx Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining
the TOP value. The ICRn Register is not double buffered. This means that if ICRn is
changed to a low value when the counter is running with none or a low prescaler value,
there is a risk that the new ICRn value written is lower than the current value of TCNTn.
The result will then be that the counter will miss the compare match at the TOP value.
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The counter will then have to count to the MAX value (0xFFFF) and wrap around start-
ing at 0x0000 before the compare match can occur. The OCRnA Register however, is
double buffered. This feature allows the OCRnA I/O location to be written anytime.
When the OCRnA I/O location is written the value written will be put into the OCRnA
Buffer Register. The OCRnA Compare Register will then be updated with the value in
the Buffer Register at the next timer clock cycle the TCNTn matches TOP. The update is
done at the same timer clock cycle as the TCNTn is cleared and the TOVn flag is set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By
using ICRn, the OCRnA Register is free to be used for generating a PWM output on
OCnA. However, if the base PWM frequency is actively changed (by changing the TOP
value), using the OCRnA as TOP is clearly a better choice due to its double buffer
feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the
OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COMnx1:0 to three (see Table  on
page 133). The actual OCnx value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by set-
ting (or clearing) the OCnx Register at the compare match between OCRnx and TCNTn,
and clearing (or setting) the OCnx Register at the timer clock cycle the counter is
cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating
a PWM waveform output in the fast PWM mode. If the OCRnx is set equal to BOTTOM
(0x0000) the output will be a narrow spike for each TOP+1 timer clock cycle. Setting the
OCRnx equal to TOP will result in a constant high or low output (depending on the polar-
ity of the output set by the COMnx1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OCnA to toggle its logical level on each compare match (COMnA1:0 = 1). The
waveform generated will have a maximum frequency of fOCnA = fclk_I/O/2 when OCRnA is
set to zero (0x0000). This feature is similar to the OCnA toggle in CTC mode, except the
double buffer feature of the Output Compare unit is enabled in the fast PWM mode.

Phase Correct PWM Mode The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1,
2, 3, 10, or 11) provides a high resolution phase correct PWM waveform generation
option. The phase correct PWM mode is, like the phase and frequency correct PWM
mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output
mode, the Output Compare (OCnx) is cleared on the compare match between TCNTn
and OCRnx while upcounting, and set on the compare match while downcounting. In
inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor
control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or
defined by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or
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OCRnA set to 0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to
MAX). The PWM resolution in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches
either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 1, 2, or 3), the
value in ICRn (WGMn3:0 = 10), or the value in OCRnA (WGMn3:0 = 11). The counter
has then reached the TOP and changes the count direction. The TCNTn value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM
mode is shown on Figure 55. The figure shows phase correct PWM mode when OCRnA
or ICRn is used to define TOP. The TCNTn value is in the timing diagram shown as a
histogram for illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-
sent compare matches between OCRnx and TCNTn. The OCnx interrupt flag will be set
when a compare match occurs.

Figure 55.  Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOT-
TOM. When either OCRnA or ICRn is used for defining the TOP value, the OCnA or
ICFn flag is set accordingly at the same timer clock cycle as the OCRnx Registers are
updated with the double buffer value (at TOP). The interrupt flags can be used to gener-
ate an interrupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNTn and the OCRnx. Note that when using fixed TOP values, the unused bits are
masked to zero when any of the OCRnx Registers are written. As the third period shown
in Figure 55 illustrates, changing the TOP actively while the Timer/Counter is running in
the phase correct mode can result in an unsymmetrical output. The reason for this can
be found in the time of update of the OCRnx Register. Since the OCRnx update occurs
at TOP, the PWM period starts and ends at TOP. This implies that the length of the fall-
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ing slope is determined by the previous TOP value, while the length of the rising slope is
determined by the new TOP value. When these two values differ the two slopes of the
period will differ in length. The difference in length gives the unsymmetrical result on the
output. 

It is recommended to use the phase and frequency correct mode instead of the phase
correct mode when changing the TOP value while the Timer/Counter is running. When
using a static TOP value there are practically no differences between the two modes of
operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on
the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COMnx1:0 to three (See Table
on page 133). The actual OCnx value will only be visible on the port pin if the data direc-
tion for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by
setting (or clearing) the OCnx Register at the compare match between OCRnx and
TCNTn when the counter increments, and clearing (or setting) the OCnx Register at
compare match between OCRnx and TCNTn when the counter decrements. The PWM
frequency for the output when using phase correct PWM can be calculated by the fol-
lowing equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCRnx is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.

Phase and Frequency Correct 
PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency cor-
rect PWM mode (WGMn3:0 = 8 or 9) provides a high resolution phase and frequency
correct PWM waveform generation option. The phase and frequency correct PWM
mode is, like the phase correct PWM mode, based on a dual-slope operation. The
counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOT-
TOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is cleared
on the compare match between TCNTn and OCRnx while upcounting, and set on the
compare match while downcounting. In inverting Compare Output mode, the operation
is inverted. The dual-slope operation gives a lower maximum operation frequency com-
pared to the single-slope operation. However, due to the symmetric feature of the dual-
slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct
PWM mode is the time the OCRnx Register is updated by the OCRnx Buffer Register,
(see Figure 55 and Figure 56).

The PWM resolution for the phase and frequency correct PWM mode can be defined by
either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to
0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM
resolution in bits can be calculated using the following equation:
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In phase and frequency correct PWM mode the counter is incremented until the counter
value matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA
(WGMn3:0 = 9). The counter has then reached the TOP and changes the count direc-
tion. The TCNTn value will be equal to TOP for one timer clock cycle. The timing
diagram for the phase correct and frequency correct PWM mode is shown on Figure 56.
The figure shows phase and frequency correct PWM mode when OCRnA or ICRn is
used to define TOP. The TCNTn value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNTn slopes represent compare
matches between OCRnx and TCNTn. The OCnx interrupt flag will be set when a com-
pare match occurs.

Figure 56.  Phase and Frequency Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the
OCRnx Registers are updated with the double buffer value (at BOTTOM). When either
OCRnA or ICRn is used for defining the TOP value, the OCnA or ICFn flag set when
TCNTn has reached TOP. The interrupt flags can then be used to generate an interrupt
each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNTn and the OCRnx.

As Figure 56 shows the output generated is, in contrast to the phase correct mode, sym-
metrical in all periods. Since the OCRnx Registers are updated at BOTTOM, the length
of the rising and the falling slopes will always be equal. This gives symmetrical output
pulses and is therefore frequency correct.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By
using ICRn, the OCRnA Register is free to be used for generating a PWM output on
OCnA. However, if the base PWM frequency is actively changed by changing the TOP
value, using the OCRnA as TOP is clearly a better choice due to its double buffer
feature.
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In phase and frequency correct PWM mode, the compare units allow generation of
PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a
non-inverted PWM and an inverted PWM output can be generated by setting the
COMnx1:0 to three (See Table  on page 133). The actual OCnx value will only be visible
on the port pin if the data direction for the port pin is set as output (DDR_OCnx). The
PWM waveform is generated by setting (or clearing) the OCnx Register at the compare
match between OCRnx and TCNTn when the counter increments, and clearing (or set-
ting) the OCnx Register at compare match between OCRnx and TCNTn when the
counter decrements. The PWM frequency for the output when using phase and fre-
quency correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating
a PWM waveform output in the phase correct PWM mode. If the OCRnx is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be
set to high for non-inverted PWM mode. For inverted PWM the output will have the
opposite logic values.

Timer/Counter Timing 
Diagrams

The Timer/Counter is a synchronous design and the timer clock (clkTn) is therefore
shown as a clock enable signal in the following figures. The figures include information
on when interrupt flags are set, and when the OCRnx Register is updated with the
OCRnx buffer value (only for modes utilizing double buffering). Figure 57 shows a timing
diagram for the setting of OCFnx. 

Figure 57.  Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling

Figure 58 shows the same timing data, but with the prescaler enabled. 

f
OCnxPFCPWM

fclk_I/O

2 N TOP⋅ ⋅
----------------------------=

clkTn
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OCFnx

clkI/O
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OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
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Figure 58.  Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (fclk_I/O/8)

Figure 59 shows the count sequence close to TOP in various modes. When using phase
and frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The
timing diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-1 by
BOTTOM+1 and so on. The same renaming applies for modes that set the TOVn flag at
BOTTOM.

Figure 59.  Timer/Counter Timing Diagram, no Prescaling

Figure 60 shows the same timing data, but with the prescaler enabled. 
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Figure 60.  Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)
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16-bit Timer/Counter 
Register Description

Timer/Counter1 Control 
Register A – TCCR1A

Timer/Counter3 Control 
Register A – TCCR3A

• Bit 7:6 – COMnA1:0: Compare Output Mode for Channel A

• Bit 5:4 – COMnB1:0: Compare Output Mode for Channel B

• Bit 3:2 – COMnC1:0: Compare Output Mode for Channel C

The COMnA1:0, COMnB1:0 and COMnC1:0 control the Output Compare pins (OCnA,
OCnB and OCnC respectively) behavior. If one or both of the COMnA1:0 bits are written
to one, the OCnA output overrides the normal port functionality of the I/O pin it is con-
nected to. If one or both of the COMnB1:0 bit are written to one, the OCnB output
overrides the normal port functionality of the I/O pin it is connected to. If one or both of
the COMnC1:0 bit are written to one, the OCnC output overrides the normal port func-
tionality of the I/O pin it is connected to. However, note that the Data Direction Register
(DDR) bit corresponding to the OCnA, OCnB or OCnC pin must be set in order to
enable the output driver.

When the OCnA, OCnB or OCnC is connected to the pin, the function of the COMnx1:0
bits is dependent of the WGMn3:0 bits setting. Table 61 shows the COMnx1:0 bit func-
tionality when the WGMn3:0 bits are set to a Normal or a CTC mode (non-PWM).

Bit 7 6 5 4 3 2 1 0

COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30 TCCR3A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 61.  Compare Output Mode, non-PWM

COMnA1/COMnB1/
COMnC1

COMnA0/COMnB0/
COMnC0 Description

0 0 Normal port operation, OCnA/OCnB/OCnC 
disconnected.

0 1 Toggle OCnA/OCnB/OCnC on Compare Match.

1 0 Clear OCnA/OCnB/OCnC on Compare Match (Set 
output to low level).

1 1 Set OCnA/OCnB/OCnC on Compare Match (Set 
output to high level).
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Table 62 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the
fast PWM mode.

Note: 1. A special case occurs when OCRnA/OCRnB/OCRnC equals TOP and
COMnA1/COMnB1/COMnC1 is set. In this case the compare match is ignored, but
the set or clear is done at TOP. See “Fast PWM Mode” on page 123  for more details.

Table 63 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the
phase correct or the phase and frequency correct, PWM mode.

Note: 1. A special case occurs when OCnA/OCnB/OCnC equals TOP and
COMnA1/COMnB1/COMnC1 is set. See “Phase Correct PWM Mode” on page 125
for more details.

• Bit 1:0 – WGMn1:0: Waveform Generation Mode

Combined with the WGMn3:2 bits found in the TCCRnB Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used, see Table 64. Modes of operation sup-
ported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare

Table 62.  Compare Output Mode, Fast PWM(1)

COMnA1/COMnB1/
COMnC1

COMnA0/COMnB0/
COMnC0 Description

0 0 Normal port operation, OCnA/OCnB/OCnC 
disconnected.

0 1 WGMn3=0: Normal port operation, 
OCnA/OCnB/OCnC disconnected.

WGMn3=1: Toggle OCnA on Compare Match, 
OCnB/OCnC reserved.

1 0 Clear OCnA/OCnB/OCnC on Compare Match

Set OCnA/OCnB/OCnC at TOP

1 1 Set OCnA/OCnB/OCnC on Compare Match

Clear OCnA/OCnB/OCnC at TOP

Table 63.  Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM(1)

COMnA1/COMnB1/
COMnC1

COMnA0/COMnB0/
COMnC0 Description

0 0 Normal port operation, OCnA/OCnB/OCnC 
disconnected.

0 1 WGMn3=0: Normal port operation, 
OCnA/OCnB/OCnC disconnected.

WGMn3=1: Toggle OCnA on Compare Match, 
OCnB/OCnC reserved.

1 0 Clear OCnA/OCnB/OCnC on Compare Match 
when up-counting.

Set OCnA/OCnB/OCnC on Compare Match when 
downcounting.

1 1 Set OCnA/OCnB/OCnC on Compare Match when 
up-counting.

Clear OCnA/OCnB/OCnC on Compare Match 
when downcounting.
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match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes. (See
“Modes of Operation” on page 122 ).

Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality and
location of these bits are compatible with previous versions of the timer.

Timer/Counter1 Control 
Register B – TCCR1B

Timer/Counter3 Control 
Register B – TCCR3B

• Bit 7 – ICNCn: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise can-
celer is activated, the input from the Input Capture pin (ICPn) is filtered. The filter
function requires four successive equal valued samples of the ICPn pin for changing its
output. The Input Capture is therefore delayed by four Oscillator cycles when the noise
canceler is enabled.

Table 64.  Waveform Generation Mode Bit Description(1)

Mode WGMn3
WGMn2
(CTCn)

WGMn1
(PWMn1)

WGMn0
(PWMn0)

Timer/Counter Mode of 
Operation TOP

Update of 
OCRnx at

TOVn Flag 
Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-
bit

0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCRnA Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF TOP TOP

8 1 0 0 0 PWM, Phase and 
Frequency Correct

ICRn BOTTOM BOTTOM

9 1 0 0 1 PWM, Phase and 
Frequency Correct

OCRnA BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICRn TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCRnA TOP BOTTOM

12 1 1 0 0 CTC ICRn Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICRn TOP TOP

15 1 1 1 1 Fast PWM OCRnA TOP TOP

Bit 7 6 5 4 3 2 1 0

ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICNC3 ICES3 – WGM33 WGM32 CS32 CS31 CS30 TCCR3B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 6 – ICESn: Input Capture Edge Select

This bit selects which edge on the Input Capture pin (ICPn) that is used to trigger a cap-
ture event. When the ICESn bit is written to zero, a falling (negative) edge is used as
trigger, and when the ICESn bit is written to one, a rising (positive) edge will trigger the
capture.

When a capture is triggered according to the ICESn setting, the counter value is copied
into the Input Capture Register (ICRn). The event will also set the Input Capture Flag
(ICFn), and this can be used to cause an Input Capture Interrupt, if this interrupt is
enabled.

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in
the TCCRnA and the TCCRnB Register), the ICPn is disconnected and consequently
the Input Capture function is disabled.

• Bit 5 – Reserved Bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit
must be written to zero when TCCRnB is written.

• Bit 4:3 – WGMn3:2: Waveform Generation Mode

See TCCRnA Register description.

• Bit 2:0 – CSn2:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see
Figure 57 and Figure 58.

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will
clock the counter even if the pin is configured as an output. This feature allows software
control of the counting.

Timer/Counter1 Control 
Register C – TCCR1C

Table 65.  Clock Select Bit Description

CSn2 CSn1 CSn0 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on Tn pin. Clock on falling edge.

1 1 1 External clock source on Tn pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

FOC1A FOC1B FOC1C – – – – – TCCR1C

Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0
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Timer/Counter3 Control 
Register C – TCCR3C

• Bit 7 – FOCnA: Force Output Compare for Channel A

• Bit 6 – FOCnB: Force Output Compare for Channel B

• Bit 5 – FOCnC: Force Output Compare for Channel C

The FOCnA/FOCnB/FOCnC bits are only active when the WGMn3:0 bits specifies a
non-PWM mode. However, for ensuring compatibility with future devices, these bits
must be set to zero when TCCRnA is written when operating in a PWM mode. When
writing a logical one to the FOCnA/FOCnB/FOCnC bit, an immediate compare match is
forced on the Waveform Generation unit. The OCnA/OCnB/OCnC output is changed
according to its COMnx1:0 bits setting. Note that the FOCnA/FOCnB/FOCnC bits are
implemented as strobes. Therefore it is the value present in the COMnx1:0 bits that
determine the effect of the forced compare.

A FOCnA/FOCnB/FOCnC strobe will not generate any interrupt nor will it clear the timer
in Clear Timer on Compare match (CTC) mode using OCRnA as TOP.

The FOCnA/FOCnB/FOCnC bits are always read as zero.

Timer/Counter1 – TCNT1H and 
TCNT1L

Timer/Counter3 – TCNT3H and 
TCNT3L

The two Timer/Counter I/O locations (TCNTnH and TCNTnL, combined TCNTn) give
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit
counter. To ensure that both the high and low bytes are read and written simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit tempo-
rary high byte register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 112 

Modifying the counter (TCNTn) while the counter is running introduces a risk of missing
a compare match between TCNTn and one of the OCRnx Registers.

Writing to the TCNTn Register blocks (removes) the compare match on the following
timer clock for all compare units.

Bit 7 6 5 4 3 2 1 0

FOC3A FOC3B FOC3C – – – – – TCCR3C

Read/Write R/W R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TCNT1[15:8] TCNT1H

TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TCNT3[15:8] TCNT3H

TCNT3[7:0] TCNT3L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Output Compare Register A – 
OCR1AH and OCR1AL

Output Compare Register B – 
OCR1BH and OCR1BL

Output Compare Register C – 
OCR1CH and OCR1CL

Output Compare Register A – 
OCR3AH and OCR3AL

Output Compare Register B – 
OCR3BH and OCR3BL

Output Compare Register C – 
OCR3CH and OCR3CL

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNTn). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OCnx pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low
bytes are written simultaneously when the CPU writes to these registers, the access is
performed using an 8-bit temporary high byte register (TEMP). This temporary register
is shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on page 112 

Input Capture Register – 
ICR1H and ICR1L

Bit 7 6 5 4 3 2 1 0

OCR1A[15:8] OCR1AH

OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1B[15:8] OCR1BH

OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR1C[15:8] OCR1CH

OCR1C[7:0] OCR1CL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR3A[15:8] OCR3AH

OCR3A[7:0] OCR3AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR3B[15:8] OCR3BH

OCR3B[7:0] OCR3BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

OCR3C[15:8] OCR3CH

OCR3C[7:0] OCR3CL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICR1[15:8] ICR1H

ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
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Input Capture Register – 
ICR3H and ICR3L

The Input Capture is updated with the counter (TCNTn) value each time an event occurs
on the ICPn pin (or optionally on the Analog Comparator output for Timer/Counter1).
The Input Capture can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes
are read simultaneously when the CPU accesses these registers, the access is per-
formed using an 8-bit temporary high byte register (TEMP). This temporary register is
shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on page 112 

Timer/Counter1 Interrupt 
Mask Register – TIMSK1

Timer/Counter3 Interrupt 
Mask Register – TIMSK3

• Bit 7..6 – Reserved Bits

These bits are reserved for future use.

• Bit 5 – ICIEn: Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Input Capture interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 57 ) is executed when the ICFn
flag, located in TIFRn, is set.

• Bit 4 – Reserved Bit

This bit is reserved for future use.

• Bit 3 – OCIEnC: Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Output Compare C Match interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 57 ) is executed when the
OCFnC flag, located in TIFRn, is set.

• Bit 2 – OCIEnB: Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Output Compare B Match interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 57 ) is executed when the
OCFnB flag, located in TIFRn, is set.

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ICR3[15:8] ICR3H

ICR3[7:0] ICR3L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICIE1 – OCIE1C OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICIE3 – OCIE3C OCIE3B OCIE3A TOIE3 TIMSK3

Read/Write R R R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 1 – OCIEnA: Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Output Compare A Match interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 57 ) is executed when the
OCFnA flag, located in TIFRn, is set.

• Bit 0 – TOIEn: Timer/Counter Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Overflow interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 57 ) is executed when the TOVn flag, located
in TIFRn, is set.

Timer/Counter1 Interrupt Flag 
Register – TIFR1

Timer/Counter3 Interrupt Flag 
Register – TIFR3

• Bit 7..6 – Reserved Bits

These bits are reserved for future use.

• Bit 5 – ICFn: Input Capture Flag

This flag is set when a capture event occurs on the ICPn pin. When the Input Capture
Register (ICRn) is set by the WGMn3:0 to be used as the TOP value, the ICFn flag is set
when the counter reaches the TOP value.

ICFn is automatically cleared when the Input Capture Interrupt Vector is executed. Alter-
natively, ICFn can be cleared by writing a logic one to its bit location.

• Bit 4 – Reserved Bit

This bit is reserved for future use.

• Bit 3 – OCFnC: Output Compare C Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Out-
put Compare Register C (OCRnC).

Note that a Forced Output Compare (FOCnC) strobe will not set the OCFnC flag.

OCFnC is automatically cleared when the Output Compare Match C Interrupt Vector is
executed. Alternatively, OCFnC can be cleared by writing a logic one to its bit location.

• Bit 2 – OCFnB: Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Out-
put Compare Register B (OCRnB).

Note that a Forced Output Compare (FOCnB) strobe will not set the OCFnB flag.

Bit 7 6 5 4 3 2 1 0

– – ICF1 – OCF1C OCF1B OCF1A TOV1 TIFR1

Read/Write R R R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – ICF3 – OCF3C OCF3B OCF3A TOV3 TIFR3

Read/Write R R R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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OCFnB is automatically cleared when the Output Compare Match B Interrupt Vector is
executed. Alternatively, OCFnB can be cleared by writing a logic one to its bit location.

• Bit 1 – OCFnA: Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Out-
put Compare Register A (OCRnA).

Note that a Forced Output Compare (FOCnA) strobe will not set the OCFnA flag.

OCFnA is automatically cleared when the Output Compare Match A Interrupt Vector is
executed. Alternatively, OCFnA can be cleared by writing a logic one to its bit location.

• Bit 0 – TOVn: Timer/Counter Overflow Flag

The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC
modes, the TOVn flag is set when the timer overflows. Refer to Table 64 on page 134
for the TOVn flag behavior when using another WGMn3:0 bit setting.

TOVn is automatically cleared when the Timer/Countern Overflow Interrupt Vector is
executed. Alternatively, TOVn can be cleared by writing a logic one to its bit location.
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8-bit Timer/Counter2 with PWM and Asynchronous Operation
Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The
main features are:

Features • Single Channel Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV2 and OCF2A)
• Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock

Overview Many register and bit references in this section are written in general form.

• A lower case “n” replaces the Timer/Counter number, in this case 2. However, when 
using the register or bit defines in a program, the precise form must be used, i.e., 
TCNT2 for accessing Timer/Counter2 counter value and so on.

• A lower case “x” replaces the Output Compare unit channel, in this case A. 
However, when using the register or bit defines in a program, the precise form must 
be used, i.e., OCR2A for accessing Timer/Counter2 output compare channel A 
value and so on.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 61. For the
actual placement of I/O pins, refer to Figure 2 on page 4. CPU accessible I/O Registers,
including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and
bit locations are listed in the “8-bit Timer/Counter Register Description” on page 152.
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Figure 61.  8-bit Timer/Counter2 Block Diagram 

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A) are 8-bit registers.
Interrupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag
Register (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask
Register (TIMSK2). TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously
clocked from the TOSC1/2 pins, as detailed later in this section. The asynchronous
operation is controlled by the Asynchronous Status Register (ASSR). The Clock Select
logic block controls which clock source the Timer/Counter uses to increment (or decre-
ment) its value. The Timer/Counter is inactive when no clock source is selected. The
output from the Clock Select logic is referred to as the timer clock (clkT2).

The double buffered Output Compare Register (OCR2A) is compared with the
Timer/Counter value at all times. The result of the compare can be used by the Wave-
form Generator to generate a PWM or variable frequency output on the Output Compare
pin (OC2A). See “Output Compare Unit” on page 144  for details. The compare match
event will also set the compare flag (OCF2A) which can be used to generate an Output
Compare interrupt request.

Definitions The definitions in Table 66 are also used extensively throughout the section.

Timer/Counter

D
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A
 B

U
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Timer/Counter Clock 
Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchro-
nous clock source. The clock source is selected by the clock select logic which is
controlled by the clock select (CS22:0) bits located in the Timer/Counter control register
(TCCR2).The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the
AS2 bit in the ASSR Register is written to logic one, the clock source is taken from the
Timer/Counter Oscillator connected to TOSC1 and TOSC2 or directly from TOSC1. For
details on asynchronous operation, see “Asynchronous Status Register – ASSR” on
page 155. For details on clock sources and prescaler, see “Timer/Counter2 Prescaler”
on page 159.

Counter Unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit.
Figure 62 shows a block diagram of the counter and its surrounding environment.

Figure 62.  Counter Unit Block Diagram

Figure 63.  

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clkT2 Timer/Counter clock.

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or dec-
remented at each timer clock (clkT2). clkT2 can be generated from an external or internal
clock source, selected by the Clock Select bits (CS22:0). When no clock source is
selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be accessed

Table 66.  Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value 0xFF (MAX) or the value stored in the OCR2A Register. The
assignment is dependent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

topbottom

direction

clear

TOSC2

T/C
Oscillator

TOSC1
Prescaler

clk
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clk
Tn

clk
TnS
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by the CPU, regardless of whether clkT2 is present or not. A CPU write overrides (has
priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits
located in the Timer/Counter Control Register (TCCR2A). There are close connections
between how the counter behaves (counts) and how waveforms are generated on the
Output Compare output OC2A. For more details about advanced counting sequences
and waveform generation, see “Modes of Operation” on page 146.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation
selected by the WGM21:0 bits. TOV2 can be used for generating a CPU interrupt.

Output Compare Unit The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2A). Whenever TCNT2 equals OCR2A, the comparator signals a match. A match
will set the Output Compare Flag (OCF2A) at the next timer clock cycle. If enabled
(OCIE2A = 1), the Output Compare Flag generates an Output Compare interrupt. The
OCF2A flag is automatically cleared when the interrupt is executed. Alternatively, the
OCF2A flag can be cleared by software by writing a logical one to its I/O bit location. The
Waveform Generator uses the match signal to generate an output according to operat-
ing mode set by the WGM21:0 bits and Compare Output mode (COM2A1:0) bits. The
max and bottom signals are used by the Waveform Generator for handling the special
cases of the extreme values in some modes of operation (“Modes of Operation” on page
146).

Figure 64 shows a block diagram of the Output Compare unit. 

Figure 64.  Output Compare Unit, Block Diagram

The OCR2A Register is double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation,
the double buffering is disabled. The double buffering synchronizes the update of the
OCR2A Compare Register to either top or bottom of the counting sequence. The syn-
chronization prevents the occurrence of odd-length, non-symmetrical PWM pulses,
thereby making the output glitch-free.

The OCR2A Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCR2A Buffer Register, and if double
buffering is disabled the CPU will access the OCR2A directly. 
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Force Output Compare In non-PWM waveform generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOC2A) bit. Forcing compare
match will not set the OCF2A flag or reload/clear the timer, but the OC2A pin will be
updated as if a real compare match had occurred (the COM2A1:0 bits settings define
whether the OC2A pin is set, cleared or toggled).

Compare Match Blocking by 
TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that
occurs in the next timer clock cycle, even when the timer is stopped. This feature allows
OCR2A to be initialized to the same value as TCNT2 without triggering an interrupt
when the Timer/Counter clock is enabled.

Using the Output Compare 
Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNT2 when using the Output
Compare channel, independently of whether the Timer/Counter is running or not. If the
value written to TCNT2 equals the OCR2A value, the compare match will be missed,
resulting in incorrect waveform generation. Similarly, do not write the TCNT2 value
equal to BOTTOM when the counter is downcounting.

The setup of the OC2A should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OC2A value is to use the Force
Output Compare (FOC2A) strobe bit in Normal mode. The OC2A Register keeps its
value even when changing between Waveform Generation modes.

Be aware that the COM2A1:0 bits are not double buffered together with the compare
value. Changing the COM2A1:0 bits will take effect immediately.
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Compare Match Output 
Unit

The Compare Output mode (COM2A1:0) bits have two functions. The Waveform Gener-
ator uses the COM2A1:0 bits for defining the Output Compare (OC2A) state at the next
compare match. Also, the COM2A1:0 bits control the OC2A pin output source. Figure 65
shows a simplified schematic of the logic affected by the COM2A1:0 bit setting. The I/O
Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the
general I/O port control registers (DDR and PORT) that are affected by the COM2A1:0
bits are shown. When referring to the OC2A state, the reference is for the internal OC2A
Register, not the OC2A pin.

Figure 65.  Compare Match Output Unit, Schematic

Compare Output Function The general I/O port function is overridden by the Output Compare (OC2A) from the
Waveform Generator if either of the COM2A1:0 bits are set. However, the OC2A pin
direction (input or output) is still controlled by the Data Direction Register (DDR) for the
port pin. The Data Direction Register bit for the OC2A pin (DDR_OC2A) must be set as
output before the OC2A value is visible on the pin. The port override function is indepen-
dent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2A state
before the output is enabled. Note that some COM2A1:0 bit settings are reserved for
certain modes of operation. See “8-bit Timer/Counter Register Description” on page 152 

Compare Output Mode and 
Waveform Generation

The Waveform Generator uses the COM2A1:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM2A1:0 = 0 tells the Waveform Generator that no
action on the OC2A Register is to be performed on the next compare match. For com-
pare output actions in the non-PWM modes refer to Table 68 on page 153. For fast
PWM mode, refer to Table 69 on page 153, and for phase correct PWM refer to Table
70 on page 154.

A change of the COM2A1:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOC2A strobe bits.

Modes of Operation The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGM21:0) and
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Compare Output mode (COM2A1:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM2A1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COM2A1:0 bits control whether the out-
put should be set, cleared, or toggled at a compare match (See “Compare Match Output
Unit” on page 146 ).

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 151.

Normal Mode The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then
restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag
(TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The
TOV2 flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV2
flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.

Clear Timer on Compare 
Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2A Register is used
to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT2) matches the OCR2A. The OCR2A defines the top value for
the counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 66. The counter value
(TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and
then counter (TCNT2) is cleared.

Figure 66.  CTC Mode, Timing Diagram

An interrupt can be generated each time the counter value reaches the TOP value by
using the OCF2A flag. If the interrupt is enabled, the interrupt handler routine can be
used for updating the TOP value. However, changing the TOP to a value close to BOT-
TOM when the counter is running with none or a low prescaler value must be done with
care since the CTC mode does not have the double buffering feature. If the new value
written to OCR2A is lower than the current value of TCNT2, the counter will miss the
compare match. The counter will then have to count to its maximum value (0xFF) and
wrap around starting at 0x00 before the compare match can occur.

TCNTn

OCnx
(Toggle)

OCnx Interrupt Flag Set

1 4Period 2 3
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For generating a waveform output in CTC mode, the OC2A output can be set to toggle
its logical level on each compare match by setting the Compare Output mode bits to tog-
gle mode (COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the
data direction for the pin is set to output. The waveform generated will have a maximum
frequency of fOC2A = fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform fre-
quency is defined by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 flag is set in the same timer clock cycle
that the counter counts from MAX to 0x00.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM
option by its single-slope operation. The counter counts from BOTTOM to MAX then
restarts from BOTTOM. In non-inverting Compare Output mode, the Output Compare
(OC2A) is cleared on the compare match between TCNT2 and OCR2A, and set at BOT-
TOM. In inverting Compare Output mode, the output is set on compare match and
cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the
fast PWM mode can be twice as high as the phase correct PWM mode that uses dual-
slope operation. This high frequency makes the fast PWM mode well suited for power
regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX
value. The counter is then cleared at the following timer clock cycle. The timing diagram
for the fast PWM mode is shown in Figure 67. The TCNT2 value is in the timing diagram
shown as a histogram for illustrating the single-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2
slopes represent compare matches between OCR2A and TCNT2.

Figure 67.  Fast PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If
the interrupt is enabled, the interrupt handler routine can be used for updating the com-
pare value.
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In fast PWM mode, the compare unit allows generation of PWM waveforms on the
OC2A pin. Setting the COM2A1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM2A1:0 to three (See Table 69
on page 153). The actual OC2A value will only be visible on the port pin if the data direc-
tion for the port pin is set as output. The PWM waveform is generated by setting (or
clearing) the OC2A Register at the compare match between OCR2A and TCNT2, and
clearing (or setting) the OC2A Register at the timer clock cycle the counter is cleared
(changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a
PWM waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM,
the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A
equal to MAX will result in a constantly high or low output (depending on the polarity of
the output set by the COM2A1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OC2A to toggle its logical level on each compare match (COM2A1:0 = 1). The
waveform generated will have a maximum frequency of foc2A = fclk_I/O/2 when OCR2A is
set to zero. This feature is similar to the OC2A toggle in CTC mode, except the double
buffer feature of the Output Compare unit is enabled in the fast PWM mode.

Phase Correct PWM Mode The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-
slope operation. The counter counts repeatedly from BOTTOM to MAX and then from
MAX to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC2A)
is cleared on the compare match between TCNT2 and OCR2A while upcounting, and
set on the compare match while downcounting. In inverting Output Compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency
than single slope operation. However, due to the symmetric feature of the dual-slope
PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase
correct PWM mode the counter is incremented until the counter value matches MAX.
When the counter reaches MAX, it changes the count direction. The TCNT2 value will
be equal to MAX for one timer clock cycle. The timing diagram for the phase correct
PWM mode is shown on Figure 68. The TCNT2 value is in the timing diagram shown as
a histogram for illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes repre-
sent compare matches between OCR2A and TCNT2.
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Figure 68.  Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOT-
TOM. The interrupt flag can be used to generate an interrupt each time the counter
reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on
the OC2A pin. Setting the COM2A1:0 bits to two will produce a non-inverted PWM. An
inverted PWM output can be generated by setting the COM2A1:0 to three (See Table 70
on page 154). The actual OC2A value will only be visible on the port pin if the data direc-
tion for the port pin is set as output. The PWM waveform is generated by clearing (or
setting) the OC2A Register at the compare match between OCR2A and TCNT2 when
the counter increments, and setting (or clearing) the OC2A Register at compare match
between OCR2A and TCNT2 when the counter decrements. The PWM frequency for
the output when using phase correct PWM can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCR2A is set equal to
BOTTOM, the output will be continuously low and if set equal to MAX the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.
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Timer/Counter Timing 
Diagrams

The following figures show the Timer/Counter in synchronous mode, and the timer clock
(clkT2) is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should
be replaced by the Timer/Counter Oscillator clock. The figures include information on
when interrupt flags are set. Figure 69 contains timing data for basic Timer/Counter
operation. The figure shows the count sequence close to the MAX value in all modes
other than phase correct PWM mode.

Figure 69.  Timer/Counter Timing Diagram, no Prescaling

Figure 70 shows the same timing data, but with the prescaler enabled.

Figure 70.  Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

Figure 71 shows the setting of OCF2A in all modes except CTC mode.

Figure 71.  Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (fclk_I/O/8)
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Figure 72 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 72.  Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with
Prescaler (fclk_I/O/8)

8-bit Timer/Counter 
Register Description

Timer/Counter2 Control 
Register A– TCCR2A

• Bit 7 – FOC2A: Force Output Compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However,
for ensuring compatibility with future devices, this bit must be set to zero when TCCR2A
is written when operating in PWM mode. When writing a logical one to the FOC2A bit,
an immediate compare match is forced on the Waveform Generation unit. The OC2A
output is changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is
implemented as a strobe. Therefore it is the value present in the COM2A1:0 bits that
determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode
using OCR2A as TOP.

The FOC2A bit is always read as zero.

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

Bit 7 6 5 4 3 2 1 0

FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 TCCR2A

Read/Write W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 6, 3 – WGM21:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum
(TOP) counter value, and what type of waveform generation to be used. Modes of oper-
ation supported by the Timer/Counter unit are: Normal mode, Clear Timer on Compare
match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes. See Table
67 and “Modes of Operation” on page 146.

Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 def-
initions. However, the functionality and location of these bits are compatible with
previous versions of the timer.

• Bit 5:4 – COM2A1:0: Compare Match Output Mode A

These bits control the Output Compare pin (OC2A) behavior. If one or both of the
COM2A1:0 bits are set, the OC2A output overrides the normal port functionality of the
I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit cor-
responding to OC2A pin must be set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the
WGM21:0 bit setting. Table 68 shows the COM2A1:0 bit functionality when the
WGM21:0 bits are set to a normal or CTC mode (non-PWM).

Table 69 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast
PWM mode.

Table 67.  Waveform Generation Mode Bit Description(1)

Mode
WGM21
(CTC2)

WGM20
(PWM2)

Timer/Counter Mode 
of Operation TOP

Update of
OCR2A at

TOV2 Flag
Set on

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR2A Immediate MAX

3 1 1 Fast PWM 0xFF TOP MAX

Table 68.  Compare Output Mode, non-PWM Mode

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Toggle OC2A on compare match.

1 0 Clear OC2A on compare match.

1 1 Set OC2A on compare match.

Table 69.  Compare Output Mode, Fast PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Reserved

1 0 Clear OC2A on compare match.

Set OC2A at TOP.

1 1 Set OC2A on compare match.

Clear OC2A at TOP.
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Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case,
the compare match is ignored, but the set or clear is done at TOP. See “Fast PWM
Mode” on page 148 for more details.

Table 70 shows the COM21:0 bit functionality when the WGM21:0 bits are set to phase
correct PWM mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case,
the compare match is ignored, but the set or clear is done at TOP. See “Phase Cor-
rect PWM Mode” on page 149 for more details.

• Bit 2:0 – CS22:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see
Table 71.

Timer/Counter2 Register – 
TCNT2

The Timer/Counter Register gives direct access, both for read and write operations, to
the Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes)
the compare match on the following timer clock. Modifying the counter (TCNT2) while
the counter is running, introduces a risk of missing a compare match between TCNT2
and the OCR2A Register.

Table 70.  Compare Output Mode, Phase Correct PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1 Reserved

1 0 Clear OC2A on compare match when up-counting.

Set OC2A on compare match when downcounting.

1 1 Set OC2A on compare match when up-counting.

Clear OC2A on compare match when downcounting.

Table 71.  Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT2S/(No prescaling)

0 1 0 clkT2S/8 (From prescaler)

0 1 1 clkT2S/32 (From prescaler)

1 0 0 clkT2S/64 (From prescaler)

1 0 1 clkT2S/128 (From prescaler)

1 1 0 clkT2S/256 (From prescaler)

1 1 1 clkT2S/1024 (From prescaler)

Bit 7 6 5 4 3 2 1 0

TCNT2[7:0] TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Output Compare Register A – 
OCR2A

The Output Compare Register A contains an 8-bit value that is continuously compared
with the counter value (TCNT2). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC2A pin.

Asynchronous operation 
of the Timer/Counter2

Asynchronous Status 
Register – ASSR

• Bit 7..5 – Reserved Bits

These bits are reserved for future use.

• Bit 4 – EXCLK: Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock
input buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1)
pin instead of a 32 kHz crystal. Writing to EXCLK should be done before asynchronous
operation is selected. Note that the crystal Oscillator will only run when this bit is zero.

• Bit 3 – AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O and the
crystal Oscillator connected to the Timer/Counter2 Oscillator (TOSC) does nor run.
When AS2 is written to one, Timer/Counter2 is clocked from a crystal Oscillator con-
nected to the Timer/Counter2 Oscillator (TOSC) or from external clock on TOSC1
depending on EXCLK setting. When the value of AS2 is changed, the contents of
TCNT2, OCR2A, and TCCR2A might be corrupted.

• Bit 2 – TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes
set. When TCNT2 has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that TCNT2 is ready to be
updated with a new value.

• Bit 1 – OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes
set. When OCR2A has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that OCR2A is ready to be
updated with a new value.

• Bit 0 – TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit
becomes set. When TCCR2A has been updated from the temporary storage register,

Bit 7 6 5 4 3 2 1 0

OCR2A[7:0] OCR2A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– – – EXCLK AS2 TCN2UB OCR2UB TCR2UB ASSR

Read/Write R R R R/W R/W R R R

Initial Value 0 0 0 0 0 0 0 0
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this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2A is ready
to be updated with a new value.

If a write is performed to any of the three Timer/Counter2 Registers while its update
busy flag is set, the updated value might get corrupted and cause an unintentional inter-
rupt to occur.

The mechanisms for reading TCNT2, OCR2A, and TCCR2A are different. When read-
ing TCNT2, the actual timer value is read. When reading OCR2A or TCCR2A, the value
in the temporary storage register is read.

Asynchronous Operation of 
Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of 
Timer/Counter2, the timer registers TCNT2, OCR2A, and TCCR2A might be 
corrupted. A safe procedure for switching clock source is:

1. Disable the Timer/Counter2 interrupts by clearing OCIE2A and TOIE2.

2. Select clock source by setting AS2 and EXCLK as appropriate.

3. Write new values to TCNT2, OCR2A, and TCCR2A.

4. To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and 
TCR2UB.

5. Clear the Timer/Counter2 interrupt flags.

6. Enable interrupts, if needed.

• The Oscillator is optimized for use with a 32.768 kHz watch crystal. The CPU main 
clock frequency must be more than four times the Oscillator or external clock 
frequency.

• When writing to one of the registers TCNT2, OCR2A, or TCCR2A, the value is 
transferred to a temporary register, and latched after two positive edges on TOSC1. 
The user should not write a new value before the contents of the temporary register 
have been transferred to its destination. Each of the three mentioned registers have 
their individual temporary register, which means that e.g. writing to TCNT2 does not 
disturb an OCR2A write in progress. To detect that a transfer to the destination 
register has taken place, the Asynchronous Status Register – ASSR has been 
implemented.

• When entering Power-save or Extended Standby mode after having written to 
TCNT2, OCR2A, or TCCR2A, the user must wait until the written register has been 
updated if Timer/Counter2 is used to wake up the device. Otherwise, the MCU will 
enter sleep mode before the changes are effective. This is particularly important if 
the Output Compare2 interrupt is used to wake up the device, since the Output 
Compare function is disabled during writing to OCR2A or TCNT2. If the write cycle 
is not finished, and the MCU enters sleep mode before the OCR2UB bit returns to 
zero, the device will never receive a compare match interrupt, and the MCU will not 
wake up.

• If Timer/Counter2 is used to wake the device up from Power-save or Extended 
Standby mode, precautions must be taken if the user wants to re-enter one of these 
modes: The interrupt logic needs one TOSC1 cycle to be reset. If the time between 
wake-up and re-entering sleep mode is less than one TOSC1 cycle, the interrupt will 
not occur, and the device will fail to wake up. If the user is in doubt whether the time 
before re-entering Power-save mode is sufficient, the following algorithm can be 
used to ensure that one TOSC1 cycle has elapsed:

1. Write a value to TCCR2A, TCNT2, or OCR2A.

2. Wait until the corresponding Update Busy flag in ASSR returns to zero.
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3. Enter Power-save or ADC Noise Reduction mode.

• When the asynchronous operation is selected, the 32.768 kHz Oscillator for 
Timer/Counter2 is always running, except in Power-down and Standby modes. After 
a Power-up Reset or wake-up from Power-down or Standby mode, the user should 
be aware of the fact that this Oscillator might take as long as one second to 
stabilize. The user is advised to wait for at least one second before using 
Timer/Counter2 after power-up or wake-up from Power-down or Standby mode. The 
contents of all Timer/Counter2 Registers must be considered lost after a wake-up 
from Power-down or Standby mode due to unstable clock signal upon start-up, no 
matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

• Description of wake up from Power-save mode when the timer is clocked 
asynchronously: When the interrupt condition is met, the wake up process is started 
on the following cycle of the timer clock, that is, the timer is always advanced by at 
least one before the processor can read the counter value. After wake-up, the MCU 
is halted for four cycles, it executes the interrupt routine, and resumes execution 
from the instruction following SLEEP.

• Reading of the TCNT2 Register shortly after wake-up from Power-save may give an 
incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading 
TCNT2 must be done through a register synchronized to the internal I/O clock 
domain. Synchronization takes place for every rising TOSC1 edge. When waking up 
from Power-save mode, and the I/O clock (clkI/O) again becomes active, TCNT2 will 
read as the previous value (before entering sleep) until the next rising TOSC1 edge. 
The phase of the TOSC clock after waking up from Power-save mode is essentially 
unpredictable, as it depends on the wake-up time. The recommended procedure for 
reading TCNT2 is thus as follows: 

1. Write any value to either of the registers OCR2A or TCCR2A. 

2. Wait for the corresponding Update Busy Flag to be cleared. 

3. Read TCNT2. 

• During asynchronous operation, the synchronization of the interrupt flags for the 
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is 
therefore advanced by at least one before the processor can read the timer value 
causing the setting of the interrupt flag. The Output Compare pin is changed on the 
timer clock and is not synchronized to the processor clock.

Timer/Counter2 Interrupt 
Mask Register – TIMSK2

• Bit 7..2 – Reserved Bits

These bits are reserved for future use.

• Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one),
the Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt
is executed if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is
set in the Timer/Counter2 Interrupt Flag Register – TIFR2.

Bit 7 6 5 4 3 2 1 0

– – – – – – OCIE2A TOIE2 TIMSK2

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter2 occurs, i .e., when the TOV2 bit is set in the
Timer/Counter2 Interrupt Flag Register – TIFR2.

Timer/Counter2 Interrupt Flag 
Register – TIFR2

• Bit 7..2 – Reserved Bits

These bits are reserved for future use.

• Bit 1 – OCF2A: Output Compare Flag 2 A

The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2
and the data in OCR2A – Output Compare Register2. OCF2A is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCF2A is
c leared by wr i t ing a logic  one to the f lag. When the I-b i t  in SREG, OCIE2
(Timer/Counter2 Compare match Interrupt Enable), and OCF2A are set (one), the
Timer/Counter2 Compare match Interrupt is executed.

• Bit 0 – TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared
by hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV2 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2A
(Timer/Counter2 Overf low Interrupt Enable), and TOV2 are set (one), the
Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when
Timer/Counter2 changes counting direction at 0x00.

Bit 7 6 5 4 3 2 1 0

– – – – – – OCF2A TOV2 TIFR2

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
158 AT90CAN128 Auto
7522C–AUTO–09/06



AT90CAN128 Auto
Timer/Counter2 
Prescaler

Figure 73.  Prescaler for Timer/Counter2

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to
the main system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asyn-
chronously clocked from the TOSC oscillator or TOSC1 pin. This enables use of
Timer/Counter2 as a Real Time Counter (RTC).

A crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an
independent clock source for Timer/Counter2. The Oscillator is optimized for use with a
32.768 kHz crystal. Setting AS2 and resetting EXCLK enables the TOSC oscillator.

Figure 74.  Timer/Counter2 Crystal Oscillator Connections

A external clock can also be used using TOSC1 as input. Setting AS2 and EXCLK
enables this configuration.

Figure 75.  Timer/Counter2 External Clock Connections
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For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,
clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be
selected. Setting the PSR2 bit in GTCCR resets the prescaler. This allows the user to
operate with a predictable prescaler. 

General Timer/Counter 
Control Register – GTCCR

• Bit 1 – PSR2: Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally
cleared immediately by hardware. If the bit is written when Timer/Counter2 is operating
in asynchronous mode, the bit will remain one until the prescaler has been reset. The bit
will not be cleared by hardware if the TSM bit is set. Refer to the description of the “Bit 7
– TSM: Timer/Counter Synchronization Mode” on page 93 for a description of the
Timer/Counter Synchronization mode.

Bit 7 6 5 4 3 2 1 0

TSM – – – – – PSR2 PSR310 GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Output Compare Modulator - OCM

Overview Many register and bit references in this section are written in general form.

• A lower case “n” replaces the Timer/Counter number, in this case 0 and 1. However, 
when using the register or bit defines in a program, the precise form must be used, 
i.e., TCNT0 for accessing Timer/Counter0 counter value and so on.

• A lower case “x” replaces the Output Compare unit channel, in this case A or C. 
However, when using the register or bit defines in a program, the precise form must 
be used, i.e., OCR0A for accessing Timer/Counter0 output compare channel A 
value and so on.

The Output Compare Modulator (OCM) allows generation of waveforms modulated with
a carrier frequency. The modulator uses the outputs from the Output Compare Unit C of
the 16-bit Timer/Counter1 and the Output Compare Unit of the 8-bit Timer/Counter0. For
more details about these Timer/Counters see “16-bit Timer/Counter (Timer/Counter1
and Timer/Counter3)” on page 109 and “8-bit Timer/Counter0 with PWM” on page 95. 

Figure 76.  Output Compare Modulator, Block Diagram

When the modulator is enabled, the two output compare channels are modulated
together as shown in the block diagram (Figure 76).

Description The Output Compare unit 1C and Output Compare unit 0A shares the PB7 port pin for
output. The outputs of the Output Compare units (OC1C and OC0A) overrides the nor-
mal PORTB7 Register when one of them is enabled (i.e., when COMnx1:0 is not equal
to zero). When both OC1C and OC0A are enabled at the same time, the modulator is
automatically enabled.

When the modulator is enabled the type of modulation (logical AND or OR) can be
selected by the PORTB7 Register. Note that the DDRB7 controls the direction of the
port independent of the COMnx1:0 bit setting.

The functional equivalent schematic of the modulator is shown on Figure 77. The sche-
matic includes part of the Timer/Counter units and the port B pin 7 output driver circuit.

OC1C

Pin

OC0A / OC1C / PB7

Timer/Counter 1

Timer/Counter 0 OC0A
161      
7522C–AUTO–09/06



      
Figure 77.  Output Compare Modulator, Schematic

Timing Example Figure 78 illustrates the modulator in action. In this example the Timer/Counter1 is set to
operate in fast PWM mode (non-inverted) and Timer/Counter0 uses CTC waveform
mode with toggle Compare Output mode (COMnx1:0 = 1).

Figure 78.  Output Compare Modulator, Timing Diagram

In this example, Timer/Counter0 provides the carrier, while the modulating signal is gen-
erated by the Output Compare unit C of the Timer/Counter1.

Resolution of the PWM Signal The resolution of the PWM signal (OC1C) is reduced by the modulation. The reduction
factor is equal to the number of system clock cycles of one period of the carrier (OC0A).
In this example the resolution is reduced by a factor of two. The reason for the reduction
is illustrated in Figure 78 at the second and third period of the PB7 output when
PORTB7 equals zero. The period 2 high time is one cycle longer than the period 3 high
time, but the result on the PB7 output is equal in both periods.
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Serial Peripheral Interface – SPI
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer
between the AT90CAN128 and peripheral devices or between several AVR devices.
The AT90CAN128 SPI includes the following features:

Features • Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

Figure 79.  SPI Block Diagram(1)

Note: 1. Refer to Figure 2 on page 4, and Table 33 on page 72 for SPI pin placement. 

The interconnection between Master and Slave CPUs with SPI is shown in Figure 80.
The system consists of two shift Registers, and a Master clock generator. The SPI Mas-
ter initiates the communication cycle when pulling low the Slave Select SS pin of the
desired Slave. Master and Slave prepare the data to be sent in their respective shift
Registers, and the Master generates the required clock pulses on the SCK line to inter-
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change data. Data is always shifted from Master to Slave on the Master Out – Slave In,
MOSI, line, and from Slave to Master on the Master In – Slave Out, MISO, line. After
each data packet, the Master will synchronize the Slave by pulling high the Slave Select,
SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line.
This must be handled by user software before communication can start. When this is
done, writing a byte to the SPI Data Register starts the SPI clock generator, and the
hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock gener-
ator stops, setting the end of transmission flag (SPIF). If the SPI Interrupt Enable bit
(SPIE) in the SPCR Register is set, an interrupt is requested. The Master may continue
to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high
the Slave Select, SS line. The last incoming byte will be kept in the Buffer Register for
later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated
as long as the SS pin is driven high. In this state, software may update the contents of
the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock
pulses on the SCK pin until the SS pin is driven low. As one byte has been completely
shifted, the end of transmission flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in
the SPCR Register is set, an interrupt is requested. The Slave may continue to place
new data to be sent into SPDR before reading the incoming data. The last incoming byte
will be kept in the Buffer Register for later use.

Figure 80.  SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive
direction. This means that bytes to be transmitted cannot be written to the SPI Data
Register before the entire shift cycle is completed. When receiving data, however, a
received character must be read from the SPI Data Register before the next character
has been completely shifted in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To
ensure correct sampling of the clock signal, the frequency of the SPI clock should never
exceed fclkio/4.

SHIFT
ENABLE
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When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is
overridden according to Table 72. For more details on automatic port overrides, refer to
“Alternate Port Functions” on page 68.

Note: 1. See “Alternate Functions of Port B” on page 72 for a detailed description of how to
define the direction of the user defined SPI pins.

Table 72.  SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input
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The following code examples show how to initialize the SPI as a Master and how to per-
form a simple transmission.

DDR_SPI in the examples must be replaced by the actual Data Direction Register con-
trolling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual
data direction bits for these pins. E.g. if MOSI is placed on pin PB2, replace DD_MOSI
with DDB2 and DDR_SPI with DDRB.

Note: 1. The example code assumes that the part specific header file is included.

Assembly Code Example(1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

in r17,SPSR

sbrs r17,SPIF

rjmp Wait_Transmit

ret

C Code Example(1)

void SPI_MasterInit(void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)))

;

}
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The following code examples show how to initialize the SPI as a Slave and how to per-
form a simple reception.

Note: 1. The example code assumes that the part specific header file is included.

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)))

;

/* Return data register */

return SPDR;

}
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SS Pin Functionality

Slave Mode When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When
SS is held low, the SPI is activated, and MISO becomes an output if configured so by
the user. All other pins are inputs. When SS is driven high, all pins are inputs, and the
SPI is passive, which means that it will not receive incoming data. Note that the SPI
logic will be reset once the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter syn-
chronous with the master clock generator. When the SS pin is driven high, the SPI slave
will immediately reset the send and receive logic, and drop any partially received data in
the Shift Register.

Master Mode When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine
the direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the
SPI system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If
the SS pin is driven low by peripheral circuitry when the SPI is configured as a Master
with the SS pin defined as an input, the SPI system interprets this as another master
selecting the SPI as a slave and starting to send data to it. To avoid bus contention, the
SPI system takes the following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a 
result of the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in 
SREG is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a
possibility that SS is driven low, the interrupt should always check that the MSTR bit is
still set. If the MSTR bit has been cleared by a slave select, it must be set by the user to
re-enable SPI Master mode.

SPI Control Register – SPCR

• Bit 7 – SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set
and the if the Global Interrupt Enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable
any SPI operations.

• Bit 5 – DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

Bit 7 6 5 4 3 2 1 0

SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 4 – MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written
logic zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will
be cleared, and SPIF in SPSR will become set. The user will then have to set MSTR to
re-enable SPI Master mode.

• Bit 3 – CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero,
SCK is low when idle. Refer to Figure 81 and Figure 82 for an example. The CPOL func-
tionality is summarized below:

• Bit 2 – CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading
(first) or trailing (last) edge of SCK. Refer to Figure 81 and Figure 82 for an example.
The CPOL functionality is summarized below:

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and
SPR0 have no effect on the Slave. The relationship between SCK and the clkIO fre-
quency fclkio is shown in the following table:

SPI Status Register – SPSR

Table 73.  CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 74.  CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Table 75.  Relationship Between SCK and the Oscillator Frequency 

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fclkio/4

0 0 1 fclkio/16

0 1 0 fclkio/64

0 1 1 fclkio/128

1 0 0 fclkio/2

1 0 1 fclkio/8

1 1 0 fclkio/32

1 1 1 fclkio/64

Bit 7 6 5 4 3 2 1 0

SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF flag is set. An interrupt is generated if SPIE
in SPCR is set and global interrupts are enabled. If SS is an input and is driven low
when the SPI is in Master mode, this will also set the SPIF flag. SPIF is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, the
SPIF bit is cleared by first reading the SPI Status Register with SPIF set, then accessing
the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer.
The WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register
with WCOL set, and then accessing the SPI Data Register.

• Bit 5..1 – Res: Reserved Bits

These bits are reserved bits in the AT90CAN128 and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when
the SPI is in Master mode (see Table 75). This means that the minimum SCK period will
be two CPU clock periods. When the SPI is configured as Slave, the SPI is only guaran-
teed to work at fclkio/4 or lower.

The SPI interface on the AT90CAN128 is also used for program memory and EEPROM
downloading or uploading. See page 338 for serial programming and verification.

SPI Data Register – SPDR

• Bits 7:0 - SPD7:0: SPI Data

The SPI Data Register is a read/write register used for data transfer between the Regis-
ter File and the SPI Shift Register. Writing to the register initiates data transmission.
Reading the register causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPD0 SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined
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Data Modes There are four combinations of SCK phase and polarity with respect to serial data,
which are determined by control bits CPHA and CPOL. The SPI data transfer formats
are shown in Figure 81 and Figure 82. Data bits are shifted out and latched in on oppo-
site edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is
clearly seen by summarizing Table 73 and Table 74, as done below:

Figure 81.  SPI Transfer Format with CPHA = 0

Figure 82.  SPI Transfer Format with CPHA = 1

Table 76.  CPOL Functionality

Leading Edge Trailing eDge SPI Mode

CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0

CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1

CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2

CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) 3

Bit 1
Bit 6

LSB
MSB

SCK (CPOL = 0)
mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

SCK (CPOL = 0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

SCK (CPOL = 1)
mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)
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USART (USART0 and USART1)
The Universal Synchronous and Asynchronous serial Receiver and Transmitter
(USART) is a highly flexible serial communication device. The main features are:

Features • Full Duplex Operation (Independent Serial Receive and Transmit Registers)
• Asynchronous or Synchronous Operation
• Master or Slave Clocked Synchronous Operation
• High Resolution Baud Rate Generator
• Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
• Odd or Even Parity Generation and Parity Check Supported by Hardware
• Data OverRun Detection
• Framing Error Detection
• Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
• Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
• Multi-processor Communication Mode
• Double Speed Asynchronous Communication Mode

Overview Many register and bit references in this section are written in general form.

• A lower case “n” replaces the USART number, in this case 0 or 1. However, when
using the register or bit defines in a program, the precise form must be used, i.e.,
UDR0 for accessing USART0 I/O data value and so on.

Dual USART The AT90CAN128 has two USART’s, USART0 and USART1. The functionality for both
USART’s is described below. USART0 and USART1 have different I/O registers as
shown in “Register Summary” on page 398. 
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A simplified block diagram of the USARTn Transmitter is shown in Figure 83. CPU
accessible I/O Registers and I/O pins are shown in bold.

Figure 83.  USARTn Block Diagram(1)

Note: 1. Refer to Figure 2 on page 4, Table 42 on page 79, and Table 37 on page 75 for
USARTn pin placement. 

The dashed boxes in the block diagram separate the three main parts of the USARTn
(listed from the top): Clock Generator, Transmitter and Receiver. Control registers are
shared by all units. The Clock Generation logic consists of synchronization logic for
external clock input used by synchronous slave operation, and the baud rate generator.
The XCKn (Transfer Clock) pin is only used by synchronous transfer mode. The Trans-
mitter consists of a single write buffer, a serial Shift Register, Parity Generator and
Control logic for handling different serial frame formats. The write buffer allows a contin-
uous transfer of data without any delay between frames. The Receiver is the most
complex part of the USARTn module due to its clock and data recovery units. The
recovery units are used for asynchronous data reception. In addition to the recovery
units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two
level receive buffer (UDRn). The Receiver supports the same frame formats as the
Transmitter, and can detect Frame Error, Data OverRun and Parity Errors.

PARITY
GENERATOR

UBRRn[H:L]
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BAUD RATE GENERATOR
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Clock Generation The Clock Generation logic generates the base clock for the Transmitter and Receiver.
The USARTn supports four modes of clock operation: Normal asynchronous, Double
Speed asynchronous, Master synchronous and Slave synchronous mode. The UMSELn
bit in USARTn Control and Status Register C (UCSRnC) selects between asynchronous
and synchronous operation. Double Speed (asynchronous mode only) is controlled by
the U2Xn found in the UCSRnA Register. When using synchronous mode (UMSELn =
1), the Data Direction Register for the XCKn pin (DDR_XCKn) controls whether the
clock source is internal (Master mode) or external (Slave mode). The XCKn pin is only
active when using synchronous mode.

Figure 84 shows a block diagram of the clock generation logic.

Figure 84.  USARTn Clock Generation Logic, Block Diagram

Signal description:

txn clk Transmitter clock (Internal Signal).

rxn clk Receiver base clock (Internal Signal).

xn cki Input from XCK pin (internal Signal). Used for synchronous slave operation.

xn cko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.

fclkio System I/O Clock frequency.

Internal Clock Generation – 
Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master
modes of operation. The description in this section refers to Figure 84.

The USARTn Baud Rate Register (UBRRn) and the down-counter connected to it func-
tion as a programmable prescaler or baud rate generator. The down-counter, running at
system clock (fclkio), is loaded with the UBRRn value each time the counter has counted
down to zero or when the UBRRnL Register is written. A clock is generated each time
the counter reaches zero. This clock is the baud rate generator clock output (=
fclkio/(UBRRn+1)). The Transmitter divides the baud rate generator clock output by 2, 8
or 16 depending on mode. The baud rate generator output is used directly by the
Receiver’s clock and data recovery units. However, the recovery units use a state
machine that uses 2, 8 or 16 states depending on mode set by the state of the UMSELn,
U2Xn and DDR_XCKn bits.

Prescaling
Down-Counter /2

UBRRn

/4 /2

fclk

UBRRn+1

Sync
Register

clk

XCKn
Pin

txn clk

U2Xn

UMSELn

DDR_XCKn

0

1

0

1

xn cki

xn cko

DDR_XCKn
rxn clk

0

1

1

0
Edge

Detector

UCPOLn

io

io
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Table 77 contains equations for calculating the baud rate (in bits per second) and for
calculating the UBRRn value for each mode of operation using an internally generated
clock source.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps).

fclkio System I/O Clock frequency.

UBRRn Contents of the UBRRnH and UBRRnL Registers, (0-4095).

Some examples of UBRRn values for some system clock frequencies are found in Table
85 (see page 196).

Double Speed Operation 
(U2X)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit
only has effect for the asynchronous operation. Set this bit to zero when using synchro-
nous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively
doubling the transfer rate for asynchronous communication. Note however that the
Receiver will in this case only use half the number of samples (reduced from 16 to 8) for
data sampling and clock recovery, and therefore a more accurate baud rate setting and
system clock are required when this mode is used. For the Transmitter, there are no
downsides.

External Clock External clocking is used by the synchronous slave modes of operation. The description
in this section refers to Figure 84 for details.

External clock input from the XCKn pin is sampled by a synchronization register to mini-
mize the chance of meta-stability. The output from the synchronization register must
then pass through an edge detector before it can be used by the Transmitter and
Receiver. This process introduces a two CPU clock period delay and therefore the max-
imum external XCKn clock frequency is limited by the following equation:

Note that fclkio depends on the stability of the system clock source. It is therefore recom-
mended to add some margin to avoid possible loss of data due to frequency variations.

Table 77.  Equations for Calculating Baud Rate Register Setting

Operating Mode
Equation for Calculating 

Baud Rate(1)
Equation for Calculating 

UBRRn Value

Asynchronous Normal 
mode (U2Xn = 0)

Asynchronous Double 
Speed mode (U2Xn = 1)

Synchronous Master 
mode

BAUD
f
CLKio

16 UBRRn 1+( )
------------------------------------------= UBRRn

f
CLKio

16BAUD
------------------------ 1–=

BAUD
f
CLKio

8 UBRRn 1+( )
---------------------------------------= UBRRn

f
CLKio

8BAUD
-------------------- 1–=

BAUD
f
CLKio

2 UBRRn 1+( )
---------------------------------------= UBRRn

f
CLKio

2BAUD
-------------------- 1–=

f
XCKn

f
CLKio

4
----------------<
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Synchronous Clock Operation When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either
clock input (Slave) or clock output (Master). The dependency between the clock edges
and data sampling or data change is the same. The basic principle is that data input (on
RxDn) is sampled at the opposite XCKn clock edge of the edge the data output (TxDn)
is changed.

Figure 85.  Synchronous Mode XCKn Timing.

The UCPOLn bit UCRSnC selects which XCKn clock edge is used for data sampling
and which is used for data change. As Figure 85 shows, when UCPOLn is zero the data
will be changed at rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is
set, the data will be changed at falling XCKn edge and sampled at rising XCKn edge.

Serial Frame A serial frame is defined to be one character of data bits with synchronization bits (start
and stop bits), and optionally a parity bit for error checking.

Frame Formats The USARTn accepts all 30 combinations of the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next
data bits, up to a total of nine, are succeeding, ending with the most significant bit. If
enabled, the parity bit is inserted after the data bits, before the stop bits. When a com-
plete frame is transmitted, it can be directly followed by a new frame, or the
communication line can be set to an idle (high) state. Figure 86 illustrates the possible
combinations of the frame formats. Bits inside brackets are optional.

Figure 86.  Frame Formats

St Start bit, always low.

(n) Data bits (0 to 8).

RxDn / TxDn

XCKn

RxDn / TxDn

XCKnUCPOLn = 0

UCPOLn = 1

Sample

Sample

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME
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P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line must be
high.

The frame format used by the USARTn is set by the UCSZn2:0, UPMn1:0 and USBSn
bits in UCSRnB and UCSRnC. The Receiver and Transmitter use the same setting.
Note that changing the setting of any of these bits will corrupt all ongoing communica-
tion for both the Receiver and Transmitter. 

The USARTn Character SiZe (UCSZn2:0) bits select the number of data bits in the
frame. The USARTn Parity mode (UPMn1:0) bits enable and set the type of parity bit.
The selection between one or two stop bits is done by the USARTn Stop Bit Select
(USBSn) bit. The Receiver ignores the second stop bit. An FEn (Frame Error) will there-
fore only be detected in the cases where the first stop bit is zero.

Parity Bit Calculation The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is
used, the result of the exclusive or is inverted. The relation between the parity bit and
data bits is as follows:

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial
frame.

USART Initialization The USARTn has to be initialized before any communication can take place. The initial-
ization process normally consists of setting the baud rate, setting frame format and
enabling the Transmitter or the Receiver depending on the usage. For interrupt driven
USARTn operation, the Global Interrupt Flag should be cleared (and interrupts globally
disabled) when doing the initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that
there are no ongoing transmissions during the period the registers are changed. The
TXCn flag can be used to check that the Transmitter has completed all transfers, and
the RXCn flag can be used to check that there are no unread data in the receive buffer.
Note that the TXCn flag must be cleared before each transmission (before UDRn is writ-
ten) if it is used for this purpose.

P
even

d
n 1–

… d3 d2 d1 d0 0
P
odd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
d
n 1–

… d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕
=

=
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The following simple USART0 initialization code examples show one assembly and one
C function that are equal in functionality. The examples assume asynchronous opera-
tion using polling (no interrupts enabled) and a fixed frame format. The baud rate is
given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 Registers.

Note: 1. The example code assumes that the part specific header file is included.

More advanced initialization routines can be made that include frame format as parame-
ters, disable interrupts and so on. However, many applications use a fixed setting of the
baud and control registers, and for these types of applications the initialization code can
be placed directly in the main routine, or be combined with initialization code for other
I/O modules.

Assembly Code Example(1)

USART0_Init:

; Set baud rate

sts UBRR0H, r17

sts UBRR0L, r16

; Set frame format: 8data, no parity & 2 stop bits

ldi r16, (0<<UMSEL0)|(0<<UPM0)|(1<<USBS0)|(3<<UCSZ0)

sts UCSR0C, r16

; Enable receiver and transmitter

ldi r16, (1<<RXEN0)|(1<<TXEN0)

sts UCSR0B, r16

ret

C Code Example(1)

void USART0_Init (unsigned int baud )

{

/* Set baud rate */

UBRR0H = (unsigned char) (baud>>8);

UBRR0L = (unsigned char) baud;

/* Set frame format: 8data, no parity & 2 stop bits */

UCSR0C = (0<<UMSEL0) | (0<<UPM0) | (1<<USBS0) | (3<<UCSZ0);

/* Enable receiver and transmitter */

UCSR0B = (1<<RXEN0) | (1<<TXEN0);

}
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Data Transmission – 
USART Transmitter

The USARTn Transmitter is enabled by setting the Transmit Enable (TXENn) bit in the
UCSRnB Register. When the Transmitter is enabled, the normal port operation of the
TxDn pin is overridden by the USARTn and given the function as the Transmitter’s serial
output. The baud rate, mode of operation and frame format must be set up once before
doing any transmissions. If synchronous operation is used, the clock on the XCKn pin
will be overridden and used as transmission clock.

Sending Frames with 5 to 8 
Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be trans-
mitted. The CPU can load the transmit buffer by writing to the UDRn I/O location. The
buffered data in the transmit buffer will be moved to the Shift Register when the Shift
Register is ready to send a new frame. The Shift Register is loaded with new data if it is
in idle state (no ongoing transmission) or immediately after the last stop bit of the previ-
ous frame is transmitted. When the Shift Register is loaded with new data, it will transfer
one complete frame at the rate given by the Baud Register, U2Xn bit or by XCKn
depending on mode of operation.

The following code examples show a simple USART0 transmit function based on polling
of the Data Register Empty (UDRE0) flag. When using frames with less than eight bits,
the most significant bits written to the UDR0 are ignored. The USART0 has to be initial-
ized before the function can be used. For the assembly code, the data to be sent is
assumed to be stored in Register R16.

Note: 1. The example code assumes that the part specific header file is included.

The function simply waits for the transmit buffer to be empty by checking the UDRE0
flag, before loading it with new data to be transmitted. If the Data Register Empty inter-
rupt is utilized, the interrupt routine writes the data into the buffer.

Assembly Code Example(1)

USART0_Transmit:

; Wait for empty transmit buffer

lds r17, UCSR0A

sbrs r17, UDRE0

rjmp USART0_Transmit

; Put data (r16) into buffer, sends the data

sts UDR0, r16

ret

C Code Example(1)

void USART0_Transmit (unsigned char data )

{

/* Wait for empty transmit buffer */

while ( ! ( UCSRA0 & (1<<UDRE0)))

;

/* Put data into buffer, sends the data */

UDR0 = data;

}

179      
7522C–AUTO–09/06



      
Sending Frames with 9 Data 
Bit

If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8n bit in
UCSRnB before the low byte of the character is written to UDRn. The following code
examples show a transmit function that handles 9-bit characters. For the assembly
code, the data to be sent is assumed to be stored in registers R17:R16.

Notes: 1. These transmit functions are written to be general functions. They can be optimized if
the contents of the UCSR0B is static. For example, only the TXB80 bit of the
UCSRB0 Register is used after initialization.

2. The example code assumes that the part specific header file is included.
sparc.

The ninth bit can be used for indicating an address frame when using multi processor
communication mode or for other protocol handling as for example synchronization.

Transmitter Flags and 
Interrupts

The USARTn Transmitter has two flags that indicate its state: USART Data Register
Empty (UDREn) and Transmit Complete (TXCn). Both flags can be used for generating
interrupts.

The Data Register Empty (UDREn) flag indicates whether the transmit buffer is ready to
receive new data. This bit is set when the transmit buffer is empty, and cleared when the
transmit buffer contains data to be transmitted that has not yet been moved into the Shift
Register. For compatibility with future devices, always write this bit to zero when writing
the UCSRnA Register.

Assembly Code Example(1)(2)

USART0_Transmit:

; Wait for empty transmit buffer

lds r18, UCSR0A

sbrs r18, UDRE0

rjmp USART0_Transmit

; Copy 9th bit from r17-bit0 to TXB80 via T-bit of SREG

lds r18, UCSR0B

bst r17, 0

bld r18, TXB80

sts UCSR0B, r18

; Put LSB data (r16) into buffer, sends the data

sts UDR0, r16

ret

C Code Example(1)(2)

void USART0_Transmit (unsigned int data )

{

/* Wait for empty transmit buffer */

while ( !( UCSR0A & (1<<UDRE0))) 

;

/* Copy 9th bit to TXB8 */

UCSR0B &= ~(1<<TXB80);

if ( data & 0x0100 )

UCSR0B |= (1<<TXB80);

/* Put data into buffer, sends the data */

UDR0 = data;

}
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When the Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRBn is written to
one, the USARTn Data Register Empty Interrupt will be executed as long as UDREn is
set (provided that global interrupts are enabled). UDREn is cleared by writing UDRn.
When interrupt-driven data transmission is used, the Data Register Empty interrupt rou-
tine must either write new data to UDRn in order to clear UDREn or disable the Data
Register Empty interrupt, otherwise a new interrupt will occur once the interrupt routine
terminates.

The Transmit Complete (TXCn) flag bit is set one when the entire frame in the Transmit
Shift Register has been shifted out and there are no new data currently present in the
transmit buffer. The TXCn flag bit is automatically cleared when a transmit complete
interrupt is executed, or it can be cleared by writing a one to its bit location. The TXCn
flag is useful in half-duplex communication interfaces (like the RS-485 standard), where
a transmitting application must enter receive mode and free the communication bus
immediately after completing the transmission.

When the Transmit Complete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the
USARTn Transmit Complete Interrupt will be executed when the TXCn flag becomes
set (provided that global interrupts are enabled). When the transmit complete interrupt is
used, the interrupt handling routine does not have to clear the TXCn flag, this is done
automatically when the interrupt is executed.

Parity Generator The Parity Generator calculates the parity bit for the serial frame data. When parity bit is
enabled (UPMn1 = 1), the transmitter control logic inserts the parity bit between the last
data bit and the first stop bit of the frame that is sent.

Disabling the Transmitter The disabling of the Transmitter (setting the TXENn to zero) will not become effective
until ongoing and pending transmissions are completed, i.e., when the Transmit Shift
Register and Transmit Buffer Register do not contain data to be transmitted. When dis-
abled, the Transmitter will no longer override the TxDn pin.

Data Reception – USART 
Receiver

The USARTn Receiver is enabled by writing the Receive Enable (RXENn) bit in the
UCSRnB Register to one. When the Receiver is enabled, the normal pin operation of
the RxDn pin is overridden by the USARTn and given the function as the Receiver’s
serial input. The baud rate, mode of operation and frame format must be set up once
before any serial reception can be done. If synchronous operation is used, the clock on
the XCKn pin will be used as transfer clock.

Receiving Frames with 5 to 8 
Data Bits

The Receiver starts data reception when it detects a valid start bit. Each bit that follows
the start bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive
Shift Register until the first stop bit of a frame is received. A second stop bit will be
ignored by the Receiver. When the first stop bit is received, i.e., a complete serial frame
is present in the Receive Shift Register, the contents of the Shift Register will be moved
into the receive buffer. The receive buffer can then be read by reading the UDRn I/O
location.
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The following code example shows a simple USART0 receive function based on polling
of the Receive Complete (RXC0) flag. When using frames with less than eight bits the
most significant bits of the data read from the UDR0 will be masked to zero. The
USART0 has to be initialized before the function can be used.

Note: 1. The example code assumes that the part specific header file is included.

The function simply waits for data to be present in the receive buffer by checking the
RXC0 flag, before reading the buffer and returning the value.

Receiving Frames with 9 Data 
Bits

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in
UCSRnB before reading the low bits from the UDRn. This rule applies to the FEn,
DORn and UPEn Status Flags as well. Read status from UCSRnA, then data from
UDRn. Reading the UDRn I/O location will change the state of the receive buffer FIFO
and consequently the TXB8n, FEn, DORn and UPEn bits, which all are stored in the
FIFO, will change.

Assembly Code Example(1)

USART0_Receive:

; Wait for data to be received

lds r18, UCSR0A

sbrs r18, RXC0

rjmp USART0_Receive

; Get and return received data from buffer

lds r16, UDR0

ret

C Code Example(1)

unsigned char USART0_Receive (void )

{

/* Wait for data to be received */

while ( ! (UCSR0A & (1<<RXC0)))

;

/* Get and return received data from buffer */

return UDR0;

}
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The following code example shows a simple USART0 receive function that handles both
nine bit characters and the status bits.

Note: 1. The example code assumes that the part specific header file is included.

The receive function example reads all the I/O Registers into the Register File before
any computation is done. This gives an optimal receive buffer utilization since the buffer
location read will be free to accept new data as early as possible.

Assembly Code Example(1)

USART0_Receive:

; Wait for data to be received

lds r18, UCSR0A

sbrs r18, RXC0

rjmp USART0_Receive

; Get status and 9th bit, then data from buffer

lds r17, UCSR0B

lds r16, UDR0

; If error, return -1

andi r18, (1<<FE0) | (1<<DOR0) | (1<<UPE0)

breq USART0_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART0_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret

C Code Example(1)

unsigned int USART0_Receive( void )

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while ( ! (UCSR0A & (1<<RXC0)))

;

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSR0A;

resh = UCSR0B;

resl = UDR0;

/* If error, return -1 */

if ( status & (1<<FE0)|(1<<DOR0)|(1<<UPE0) )

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}
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Receive Complete Flag and 
Interrupt

The USARTn Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) flag indicates if there are unread data present in the
receive buffer. This flag is one when unread data exist in the receive buffer, and zero
when the receive buffer is empty (i.e., does not contain any unread data). If the Receiver
is disabled (RXENn = 0), the receive buffer will be flushed and consequently the RXCn
bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USARTn
Receive Complete interrupt will be executed as long as the RXCn flag is set (provided
that global interrupts are enabled). When interrupt-driven data reception is used, the
receive complete routine must read the received data from UDRn in order to clear the
RXCn flag, otherwise a new interrupt will occur once the interrupt routine terminates.

Receiver Error Flags The USARTn Receiver has three error flags: Frame Error (FEn), Data OverRun (DORn)
and Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the
error flags is that they are located in the receive buffer together with the frame for which
they indicate the error status. Due to the buffering of the error flags, the UCSRnA must
be read before the receive buffer (UDRn), since reading the UDRn I/O location changes
the buffer read location. Another equality for the error flags is that they can not be
altered by software doing a write to the flag location. However, all flags must be set to
zero when the UCSRnA is written for upward compatibility of future USART implementa-
tions. None of the error flags can generate interrupts.

The Frame Error (FEn) flag indicates the state of the first stop bit of the next readable
frame stored in the receive buffer. The FEn flag is zero when the stop bit was correctly
read (as one), and the FEn flag will be one when the stop bit was incorrect (zero). This
flag can be used for detecting out-of-sync conditions, detecting break conditions and
protocol handling. The FEn flag is not affected by the setting of the USBSn bit in UCS-
RnC since the Receiver ignores all, except for the first, stop bits. For compatibility with
future devices, always set this bit to zero when writing to UCSRnA.

The Data OverRun (DORn) flag indicates data loss due to a receiver buffer full condi-
tion. A Data OverRun occurs when the receive buffer is full (two characters), it is a new
character waiting in the Receive Shift Register, and a new start bit is detected. If the
DORn flag is set there was one or more serial frame lost between the frame last read
from UDRn, and the next frame read from UDRn. For compatibility with future devices,
always write this bit to zero when writing to UCSRnA. The DORn flag is cleared when
the frame received was successfully moved from the Shift Register to the receive buffer.

The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a
Parity Error when received. If Parity Check is not enabled the UPEn bit will always be
read zero. For compatibility with future devices, always set this bit to zero when writing
to UCSRnA. For more details see “Parity Bit Calculation” on page 177 and “Parity
Checker” on page 184.

Parity Checker The Parity Checker is active when the high USARTn Parity mode (UPMn1) bit is set.
Type of Parity Check to be performed (odd or even) is selected by the UPMn0 bit. When
enabled, the Parity Checker calculates the parity of the data bits in incoming frames and
compares the result with the parity bit from the serial frame. The result of the check is
stored in the receive buffer together with the received data and stop bits. The Parity
Error (UPEn) flag can then be read by software to check if the frame had a Parity Error.

The UPEn bit is set if the next character that can be read from the receive buffer had a
Parity Error when received and the Parity Checking was enabled at that point (UPMn1 =
1). This bit is valid until the receive buffer (UDRn) is read.
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Disabling the Receiver In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from
ongoing receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero)
the Receiver will no longer override the normal function of the RxDn port pin. The
Receiver buffer FIFO will be flushed when the Receiver is disabled. Remaining data in
the buffer will be lost

Flushing the Receive Buffer The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer
will be emptied of its contents. Unread data will be lost. If the buffer has to be flushed
during normal operation, due to for instance an error condition, read the UDRn I/O loca-
tion until the RXCn flag is cleared.

The following code example shows how to flush the receive buffer.

Note: 1. The example code assumes that the part specific header file is included.

Asynchronous Data 
Reception

The USARTn includes a clock recovery and a data recovery unit for handling asynchro-
nous data reception. The clock recovery logic is used for synchronizing the internally
generated baud rate clock to the incoming asynchronous serial frames at the RxDn pin.
The data recovery logic samples and low pass filters each incoming bit, thereby improv-
ing the noise immunity of the Receiver. The asynchronous reception operational range
depends on the accuracy of the internal baud rate clock, the rate of the incoming
frames, and the frame size in number of bits.

Asynchronous Clock 
Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Fig-
ure 87 illustrates the sampling process of the start bit of an incoming frame. The sample
rate is 16 times the baud rate for Normal mode, and eight times the baud rate for Double
Speed mode. The horizontal arrows illustrate the synchronization variation due to the
sampling process. Note the larger time variation when using the Double Speed mode
(U2Xn = 1) of operation. Samples denoted zero are samples done when the RxDn line
is idle (i.e., no communication activity).

Assembly Code Example(1)

USART0_Flush:

lds r16, UCSR0A

sbrs r16, RXC0

ret

lds r16, UDR0

rjmp USART0_Flush

C Code Example(1)

void USART0_Flush (void )

{

unsigned char dummy;

while (UCSR0A & (1<<RXC0) ) dummy = UDR0;

}
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Figure 87.  Start Bit Sampling

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn
line, the start bit detection sequence is initiated. Let sample 1 denote the first zero-sam-
ple as shown in the figure. The clock recovery logic then uses samples 8, 9, and 10 for
Normal mode, and samples 4, 5, and 6 for Double Speed mode (indicated with sample
numbers inside boxes on the figure), to decide if a valid start bit is received. If two or
more of these three samples have logical high levels (the majority wins), the start bit is
rejected as a noise spike and the Receiver starts looking for the next high to low-transi-
tion. If however, a valid start bit is detected, the clock recovery logic is synchronized and
the data recovery can begin. The synchronization process is repeated for each start bit.

Asynchronous Data Recovery When the receiver clock is synchronized to the start bit, the data recovery can begin.
The data recovery unit uses a state machine that has 16 states for each bit in Normal
mode and eight states for each bit in Double Speed mode. Figure 88 shows the sam-
pling of the data bits and the parity bit. Each of the samples is given a number that is
equal to the state of the recovery unit.

Figure 88.  Sampling of Data and Parity Bit

The decision of the logic level of the received bit is taken by doing a majority voting of
the logic value to the three samples in the center of the received bit. The center samples
are emphasized on the figure by having the sample number inside boxes. The majority
voting process is done as follows: If two or all three samples have high levels, the
received bit is registered to be a logic 1. If two or all three samples have low levels, the
received bit is registered to be a logic 0. This majority voting process acts as a low pass
filter for the incoming signal on the RxDn pin. The recovery process is then repeated
until a complete frame is received. Including the first stop bit. Note that the Receiver only
uses the first stop bit of a frame.
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Figure 89 shows the sampling of the stop bit and the earliest possible beginning of the
start bit of the next frame.

Figure 89.  Stop Bit Sampling and Next Start Bit Sampling

The same majority voting is done to the stop bit as done for the other bits in the frame. If
the stop bit is registered to have a logic 0 value, the Frame Error (FEn) flag will be set. 

A new high to low transition indicating the start bit of a new frame can come right after
the last of the bits used for majority voting. For Normal Speed mode, the first low level
sample can be at point marked (A) in Figure 89. For Double Speed mode the first low
level must be delayed to (B). (C) marks a stop bit of full length. The early start bit detec-
tion influences the operational range of the Receiver.

Asynchronous Operational 
Range

The operational range of the Receiver is dependent on the mismatch between the
received bit rate and the internally generated baud rate. If the Transmitter is sending
frames at too fast or too slow bit rates, or the internally generated baud rate of the
Receiver does not have a similar (see Table 78) base frequency, the Receiver will not
be able to synchronize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and
internal receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.

SF First sample number used for majority voting. SF = 8 for normal speed and SF = 4
for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed and
SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to the 
receiver baud rate. 

Rfast is the ratio of the fastest incoming data rate that can be accepted in relation to the
receiver baud rate.

Table 78 and Table 79 list the maximum receiver baud rate error that can be tolerated.
Note that Normal Speed mode has higher toleration of baud rate variations.
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The recommendations of the maximum receiver baud rate error was made under the
assumption that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system
clock (XTAL) will always have some minor instability over the supply voltage range and
the temperature range. When using a crystal to generate the system clock, this is rarely
a problem, but for a resonator the system clock may differ more than 2% depending of
the resonators tolerance. The second source for the error is more controllable. The baud
rate generator can not always do an exact division of the system frequency to get the
baud rate wanted. In this case an UBRRn value that gives an acceptable low error can
be used if possible.

Multi-processor 
Communication Mode

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRnA enables a
filtering function of incoming frames received by the USARTn Receiver. Frames that do
not contain address information will be ignored and not put into the receive buffer. This
effectively reduces the number of incoming frames that has to be handled by the CPU,
in a system with multiple MCUs that communicate via the same serial bus. The Trans-
mitter is unaffected by the MPCMn setting, but has to be used differently when it is a
part of a system utilizing the Multi-processor Communication mode.

MPCM Protocol If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop
bit indicates if the frame contains data or address information. If the Receiver is set up
for frames with nine data bits, then the ninth bit (RXB8n) is used for identifying address

Table 78.  Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode
(U2Xn = 0)

D
# (Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max 
Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 ± 3.0

6 94.12 105.79 +5.79/-5.88 ± 2.5

7 94.81 105.11 +5.11/-5.19 ± 2.0

8 95.36 104.58 +4.58/-4.54 ± 2.0

9 95.81 104.14 +4.14/-4.19 ± 1.5

10 96.17 103.78 +3.78/-3.83 ± 1.5

Table 79.  Recommended Maximum Receiver Baud Rate Error for Double Speed Mode
(U2Xn = 1)

D
# (Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max 
Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 ± 2.5

6 94.92 104.92 +4.92/-5.08 ± 2.0

7 95.52 104,35 +4.35/-4.48 ± 1.5

8 96.00 103.90 +3.90/-4.00 ± 1.5

9 96.39 103.53 +3.53/-3.61 ± 1.5

10 96.70 103.23 +3.23/-3.30 ± 1.0
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and data frames. When the frame type bit (the first stop or the ninth bit) is one, the frame
contains an address. When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data
from a master MCU. This is done by first decoding an address frame to find out which
MCU has been addressed. If a particular slave MCU has been addressed, it will receive
the following data frames as normal, while the other slave MCUs will ignore the received
frames until another address frame is received.

Using MPCM For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn
= 7). The ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared
when a data frame (TXBn = 0) is being transmitted. The slave MCUs must in this case
be set to use a 9-bit character frame format. 

The following procedure should be used to exchange data in Multi-processor Communi-
cation mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in
UCSRnA is set).

2. The Master MCU sends an address frame, and all slaves receive and read this 
frame. In the Slave MCUs, the RXCn flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been 
selected. If so, it clears the MPCMn bit in UCSRnA, otherwise it waits for the next 
address byte and keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is 
received. The other Slave MCUs, which still have the MPCMn bit set, will ignore 
the data frames.

5. When the last data frame is received by the addressed MCU, the addressed 
MCU sets the MPCMn bit and waits for a new address frame from master. The 
process then repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using N and N+1 character frame formats. This makes
full-duplex operation difficult since the Transmitter and Receiver use the same character
size setting. If 5- to 8-bit character frames are used, the Transmitter must be set to use
two stop bit (USBSn = 1) since the first stop bit is used for indicating the frame type.
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USART Register 
Description

USART0 I/O Data Register – 
UDR0

USART1 I/O Data Register – 
UDR1

• Bit 7:0 – RxBn7:0: Receive Data Buffer (read access)
• Bit 7:0 – TxBn7:0: Transmit Data Buffer (write access)

The USARTn Transmit Data Buffer Register and USARTn Receive Data Buffer Regis-
ters share the same I/O address referred to as USARTn Data Register or UDRn. The
Transmit Data Buffer Register (TXBn) will be the destination for data written to the
UDRn Register location. Reading the UDRn Register location will return the contents of
the Receive Data Buffer Register (RXBn).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter
and set to zero by the Receiver.

The transmit buffer can only be written when the UDREn flag in the UCSRnA Register is
set. Data written to UDRn when the UDREn flag is not set, will be ignored by the
USARTn Transmitter. When data is written to the transmit buffer, and the Transmitter is
enabled, the Transmitter will load the data into the Transmit Shift Register when the
Shift Register is empty. Then the data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever
the receive buffer is accessed.

USART0 Control and Status 
Register A – UCSR0A

USART1 Control and Status 
Register A – UCSR1A

• Bit 7 – RXCn: USARTn Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the
receive buffer is empty (i.e., does not contain any unread data). If the Receiver is dis-
abled, the receive buffer will be flushed and consequently the RXCn bit will become
zero. The RXCn flag can be used to generate a Receive Complete interrupt (see
description of the RXCIEn bit).

Bit 7 6 5 4 3 2 1 0

RXB0[7:0] UDR0 (Read)

TXB0[7:0] UDR0 (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXB1[7:0] UDR1 (Read)

TXB1[7:0] UDR1 (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 UCSR0A

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1 UCSR1A

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
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• Bit 6 – TXCn: USARTn Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted
out and there are no new data currently present in the transmit buffer (UDRn). The
TXCn flag bit is automatically cleared when a transmit complete interrupt is executed, or
it can be cleared by writing a one to its bit location. The TXCn flag can generate a Trans-
mit Complete interrupt (see description of the TXCIEn bit).

• Bit 5 – UDREn: USARTn Data Register Empty

The UDREn flag indicates if the transmit buffer (UDRn) is ready to receive new data. If
UDREn is one, the buffer is empty, and therefore ready to be written. The UDREn flag
can generate a Data Register Empty interrupt (see description of the UDRIEn bit).

UDREn is set after a reset to indicate that the Transmitter is ready.

• Bit 4 – FEn: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when
received. I.e., when the first stop bit of the next character in the receive buffer is zero.
This bit is valid until the receive buffer (UDRn) is read. The FEn bit is zero when the stop
bit of received data is one. Always set this bit to zero when writing to UCSRnA.

• Bit 3 – DORn: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the
receive buffer is full (two characters), it is a new character waiting in the Receive Shift
Register, and a new start bit is detected. This bit is valid until the receive buffer (UDRn)
is read. Always set this bit to zero when writing to UCSRnA.

• Bit 2 – UPEn: USARTn Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received
and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the
receive buffer (UDRn) is read. Always set this bit to zero when writing to UCSRnA.

• Bit 1 – U2Xn: Double the USARTn Transmission Speed

This bit only has effect for the asynchronous operation. Write this bit to zero when using
synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effec-
tively doubling the transfer rate for asynchronous communication.

• Bit 0 – MPCMn: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCMn bit is writ-
ten to one, all the incoming frames received by the USARnT Receiver that do not
contain address information will be ignored. The Transmitter is unaffected by the
MPCMn setting. For more detailed information see “Multi-processor Communication
Mode” on page 188.

USART0 Control and Status 
Register B – UCSR0B Bit 7 6 5 4 3 2 1 0

RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 UCSR0B

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
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USART1 Control and Status 
Register B – UCSR1B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXCn flag. A USARTn Receive Complete
interrupt will be generated only if the RXCIEn bit is written to one, the Global Interrupt
Flag in SREG is written to one and the RXCn bit in UCSRnA is set.

• Bit 6 – TXCIEn: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXCn flag. A USARTn Transmit Complete
interrupt will be generated only if the TXCIEn bit is written to one, the Global Interrupt
Flag in SREG is written to one and the TXCn bit in UCSRnA is set.

• Bit 5 – UDRIEn: USARTn Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREn flag. A Data Register Empty inter-
rupt will be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in
SREG is written to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver Enable

Writing this bit to one enables the USARTn Receiver. The Receiver will override normal
port operation for the RxDn pin when enabled. Disabling the Receiver will flush the
receive buffer invalidating the FEn, DORn, and UPEn Flags.

• Bit 3 – TXENn: Transmitter Enable

Writing this bit to one enables the USARTn Transmitter. The Transmitter will override
normal port operation for the TxDn pin when enabled. The disabling of the Transmitter
(writing TXENn to zero) will not become effective until ongoing and pending transmis-
sions are completed, i.e., when the Transmit Shift Register and Transmit Buffer Register
do not contain data to be transmitted. When disabled, the Transmitter will no longer
override the TxDn port.

• Bit 2 – UCSZn2: Character Size

The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRnC sets the number of data
bits (Character SiZe) in a frame the Receiver and Transmitter use. 

• Bit 1 – RXB8n: Receive Data Bit 8

RXB8n is the ninth data bit of the received character when operating with serial frames
with nine data bits. Must be read before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit Data Bit 8

TXB8n is the ninth data bit in the character to be transmitted when operating with serial
frames with nine data bits. Must be written before writing the low bits to UDRn.

USART0 Control and Status 
Register C – UCSR0C

Bit 7 6 5 4 3 2 1 0

RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 UCSR1B

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

– UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 UCSR0C

Read/Write R R/W R/W R/W R/W R/W R/W R/W
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USART1 Control and Status 
Register C – UCSR1C

• Bit 7 – Reserved Bit

This bit is reserved for future use. For compatibility with future devices, these bit must be
written to zero when UCSRnC is written.

• Bit 6 – UMSELn: USARTn Mode Select

This bit selects between asynchronous and synchronous mode of operation.

• Bit 5:4 – UPMn1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the Transmit-
ter will automatically generate and send the parity of the transmitted data bits within
each frame. The Receiver will generate a parity value for the incoming data and com-
pare it to the UPMn0 setting. If a mismatch is detected, the UPEn Flag in UCSRnA will
be set.

• Bit 3 – USBSn: Stop Bit Select

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver
ignores this setting.

Initial Value 0 0 0 0 0 1 1 0

Bit 7 6 5 4 3 2 1 0

– UMSEL1 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPO1L UCSR1C

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 80.  UMSELn Bit Settings

UMSELn Mode

0 Asynchronous Operation

1 Synchronous Operation

Table 81.  UPMn Bits Settings

UPMn1 UPMn0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity

Table 82.  USBSn Bit Settings

USBSn Stop Bit(s)

0 1-bit

1 2-bit
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• Bit 2:1 – UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRnB sets the number of data
bits (Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOLn: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous
mode is used. The UCPOLn bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCKn).

USART0 Baud Rate Registers 
– UBRR0L and UBRR0H

USART1 Baud Rate Registers 
– UBRR1L and UBRR1H

Table 83.  UCSZn Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 84.  UCPOLn Bit Settings

UCPOLn
Transmitted Data Changed
(Output of TxDn Pin)

Received Data Sampled
(Input on RxDn Pin)

0 Rising XCK Edge Falling XCK Edge

1 Falling XCK Edge Rising XCK Edge

Bit 15 14 13 12 11 10 9 8

– – – – UBRR0[11:8] UBRR0H

UBRR0[7:0] UBRR0L

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

– – – – UBRR1[11:8] UBRR1H

UBRR1[7:0] UBRR1L

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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• Bit 15:12 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit
must be written to zero when UBRRnH is written.

• Bit 11:0 – UBRRn11:0: USARTn Baud Rate Register

This is a 12-bit register which contains the USARTn baud rate. The UBRRnH contains
the four most significant bits, and the UBRRnL contains the eight least significant bits of
the USARTn baud rate. Ongoing transmissions by the Transmitter and Receiver will be
corrupted if the baud rate is changed. Writing UBRRnL will trigger an immediate update
of the baud rate prescaler.
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Examples of Baud Rate 
Setting

For standard crystal, resonator and external oscillator frequencies, the most commonly
used baud rates for asynchronous operation can be generated by using the UBRRn set-
tings in Table 85 up to Table 88. UBRRn values which yield an actual baud rate differing
less than 0.5% from the target baud rate, are bold in the table. Higher error ratings are
acceptable, but the Receiver will have less noise resistance when the error ratings are
high, especially for large serial frames (see “Asynchronous Operational Range” on page
187). The error values are calculated using the following equation:

Error[%] 1
BaudRateClosest Match

BaudRate
--------------------------------------------------------–

⎝ ⎠
⎛ ⎞ 100%•=

Table 85.  Examples of UBRRn Settings for Commonly Frequencies

Baud 
Rate 
(bps)

fclkio = 1.0000 MHz fclkio = 1.8432 MHz fclkio = 2.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – – –

500k – – – – – – – – – – – –

1M – – – – – – – – – – – –

Max. (1) 62.5 kbps 125 kbps 115.2 kbps 230.4 Kbps 125 kpbs 250 kbps

1. UBRRn = 0, Error = 0.0%
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Table 86.  Examples of UBRRn Settings for Commonly Frequencies (Continued)

Baud 
Rate 
(bps)

fclkio = 3.6864 MHz fclkio = 4.0000 MHz fclkio = 7.3728 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

500k – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max. (1) 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kpbs 921.6 kbps

1. UBRRn = 0, Error = 0.0%
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Table 87.  Examples of UBRRn Settings for Commonly Frequencies (Continued)

Baud 
Rate 
(bps)

fclkio = 8.0000 MHz fclkio = 10.000 MHz fclkio = 11.0592 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 207 0.2% 416 -0.1% 259 0.2% 520 0.0% 287 0.0% 575 0.0%

4800 103 0.2% 207 0.2% 129 0.2% 259 0.2% 143 0.0% 287 0.0%

9600 51 0.2% 103 0.2% 64 0.2% 129 0.2% 71 0.0% 143 0.0%

14.4k 34 -0.8% 68 0.6% 42 0.9% 86 0.2% 47 0.0% 95 0.0%

19.2k 25 0.2% 51 0.2% 32 -1.4% 64 0.2% 35 0.0% 71 0.0%

28.8k 16 2.1% 34 -0.8% 21 -1.4% 42 0.9% 23 0.0% 47 0.0%

38.4k 12 0.2% 25 0.2% 15 1.8% 32 -1.4% 17 0.0% 35 0.0%

57.6k 8 -3.5% 16 2.1% 10 -1.5% 21 -1.4% 11 0.0% 23 0.0%

76.8k 6 -7.0% 12 0.2% 7 1.9% 15 1.8% 8 0.0% 17 0.0%

115.2k 3 8.5% 8 -3.5% 4 9.6% 10 -1.5% 5 0.0% 11 0.0%

230.4k 1 8.5% 3 8.5% 2 -16.8% 4 9.6% 2 0.0% 5 0.0%

250k 1 0.0% 3 0.0% 2 -33.3% 4 0.0% 2 -7.8% 5 -7.8%

500k 0 0.0% 1 0.0% – – 2 -33.3% – – 2 -7.8%

1M – – 0 0.0% – – – – – – – –

Max. (1) 0.5 Mbps 1 Mbps 625 kbps 1.25 Mbps 691.2 kbps 1.3824 Mbps

1. UBRRn = 0, Error = 0.0%
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Table 88.  Examples of UBRRn Settings for Commonly Frequencies (Continued)

Baud 
Rate 
(bps)

fclkio = 12.0000 MHz fclkio = 14.7456 MHz fclkio = 16.0000 MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 312 -0.2% 624 0.0% 383 0.0% 767 0.0% 416 -0.1% 832 0.0%

4800 155 0.2% 312 -0.2% 191 0.0% 383 0.0% 207 0.2% 416 -0.1%

9600 77 0.2% 155 0.2% 95 0.0% 191 0.0% 103 0.2% 207 0.2%

14.4k 51 0.2% 103 0.2% 63 0.0% 127 0.0% 68 0.6% 138 -0.1%

19.2k 38 0.2% 77 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

28.8k 25 0.2% 51 0.2% 31 0.0% 63 0.0% 34 -0.8% 68 0.6%

38.4k 19 -2.5% 38 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

57.6k 12 0.2% 25 0.2% 15 0.0% 31 0.0% 16 2.1% 34 -0.8%

76.8k 9 -2.7% 19 -2.5% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

115.2k 6 -8.9% 12 0.2% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

230.4k 2 11.3% 6 -8.9% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

250k 2 0.0% 5 0.0% 3 -7.8% 6 5.3% 3 0.0% 7 0.0%

500k – – 2 0.0% 1 -7.8% 3 -7.8% 1 0.0% 3 0.0%

1M – – – – 0 -7.8% 1 -7.8% 0 0.0% 1 0.0%

Max. (1) 750 kbps 1.5 Mbps 921.6 kbps 1.8432 Mbps 1 Mbps 2 Mbps

1. UBRRn = 0, Error = 0.0%
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Two-wire Serial Interface

Features • Simple yet Powerful and Flexible Communication Interface, only Two Bus Lines Needed
• Both Master and Slave Operation Supported
• Device can Operate as Transmitter or Receiver
• 7-bit Address Space allows up to 128 Different Slave Addresses
• Multi-master Arbitration Support
• Up to 400 kHz Data Transfer Speed
• Slew-rate Limited Output Drivers
• Noise Suppression Circuitry Rejects Spikes on Bus Lines
• Fully Programmable Slave Address with General Call Support
• Address Recognition Causes Wake-up when AVR is in Sleep Mode

Two-wire Serial Interface 
Bus Definition

The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applica-
tions. The TWI protocol allows the systems designer to interconnect up to 128 different
devices using only two bi-directional bus lines, one for clock (SCL) and one for data
(SDA). The only external hardware needed to implement the bus is a single pull-up
resistor for each of the TWI bus lines. All devices connected to the bus have individual
addresses, and mechanisms for resolving bus contention are inherent in the TWI
protocol.

Figure 90.  TWI Bus Interconnection

TWI Terminology The following definitions are frequently encountered in this section.

Electrical Interconnection As depicted in Figure 90, both bus lines are connected to the positive supply voltage
through pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or
open-collector. This implements a wired-AND function which is essential to the opera-
tion of the interface. A low level on a TWI bus line is generated when one or more TWI
devices output a zero. A high level is output when all TWI devices tri-state their outputs,

Device 1 Device 2 Device 3 Device n

SDA

SCL

........

R1 R2

VCC

Table 89.  TWI Terminology

Term Description

Master The device that initiates and terminates a transmission. The master also 
generates the SCL clock

Slave The device addressed by a master

Transmitter The device placing data on the bus

Receiver The device reading data from the bus
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allowing the pull-up resistors to pull the line high. Note that all AVR devices connected to
the TWI bus must be powered in order to allow any bus operation. 

The number of devices that can be connected to the bus is only limited by the bus
capacitance limit of 400 pF and the 7-bit slave address space. A detailed specification of
the electrical characteristics of the TWI is given in “Two-wire Serial Interface Character-
istics” on page 360. Two different sets of specifications are presented there, one
relevant for bus speeds below 100 kHz, and one valid for bus speeds up to 400 kHz.

Data Transfer and Frame 
Format

Transferring Bits Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line.
The level of the data line must be stable when the clock line is high. The only exception
to this rule is for generating start and stop conditions.

Figure 91.  Data Validity

START and STOP Conditions The master initiates and terminates a data transmission. The transmission is initiated
when the master issues a START condition on the bus, and it is terminated when the
master issues a STOP condition. Between a START and a STOP condition, the bus is
considered busy, and no other master should try to seize control of the bus. A special
case occurs when a new START condition is issued between a START and STOP con-
dition. This is referred to as a REPEATED START condition, and is used when the
master wishes to initiate a new transfer without relinquishing control of the bus. After a
REPEATED START, the bus is considered busy until the next STOP. This is identical to
the START behaviour, and therefore START is used to describe both START and
REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the
SDA line when the SCL line is high.

Figure 92.  START, REPEATED START and STOP Conditions

SDA

SCL

Data Stable Data Stable

Data Change

SDA

SCL

START STOPREPEATED STARTSTOP START
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Address Packet Format All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address
bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is
set, a read operation is to be performed, otherwise a write operation should be per-
formed. When a slave recognizes that it is being addressed, it should acknowledge by
pulling SDA low in the ninth SCL (ACK) cycle. If the addressed slave is busy, or for
some other reason can not service the master’s request, the SDA line should be left
high in the ACK clock cycle. The master can then transmit a STOP condition, or a
REPEATED START condition to initiate a new transmission. An address packet consist-
ing of a slave address and a READ or a WRITE bit is called SLA+R or SLA+W,
respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allo-
cated by the designer, but the address 0000 000 is reserved for a general call. 

When a general call is issued, all slaves should respond by pulling the SDA line low in
the ACK cycle. A general call is used when a master wishes to transmit the same mes-
sage to several slaves in the system. When the general call address followed by a Write
bit is transmitted on the bus, all slaves set up to acknowledge the general call will pull
the SDA line low in the ack cycle. The following data packets will then be received by all
the slaves that acknowledged the general call. Note that transmitting the general call
address followed by a Read bit is meaningless, as this would cause contention if several
slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 93.  Address Packet Format

Data Packet Format All data packets transmitted on the TWI bus are 9 bits long, consisting of one data byte
and an acknowledge bit. During a data transfer, the master generates the clock and the
START and STOP conditions, while the receiver is responsible for acknowledging the
reception. An Acknowledge (ACK) is signalled by the receiver pulling the SDA line low
during the ninth SCL cycle. If the receiver leaves the SDA line high, a NACK is signalled.
When the receiver has received the last byte, or for some reason cannot receive any
more bytes, it should inform the transmitter by sending a NACK after the final byte. The
MSB of the data byte is transmitted first. 

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK
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Figure 94.  Data Packet Format

Combining Address and Data 
Packets Into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data
packets and a STOP condition. An empty message, consisting of a START followed by
a STOP condition, is illegal. Note that the Wired-ANDing of the SCL line can be used to
implement handshaking between the master and the slave. The slave can extend the
SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the
master is too fast for the slave, or the slave needs extra time for processing between the
data transmissions. The slave extending the SCL low period will not affect the SCL high
period, which is determined by the master. As a consequence, the slave can reduce the
TWI data transfer speed by prolonging the SCL duty cycle.

Figure 95 shows a typical data transmission. Note that several data bytes can be trans-
mitted between the SLA+R/W and the STOP condition, depending on the software
protocol implemented by the application software.

Figure 95.  Typical Data Transmission

Multi-master Bus 
Systems, Arbitration and 
Synchronization

The TWI protocol allows bus systems with several masters. Special concerns have
been taken in order to ensure that transmissions will proceed as normal, even if two or
more masters initiate a transmission at the same time. Two problems arise in multi-mas-
ter systems:

• An algorithm must be implemented allowing only one of the masters to complete the 
transmission. All other masters should cease transmission when they discover that 
they have lost the selection process. This selection process is called arbitration. 
When a contending master discovers that it has lost the arbitration process, it 
should immediately switch to slave mode to check whether it is being addressed by 
the winning master. The fact that multiple masters have started transmission at the 

1 2 7 8 9

Data MSB Data LSB ACK

Aggregate
SDA

SDA from
Transmitter

SDA from
Receiver

SCL from
Master

SLA+R/W Data Byte
STOP, REPEATED

START or Next
Data Byte

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP
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same time should not be detectable to the slaves, i.e., the data being transferred on 
the bus must not be corrupted. 

• Different masters may use different SCL frequencies. A scheme must be devised to 
synchronize the serial clocks from all masters, in order to let the transmission 
proceed in a lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial
clocks from all masters will be wired-ANDed, yielding a combined clock with a high
period equal to the one from the master with the shortest high period. The low period of
the combined clock is equal to the low period of the master with the longest low period.
Note that all masters listen to the SCL line, effectively starting to count their SCL high
and low time-out periods when the combined SCL line goes high or low, respectively.

Figure 96.  SCL Synchronization between Multiple Masters

Arbitration is carried out by all masters continuously monitoring the SDA line after out-
putting data. If the value read from the SDA line does not match the value the master
had output, it has lost the arbitration. Note that a master can only lose arbitration when it
outputs a high SDA value while another master outputs a low value. The losing master
should immediately go to slave mode, checking if it is being addressed by the winning
master. The SDA line should be left high, but losing masters are allowed to generate a
clock signal until the end of the current data or address packet. Arbitration will continue
until only one master remains, and this may take many bits. If several masters are trying
to address the same slave, arbitration will continue into the data packet.

TA low TA high

SCL from
master A

SCL from
master B

SCL Bus
Line

TBlow TBhigh

Masters Start
Counting Low Period

Masters Start
Counting High Period
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Figure 97.  Arbitration Between two Masters

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit

• A STOP condition and a data bit

• A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions
never occur. This implies that in multi-master systems, all data transfers must use the
same composition of SLA+R/W and data packets. In other words: All transmissions
must contain the same number of data packets, otherwise the result of the arbitration is
undefined.

SDA from
Master A

SDA from
Master B

SDA Line

Synchronized
SCL Line

START Master A loses
Arbitration, SDAA   SDA
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Overview of the TWI 
Module

The TWI module is comprised of several submodules, as shown in Figure 98. All regis-
ters drawn in a thick line are accessible through the AVR data bus.

Figure 98.  Overview of the TWI Module

Scl and SDA Pins These pins interface the AVR TWI with the rest of the MCU system. The output drivers
contain a slew-rate limiter in order to conform to the TWI specification. The input stages
contain a spike suppression unit removing spikes shorter than 50 ns. Note that the inter-
nal pullups in the AVR pads can be enabled by setting the PORT bits corresponding to
the SCL and SDA pins, as explained in the I/O Port section. The internal pull-ups can in
some systems eliminate the need for external ones.

Bit Rate Generator Unit This unit controls the period of SCL when operating in a Master mode. The SCL period
is controlled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in
the TWI Status Register (TWSR). Slave operation does not depend on Bit Rate or Pres-
caler settings, but the CPU clock frequency in the slave must be at least 16 times higher
than the SCL frequency. Note that slaves may prolong the SCL low period, thereby
reducing the average TWI bus clock period. The SCL frequency is generated according
to the following equation:

• TWBR = Value of the TWI Bit Rate Register

• TWPS = Value of the prescaler bits in the TWI Status Register

Note: TWBR should be 10 or higher if the TWI operates in Master mode. If TWBR is lower than
10, the master may produce an incorrect output on SDA and SCL for the reminder of the
byte. The problem occurs when operating the TWI in Master mode, sending Start + SLA
+ R/W to a slave (a slave does not need to be connected to the bus for the condition to
happen).
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Bus Interface Unit This unit contains the Data and Address Shift Register (TWDR), a START/STOP Con-
troller and Arbitration detection hardware. The TWDR contains the address or data
bytes to be transmitted, or the address or data bytes received. In addition to the 8-bit
TWDR, the Bus Interface Unit also contains a register containing the (N)ACK bit to be
transmitted or received. This (N)ACK Register is not directly accessible by the applica-
tion software. However, when receiving, it can be set or cleared by manipulating the
TWI Control Register (TWCR). When in Transmitter mode, the value of the received
(N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START,
REPEATED START, and STOP conditions. The START/STOP controller is able to
detect START and STOP conditions even when the AVR MCU is in one of the sleep
modes, enabling the MCU to wake up if addressed by a master.

If the TWI has initiated a transmission as master, the Arbitration Detection hardware
continuously monitors the transmission trying to determine if arbitration is in process. If
the TWI has lost an arbitration, the Control Unit is informed. Correct action can then be
taken and appropriate status codes generated.

Address Match Unit The Address Match unit checks if received address bytes match the 7-bit address in the
TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE)
bit in the TWAR is written to one, all incoming address bits will also be compared
against the General Call address. Upon an address match, the Control Unit is informed,
allowing correct action to be taken. The TWI may or may not acknowledge its address,
depending on settings in the TWCR. The Address Match unit is able to compare
addresses even when the AVR MCU is in sleep mode, enabling the MCU to wake up if
addressed by a master. If another interrupt (e.g., INT0) occurs during TWI Power-down
address match and wakes up the CPU, the TWI aborts operation and return to it’s idle
state. If this cause any problems, ensure that TWI Address Match is the only enabled
interrupt when entering Power-down.

Control Unit The Control unit monitors the TWI bus and generates responses corresponding to set-
tings in the TWI Control Register (TWCR). When an event requiring the attention of the
application occurs on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the
next clock cycle, the TWI Status Register (TWSR) is updated with a status code identify-
ing the event. The TWSR only contains relevant status information when the TWI
Interrupt Flag is asserted. At all other times, the TWSR contains a special status code
indicating that no relevant status information is available. As long as the TWINT flag is
set, the SCL line is held low. This allows the application software to complete its tasks
before allowing the TWI transmission to continue.

The TWINT flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition

• After the TWI has transmitted SLA+R/W

• After the TWI has transmitted an address byte

• After the TWI has lost arbitration

• After the TWI has been addressed by own slave address or general call

• After the TWI has received a data byte

• After a STOP or REPEATED START has been received while still addressed as a 
slave

• When a bus error has occurred due to an illegal START or STOP condition
207      
7522C–AUTO–09/06



      
TWI Register Description

TWI Bit Rate Register – TWBR

• Bits 7..0 – TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a
frequency divider which generates the SCL clock frequency in the Master modes. See
“Bit Rate Generator Unit” on page 206 for calculating bit rates.

TWI Control Register – TWCR

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to
initiate a master access by applying a START condition to the bus, to generate a
receiver acknowledge, to generate a stop condition, and to control halting of the bus
while the data to be written to the bus are written to the TWDR. It also indicates a write
collision if data is attempted written to TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects appli-
cation software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will
jump to the TWI interrupt vector. While the TWINT flag is set, the SCL low period is
stretched. The TWINT flag must be cleared by software by writing a logic one to it. Note
that this flag is not automatically cleared by hardware when executing the interrupt rou-
tine. Also note that clearing this flag starts the operation of the TWI, so all accesses to
the TWI Address Register (TWAR), TWI Status Register (TWSR), and TWI Data Regis-
ter (TWDR) must be complete before clearing this flag.

• Bit 6 – TWEA: TWI Enable Acknowledge Bit

The TWEA bit controls the generation of the ACK pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode. 

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-
wire Serial Bus temporarily. Address recognition can then be resumed by writing the
TWEA bit to one again.

• Bit 5 – TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a master on the
Two-wire Serial Bus. The TWI hardware checks if the bus is available, and generates a
START condition on the bus if it is free. However, if the bus is not free, the TWI waits
until a STOP condition is detected, and then generates a new START condition to claim

Bit 7 6 5 4 3 2 1 0

TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR

Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
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the bus Master status. TWSTA must be cleared by software when the START condition
has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the
Two-wire Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit
is cleared automatically. In slave mode, setting the TWSTO bit can be used to recover
from an error condition. This will not generate a STOP condition, but the TWI returns to
a well-defined unaddressed Slave mode and releases the SCL and SDA lines to a high
impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when
TWINT is low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is
written to one, the TWI takes control over the I/O pins connected to the SCL and SDA
pins, enabling the slew-rate limiters and spike filters. If this bit is written to zero, the TWI
is switched off and all TWI transmissions are terminated, regardless of any ongoing
operation.

• Bit 1 – Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when TWCR is written.

• Bit 0 – TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will
be activated for as long as the TWINT flag is high.

TWI Status Register – TWSR

• Bits 7..3 – TWS: TWI Status

These 5 bits reflect the status of the TWI logic and the Two-wire Serial Bus. The differ-
ent status codes are described later in this section. Note that the value read from TWSR
contains both the 5-bit status value and the 2-bit prescaler value. The application
designer should mask the prescaler bits to zero when checking the Status bits. This
makes status checking independent of prescaler setting. This approach is used in this
datasheet, unless otherwise noted.

• Bit 2 – Res: Reserved Bit

This bit is reserved and will always read as zero.

Bit 7 6 5 4 3 2 1 0

TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 TWSR

Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0
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• Bits 1..0 – TWPS: TWI Prescaler Bits

These bits can be read and written, and control the bit rate prescaler. 

To calculate bit rates, see “Bit Rate Generator Unit” on page 206. The value of
TWPS1..0 is used in the equation.

TWI Data Register – TWDR

In Transmit mode, TWDR contains the next byte to be transmitted. In receive mode, the
TWDR contains the last byte received. It is writable while the TWI is not in the process of
shifting a byte. This occurs when the TWI interrupt flag (TWINT) is set by hardware.
Note that the Data Register cannot be initialized by the user before the first interrupt
occurs. The data in TWDR remains stable as long as TWINT is set. While data is shifted
out, data on the bus is simultaneously shifted in. TWDR always contains the last byte
present on the bus, except after a wake up from a sleep mode by the TWI interrupt. In
this case, the contents of TWDR is undefined. In the case of a lost bus arbitration, no
data is lost in the transition from Master to Slave. Handling of the ACK bit is controlled
automatically by the TWI logic, the CPU cannot access the ACK bit directly.

• Bits 7..0 – TWD: TWI Data Register 

These eight bits constitute the next data byte to be transmitted, or the latest data byte
received on the TWI Serial Bus.

TWI (Slave) Address Register 
– TWAR

• Bits 7..1 – TWA: TWI (Slave) Address Register 

These seven bits constitute the slave address of the TWI unit. The TWAR should be
loaded with the 7-bit slave address to which the TWI will respond when programmed as
a slave transmitter or receiver, and not needed in the master modes. In multimaster sys-
tems, TWAR must be set in masters which can be addressed as slaves by other
masters.

Table 90.  TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0
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• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit

TWGCE is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address
if enabled) in the received serial address. If a match is found, an interrupt request is
generated. If set, this bit enables the recognition of a General Call given over the TWI
Serial Bus.
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Using the TWI The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus
events, like reception of a byte or transmission of a START condition. Because the TWI
is interrupt-based, the application software is free to carry on other operations during a
TWI byte transfer. Note that the TWI Interrupt Enable (TWIE) bit in TWCR together with
the Global Interrupt Enable bit in SREG allow the application to decide whether or not
assertion of the TWINT flag should generate an interrupt request. If the TWIE bit is
cleared, the application must poll the TWINT flag in order to detect actions on the TWI
bus.

When the TWINT flag is asserted, the TWI has finished an operation and awaits applica-
tion response. In this case, the TWI Status Register (TWSR) contains a value indicating
the current state of the TWI bus. The application software can then decide how the TWI
should behave in the next TWI bus cycle by manipulating the TWCR and TWDR
Registers.

Figure 99 is a simple example of how the application can interface to the TWI hardware.
In this example, a master wishes to transmit a single data byte to a slave. This descrip-
tion is quite abstract, a more detailed explanation follows later in this section. A simple
code example implementing the desired behaviour is also presented.

Figure 99.  Interfacing the Application to the TWI in a Typical Transmission

1. The first step in a TWI transmission is to transmit a START condition. This is 
done by writing a specific value into TWCR, instructing the TWI hardware to 
transmit a START condition. Which value to write is described later on. However, 
it is important that the TWINT bit is set in the value written. Writing a one to 
TWINT clears the flag. The TWI will not start any operation as long as the TWINT 
bit in TWCR is set. Immediately after the application has cleared TWINT, the TWI 
will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT flag in TWCR is 
set, and TWSR is updated with a status code indicating that the START condition 
has successfully been sent.
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3. The application software should now examine the value of TWSR, to make sure 
that the START condition was successfully transmitted. If TWSR indicates other-
wise, the application software might take some special action, like calling an 
error routine. Assuming that the status code is as expected, the application must 
load SLA+W into TWDR. Remember that TWDR is used both for address and 
data. After TWDR has been loaded with the desired SLA+W, a specific value 
must be written to TWCR, instructing the TWI hardware to transmit the SLA+W 
present in TWDR. Which value to write is described later on. However, it is 
important that the TWINT bit is set in the value written. Writing a one to TWINT 
clears the flag. The TWI will not start any operation as long as the TWINT bit in 
TWCR is set. Immediately after the application has cleared TWINT, the TWI will 
initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT flag in TWCR is set, 
and TWSR is updated with a status code indicating that the address packet has 
successfully been sent. The status code will also reflect whether a slave 
acknowledged the packet or not.

5. The application software should now examine the value of TWSR, to make sure 
that the address packet was successfully transmitted, and that the value of the 
ACK bit was as expected. If TWSR indicates otherwise, the application software 
might take some special action, like calling an error routine. Assuming that the 
status code is as expected, the application must load a data packet into TWDR. 
Subsequently, a specific value must be written to TWCR, instructing the TWI 
hardware to transmit the data packet present in TWDR. Which value to write is 
described later on. However, it is important that the TWINT bit is set in the value 
written. Writing a one to TWINT clears the flag. The TWI will not start any opera-
tion as long as the TWINT bit in TWCR is set. Immediately after the application 
has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT flag in TWCR is set, and 
TWSR is updated with a status code indicating that the data packet has success-
fully been sent. The status code will also reflect whether a slave acknowledged 
the packet or not.

7. The application software should now examine the value of TWSR, to make sure 
that the data packet was successfully transmitted, and that the value of the ACK 
bit was as expected. If TWSR indicates otherwise, the application software might 
take some special action, like calling an error routine. Assuming that the status 
code is as expected, the application must write a specific value to TWCR, 
instructing the TWI hardware to transmit a STOP condition. Which value to write 
is described later on. However, it is important that the TWINT bit is set in the 
value written. Writing a one to TWINT clears the flag. The TWI will not start any 
operation as long as the TWINT bit in TWCR is set. Immediately after the appli-
cation has cleared TWINT, the TWI will initiate transmission of the STOP 
condition. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmis-
sions. These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the 
TWINT flag is set. The SCL line is pulled low until TWINT is cleared.

• When the TWINT flag is set, the user must update all TWI Registers with the value 
relevant for the next TWI bus cycle. As an example, TWDR must be loaded with the 
value to be transmitted in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have 
been completed, TWCR is written. When writing TWCR, the TWINT bit should be 
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set. Writing a one to TWINT clears the flag. The TWI will then commence executing 
whatever operation was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that
the code below assumes that several definitions have been made for example by using
include-files.

Assembly Code Example C Example Comments

1 ldi r16, (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)

sts TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN) Send START condition

2 wait1:

lds r16,TWCR

sbrs r16,TWINT

rjmp wait1

while (!(TWCR & (1<<TWINT)))

; Wait for TWINT flag set. This indicates that 
the START condition has been transmitted

3 lds r16,TWSR

andi r16, 0xF8

cpi r16, START

brne ERROR

if ((TWSR & 0xF8) != START)

ERROR(); Check value of TWI Status Register. Mask 
prescaler bits. If status different from START 
go to ERROR

ldi r16, SLA_W

sts TWDR, r16 

ldi r16, (1<<TWINT) | (1<<TWEN)

sts TWCR, r16

TWDR = SLA_W;

TWCR = (1<<TWINT) | (1<<TWEN); Load SLA_W into TWDR Register. Clear 
TWINT bit in TWCR to start transmission of 
address

4 wait2:

lds r16,TWCR

sbrs r16,TWINT

rjmp wait2

while (!(TWCR & (1<<TWINT)))

; Wait for TWINT flag set. This indicates that 
the SLA+W has been transmitted, and 
ACK/NACK has been received.

5 lds r16,TWSR

andi r16, 0xF8

cpi r16, MT_SLA_ACK

brne ERROR

if ((TWSR & 0xF8) != MT_SLA_ACK)

ERROR(); Check value of TWI Status Register. Mask 
prescaler bits. If status different from 
MT_SLA_ACK go to ERROR

ldi r16, DATA

sts TWDR, r16       

ldi r16, (1<<TWINT) | (1<<TWEN)

sts TWCR, r16

TWDR = DATA;

TWCR = (1<<TWINT) | (1<<TWEN); Load DATA into TWDR Register. Clear TWINT 
bit in TWCR to start transmission of data

6 wait3:

lds r16,TWCR

sbrs r16,TWINT

rjmp wait3

while (!(TWCR & (1<<TWINT)))

; Wait for TWINT flag set. This indicates that 
the DATA has been transmitted, and 
ACK/NACK has been received.

7 lds r16,TWSR

andi r16, 0xF8

cpi r16, MT_DATA_ACK

brne ERROR

if ((TWSR & 0xF8) != MT_DATA_ACK)

ERROR(); Check value of TWI Status Register. Mask 
prescaler bits. If status different from 
MT_DATA_ACK go to ERROR

ldi r16, (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO)

sts TWCR, r16 

TWCR = (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO); Transmit STOP condition
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Transmission Modes The TWI can operate in one of four major modes. These are named Master Transmitter
(MT), Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several
of these modes can be used in the same application. As an example, the TWI can use
MT mode to write data into a TWI EEPROM, MR mode to read the data back from the
EEPROM. If other masters are present in the system, some of these might transmit data
to the TWI, and then SR mode would be used. It is the application software that decides
which modes are legal.

The following sections describe each of these modes. Possible status codes are
described along with figures detailing data transmission in each of the modes. These fig-
ures contain the following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 101 to Figure 107, circles are used to indicate that the TWINT flag is set. The
numbers in the circles show the status code held in TWSR, with the prescaler bits
masked to zero. At these points, actions must be taken by the application to continue or
complete the TWI transfer. The TWI transfer is suspended until the TWINT flag is
cleared by software.

When the TWINT flag is set, the status code in TWSR is used to determine the appropri-
ate software action. For each status code, the required software action and details of the
following serial transfer are given in Table 91 to Table 94. Note that the prescaler bits
are masked to zero in these tables.

Master Transmitter Mode In the Master Transmitter mode, a number of data bytes are transmitted to a slave
receiver (see Figure 100). In order to enter a Master mode, a START condition must be
transmitted. The format of the following address packet determines whether Master
Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes
mentioned in this section assume that the prescaler bits are zero or are masked to zero.
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Figure 100.  Data Transfer in Master Transmitter Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be written to one to clear the
TWINT flag. The TWI will then test the Two-wire Serial Bus and generate a START con-
dition as soon as the bus becomes free. After a START condition has been transmitted,
the TWINT flag is set by hardware, and the status code in TWSR will be 0x08 (See
Table 91). In order to enter MT mode, SLA+W must be transmitted. This is done by writ-
ing SLA+W to TWDR. Thereafter the TWINT bit should be cleared (by writing it to one)
to continue the transfer. This is accomplished by writing the following value to TWCR:

When SLA+W have been transmitted and an acknowledgment bit has been received,
TWINT is set again and a number of status codes in TWSR are possible. Possible sta-
tus codes in Master mode are 0x18, 0x20, or 0x38. The appropriate action to be taken
for each of these status codes is detailed in Table 91. 

When SLA+W has been successfully transmitted, a data packet should be transmitted.
This is done by writing the data byte to TWDR. TWDR must only be written when
TWINT is high. If not, the access will be discarded, and the Write Collision bit (TWWC)
will be set in the TWCR Register. After updating TWDR, the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the
following value to TWCR:

This scheme is repeated until the last byte has been sent and the transfer is ended by
generating a STOP condition or a repeated START condition. A STOP condition is gen-
erated by writing the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

Device 1 Device 2
Device 3 Device n

SDA

SCL

........

R1 R2

VCC

MASTER
TRANSMITTER

SLAVE
RECEIVER
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After a repeated START condition (state 0x10) the Two-wire Serial Interface can access
the same slave again, or a new slave without transmitting a STOP condition. Repeated
START enables the master to switch between slaves, Master Transmitter mode and
Master Receiver mode without losing control of the bus.

Table 91.  Status Codes for Master Transmitter Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0x08 A START condition has been
transmitted

Load SLA+W X 0 1 X SLA+W will be transmitted;
ACK or NOT ACK will be received

0x10 A repeated START condition
has been transmitted

Load SLA+W or 

Load SLA+R

X

X

0

0

1

1

X

X

SLA+W will be transmitted;
ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to master receiver mode

0x18 SLA+W has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will 
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

0x20 SLA+W has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will 
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

0x28 Data byte has been transmitted;
ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will 
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

0x30 Data byte has been transmitted;
NOT ACK has been received

Load data byte or

No TWDR action or
No TWDR action or

No TWDR action

0

1
0

1

0

0
1

1

1

1
1

1

X

X
X

X

Data byte will be transmitted and ACK or NOT ACK will 
be received
Repeated START will be transmitted
STOP condition will be transmitted and
TWSTO flag will be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

0x38 Arbitration lost in SLA+W or data
bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not addressed 
slave mode entered
A START condition will be transmitted when the bus be-
comes free
217      
7522C–AUTO–09/06



      
Figure 101.  Formats and States in the Master Transmitter Mode
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Master Receiver Mode In the Master Receiver Mode, a number of data bytes are received from a slave trans-
mitter (see Figure 102). In order to enter a Master mode, a START condition must be
transmitted. The format of the following address packet determines whether Master
Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes
mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 102.  Data Transfer in Master Receiver Mode

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be
written to one to transmit a START condition and TWINT must be set to clear the TWINT
flag. The TWI will then test the Two-wire Serial Bus and generate a START condition as
soon as the bus becomes free. After a START condition has been transmitted, the
TWINT flag is set by hardware, and the status code in TWSR will be 0x08 (See Table
91). In order to enter MR mode, SLA+R must be transmitted. This is done by writing
SLA+R to TWDR. Thereafter the TWINT bit should be cleared (by writing it to one) to
continue the transfer. This is accomplished by writing the following value to TWCR:

When SLA+R have been transmitted and an acknowledgment bit has been received,
TWINT is set again and a number of status codes in TWSR are possible. Possible sta-
tus codes in Master mode are 0x38, 0x40, or 0x48. The appropriate action to be taken
for each of these status codes is detailed in Table 101. Received data can be read from
the TWDR Register when the TWINT flag is set high by hardware. This scheme is
repeated until the last byte has been received. After the last byte has been received, the
MR should inform the ST by sending a NACK after the last received data byte. The
transfer is ended by generating a STOP condition or a repeated START condition. A
STOP condition is generated by writing the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 1 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

Device 1 Device 2
Device 3 Device n

SDA

SCL

........

R1 R2

VCC

MASTER SLAVE
TRANSMITTERRECEIVER
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After a repeated START condition (state 0x10) the Two-wire Serial Interface can access
the same slave again, or a new slave without transmitting a STOP condition. Repeated
START enables the master to switch between slaves, Master Transmitter mode and
Master Receiver mode without losing control over the bus.

Figure 103.  Formats and States in the Master Receiver Mode
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This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The 
prescaler bits are zero or masked to zero

PDATA A

$58

A

RS
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Slave Receiver Mode In the Slave Receiver mode, a number of data bytes are received from a master trans-
mitter (see Figure 104). All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

Figure 104.  Data Transfer in Slave Receiver Mode

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

Table 92.  Status Codes for Master Receiver Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0x08 A START condition has been
transmitted

Load SLA+R X 0 1 X SLA+R will be transmitted
ACK or NOT ACK will be received

0x10 A repeated START condition
has been transmitted

Load SLA+R or 

Load SLA+W

X

X

0

0

1

1

X

X

SLA+R will be transmitted
ACK or NOT ACK will be received
SLA+W will be transmitted
Logic will switch to master transmitter mode

0x38 Arbitration lost in SLA+R or NOT
ACK bit

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

Two-wire Serial Bus will be released and not addressed 
slave mode will be entered
A START condition will be transmitted when the bus
becomes free

0x40 SLA+R has been transmitted;
ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x48 SLA+R has been transmitted;
NOT ACK has been received

No TWDR action or
No TWDR action or

No TWDR action

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO flag will 
be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

0x50 Data byte has been received;
ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x58 Data byte has been received;
NOT ACK has been returned

Read data byte or
Read data byte or

Read data byte

1
0

1

0
1

1

1
1

1

X
X

X

Repeated START will be transmitted
STOP condition will be transmitted and TWSTO flag will 
be reset
STOP condition followed by a START condition will be 
transmitted and TWSTO flag will be reset

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

Device 1 Device 2
Device 3 Device n

SDA

SCL

........

R1 R2

VCC

MASTERSLAVE
TRANSMITTERRECEIVER
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The upper seven bits are the address to which the Two-wire Serial Interface will respond
when addressed by a master. If the LSB is set, the TWI will respond to the general call
address (0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgment of the device’s own slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode
is entered. After its own slave address and the write bit have been received, the TWINT
flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 93. The slave receiver mode may also be entered if arbi-
tration is lost while the TWI is in the master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”)
to SDA after the next received data byte. This can be used to indicate that the slave is
not able to receive any more bytes. While TWEA is zero, the TWI does not acknowledge
its own slave address. However, the Two-wire Serial Bus is still monitored and address
recognition may resume at any time by setting TWEA. This implies that the TWEA bit
may be used to temporarily isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the
TWEA bit is set, the interface can still acknowledge its own slave address or the general
call address by using the Two-wire Serial Bus clock as a clock source. The part will then
wake up from sleep and the TWI will hold the SCL clock low during the wake up and
until the TWINT flag is cleared (by writing it to one). Further data reception will be car-
ried out as normal, with the AVR clocks running as normal. Observe that if the AVR is
set up with a long start-up time, the SCL line may be held low for a long time, blocking
other data transmissions.

Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last
byte present on the bus when waking up from these sleep modes.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X
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Table 93.  Status Codes for Slave Receiver Mode 
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0x60 Own SLA+W has been received;
ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x68 Arbitration lost in SLA+R/W as
master; own SLA+W has been 
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x70 General call address has been 
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x78 Arbitration lost in SLA+R/W as
master; General call address has
been received; ACK has been 
returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x80 Previously addressed with own
SLA+W; data has been received;
ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x88 Previously addressed with own
SLA+W; data has been received;
NOT ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

0x90 Previously addressed with 
general call; data has been re-
ceived; ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x98 Previously addressed with 
general call; data has been 
received; NOT ACK has been 
returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

0xA0 A STOP condition or repeated
START condition has been 
received while still addressed as
slave

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free
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Figure 105.  Formats and States in the Slave Receiver Mode

Slave Transmitter Mode In the Slave Transmitter mode, a number of data bytes are transmitted to a master
receiver (see Figure 106). All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

S SLA W A DATA A

$60 $80

$88

A

$68

Reception of the 
own slave address 
and one or more 
data bytes.  All are
acknowledged

Last data byte received
is not acknowledged

Arbitration lost as master
and addressed as slave

Reception of the general call
address and one or more data
bytes

Last data byte received is
not acknowledged

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The 
prescaler bits are zero or masked to zero

P or SDATA A

$80 $A0

P or SA

A DATA A

$70 $90

$98

A

$78

P or SDATA A

$90 $A0

P or SA

General Call

Arbitration lost as master and
addressed as slave by general call

DATA A
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Figure 106.  Data Transfer in Slave Transmitter Mode

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the Two-wire Serial Interface will respond
when addressed by a master. If the LSB is set, the TWI will respond to the general call
address (0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgment of the device’s own slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode
is entered. After its own slave address and the write bit have been received, the TWINT
flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 94. The Slave Transmitter mode may also be entered if
arbitration is lost while the TWI is in the Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of
the transfer. State 0xC0 or state 0xC8 will be entered, depending on whether the master
receiver transmits a NACK or ACK after the final byte. The TWI is switched to the not
addressed slave mode, and will ignore the master if it continues the transfer. Thus the
master receiver receives all “1” as serial data. State 0xC8 is entered if the master
demands additional data bytes (by transmitting ACK), even though the slave has trans-
mitted the last byte (TWEA zero and expecting NACK from the master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the
Two-wire Serial Bus is still monitored and address recognition may resume at any time
by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the
TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the
TWEA bit is set, the interface can still acknowledge its own slave address or the general
call address by using the Two-wire Serial Bus clock as a clock source. The part will then
wake up from sleep and the TWI will hold the SCL clock will low during the wake up and

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X

Device 1 Device 2
Device 3 Device n

SDA

SCL

........

R1 R2

VCC

MASTERSLAVE
TRANSMITTER RECEIVER
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until the TWINT flag is cleared (by writing it to one). Further data transmission will be
carried out as normal, with the AVR clocks running as normal. Observe that if the AVR is
set up with a long start-up time, the SCL line may be held low for a long time, blocking
other data transmissions.

Note that the Two-wire Serial Interface Data Register – TWDR does not reflect the last
byte present on the bus when waking up from these sleep modes.

Table 94.  Status Codes for Slave Transmitter Mode
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0xA8 Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB0 Arbitration lost in SLA+R/W as
master; own SLA+R has been 
received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be re-
ceived

0xB8 Data byte in TWDR has been 
transmitted; ACK has been 
received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be re-
ceived

0xC0 Data byte in TWDR has been 
transmitted; NOT ACK has been 
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

0xC8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed slave mode;
no recognition of own SLA or GCA
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free
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Figure 107.  Formats and States in the Slave Transmitter Mode

Miscellaneous States There are two status codes that do not correspond to a defined TWI state, see Table 95.

Status 0xF8 indicates that no relevant information is available because the TWINT flag
is not set. This occurs between other states, and when the TWI is not involved in a serial
transfer.

Status 0x00 indicates that a bus error has occurred during a Two-wire Serial Bus trans-
fer. A bus error occurs when a START or STOP condition occurs at an illegal position in
the format frame. Examples of such illegal positions are during the serial transfer of an
address byte, a data byte, or an acknowledge bit. When a bus error occurs, TWINT is
set. To recover from a bus error, the TWSTO flag must set and TWINT must be cleared
by writing a logic one to it. This causes the TWI to enter the not addressed slave mode
and to clear the TWSTO flag (no other bits in TWCR are affected). The SDA and SCL
lines are released, and no STOP condition is transmitted.

Combining Several TWI 
Modes

In some cases, several TWI modes must be combined in order to complete the desired
action. Consider for example reading data from a serial EEPROM. Typically, such a
transfer involves the following steps:

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the 
own slave address 
and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = '0')

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The 
prescaler bits are zero or masked to zero

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

Table 95.  Miscellaneous States
Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial
Bus and Two-wire Serial Inter-
face Hardware

Application Software Response

Next Action Taken by TWI Hardware
To/from TWDR

To TWCR

STA STO TWINT TWEA

0xF8 No relevant state information
available; TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

0x00 Bus error due to an illegal
START or STOP condition

No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
tion is sent on the bus. In all cases, the bus is released 
and TWSTO is cleared.
227      
7522C–AUTO–09/06



      
1. The transfer must be initiated

2. The EEPROM must be instructed what location should be read

3. The reading must be performed

4. The transfer must be finished

Note that data is transmitted both from master to slave and vice versa. The master must
instruct the slave what location it wants to read, requiring the use of the MT mode. Sub-
sequently, data must be read from the slave, implying the use of the MR mode. Thus,
the transfer direction must be changed. The master must keep control of the bus during
all these steps, and the steps should be carried out as an atomical operation. If this prin-
ciple is violated in a multimaster system, another master can alter the data pointer in the
EEPROM between steps 2 and 3, and the master will read the wrong data location.
Such a change in transfer direction is accomplished by transmitting a REPEATED
START between the transmission of the address byte and reception of the data. After a
REPEATED START, the master keeps ownership of the bus. The following figure shows
the flow in this transfer.

Figure 108.  Combining Several TWI Modes to Access a Serial EEPROM

Multi-master Systems 
and Arbitration

If multiple masters are connected to the same bus, transmissions may be initiated simul-
taneously by one or more of them. The TWI standard ensures that such situations are
handled in such a way that one of the masters will be allowed to proceed with the trans-
fer, and that no data will be lost in the process. An example of an arbitration situation is
depicted below, where two masters are trying to transmit data to a slave receiver.

Figure 109.  An Arbitration Example

Several different scenarios may arise during arbitration, as described below:

• Two or more masters are performing identical communication with the same slave. 
In this case, neither the slave nor any of the masters will know about the bus 
contention.

Master Transmitter Master Receiver

S = START Rs = REPEATED START P = STOP

Transmitted from master to slave Transmitted from slave to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

Device 1 Device 2 Device 3
Device n

SDA

SCL

........

R1 R2

VCC

MASTER
TRANSMITTER

SLAVE
RECEIVER

SLAVE
RECEIVER
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• Two or more masters are accessing the same slave with different data or direction 
bit. In this case, arbitration will occur, either in the READ/WRITE bit or in the data 
bits. The masters trying to output a one on SDA while another master outputs a zero 
will lose the arbitration. Losing masters will switch to not addressed slave mode or 
wait until the bus is free and transmit a new START condition, depending on 
application software action.

• Two or more masters are accessing different slaves. In this case, arbitration will 
occur in the SLA bits. Masters trying to output a one on SDA while another master 
outputs a zero will lose the arbitration. Masters losing arbitration in SLA will switch to 
slave mode to check if they are being addressed by the winning master. If 
addressed, they will switch to SR or ST mode, depending on the value of the 
READ/WRITE bit. If they are not being addressed, they will switch to not addressed 
slave mode or wait until the bus is free and transmit a new START condition, 
depending on application software action.

This is summarized in Figure 110. Possible status values are given in circles.

Figure 110.  Possible Status Codes Caused by Arbitration

Own
Address / General Call

received

Arbitration lost in SLA

TWI bus will be released and not addressed slave mode will be entered
A START condition will be transmitted when the bus becomes free

No

Arbitration lost in Data

Direction

Yes

Write Data byte will be received and NOT ACK will be returned
Data byte will be received and ACK will be returned

Last data byte will be transmitted and NOT ACK should be received
Data byte will be transmitted and ACK should be received

Read
B0

68/78

38

SLASTART Data STOP
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Controller Area Network - CAN
The Controller Area Network (CAN) protocol is a real-time, serial, broadcast protocol
with a very high level of security. The AT90CAN128 CAN controller is fully compatible
with the CAN Specification 2.0 Part A and Part B. It delivers the features required to
implement the kernel of the CAN bus protocol according to the ISO/OSI Reference
Model: 

• The Data Link Layer
- the Logical Link Control (LLC) sublayer
- the Medium Access Control (MAC) sublayer

• The Physical Layer
- the Physical Signalling (PLS) sublayer
- not supported - the Physical Medium Attach (PMA)
- not supported - the Medium Dependent Interface (MDI)

The CAN controller is able to handle all types of frames (Data, Remote, Error and Over-
load) and achieves a bitrate of 1 Mbit/s.

Features • Full Can Controller

• Fully Compliant with CAN Standard rev 2.0 A and rev 2.0 B

• 15 MOb (Message Object) with their own:

– 11 bits of Identifier Tag (rev 2.0 A), 29 bits of Identifier Tag (rev 2.0 B) 
– 11 bits of Identifier Mask (rev 2.0 A), 29 bits of Identifier Mask (rev 2.0 B) 
– 8 Bytes Data Buffer (Static Allocation)
– Tx, Rx, Frame Buffer or Automatic Reply Configuration
– Time Stamping

• 1 Mbit/s Maximum Transfer Rate at 8 MHz

• TTC Timer

• Listening Mode (for Spying or Autobaud)

CAN Protocol The CAN protocol is an international standard defined in the ISO 11898 for high speed
and ISO 11519-2 for low speed.

Principles CAN is based on a broadcast communication mechanism. This broadcast communica-
tion is achieved by using a message oriented transmission protocol. These messages
are identified by using a message identifier. Such a message identifier has to be unique
within the whole network and it defines not only the content but also the priority of the
message.

The priority at which a message is transmitted compared to another less urgent mes-
sage is specified by the identifier of each message. The priorities are laid down during
system design in the form of corresponding binary values and cannot be changed
dynamically. The identifier with the lowest binary number has the highest priority.

Bus access conflicts are resolved by bit-wise arbitration on the identifiers involved by
each node observing the bus level bit for bit. This happens in accordance with the "wired
and" mechanism, by which the dominant state overwrites the recessive state. The com-
petition for bus allocation is lost by all nodes with recessive transmission and dominant
observation. All the "losers" automatically become receivers of the message with the
highest priority and do not re-attempt transmission until the bus is available again.
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Message Formats The CAN protocol supports two message frame formats, the only essential difference
being in the length of the identifier. The CAN standard frame, also known as CAN 2.0 A,
supports a length of 11 bits for the identifier, and the CAN extended frame, also known
as CAN 2.0 B, supports a length of 29 bits for the identifier.

Can Standard Frame

Figure 111.  CAN Standard Frames

A message in the CAN standard frame format begins with the "Start Of Frame (SOF)",
this is followed by the "Arbitration field" which consist of the identifier and the "Remote
Transmission Request (RTR)" bit used to distinguish between the data frame and the
data request frame called remote frame. The following "Control field" contains the "IDen-
tifier Extension (IDE)" bit and the "Data Length Code (DLC)" used to indicate the
number of following data bytes in the "Data field". In a remote frame, the DLC contains
the number of requested data bytes. The "Data field" that follows can hold up to 8 data
bytes. The frame integrity is guaranteed by the following "Cyclic Redundant Check
(CRC)" sum. The "ACKnowledge (ACK) field" compromises the ACK slot and the ACK
delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as a domi-
nant bit by the receivers which have at this time received the data correctly. Correct
messages are acknowledged by the receivers regardless of the result of the acceptance
test. The end of the message is indicated by "End Of Frame (EOF)". The "Intermission
Frame Space (IFS)" is the minimum number of bits separating consecutive messages. If
there is no following bus access by any node, the bus remains idle.

CAN Extended Frame

Figure 112.  CAN Extended Frames
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A message in the CAN extended frame format is likely the same as a message in CAN
standard frame format. The difference is the length of the identifier used. The identifier is
made up of the existing 11-bit identifier (base identifier) and an 18-bit extension (identi-
fier extension). The distinction between CAN standard frame format and CAN extended
frame format is made by using the IDE bit which is transmitted as dominant in case of a
frame in CAN standard frame format, and transmitted as recessive in the other case.

Format Co-existence As the two formats have to co-exist on one bus, it is laid down which message has
higher priority on the bus in the case of bus access collision with different formats and
the same identifier / base identifier: The message in CAN standard frame format always
has priority over the message in extended format.

There are three different types of CAN modules available:

– 2.0A - Considers 29 bit ID as an error
– 2.0B Passive - Ignores 29 bit ID messages
– 2.0B Active - Handles both 11 and 29 bit ID Messages

CAN Bit Timing To ensure correct sampling up to the last bit, a CAN node needs to re-synchronize
throughout the entire frame. This is done at the beginning of each message with the fall-
ing edge SOF and on each recessive to dominant edge.

Bit Construction One CAN bit time is specified as four non-overlapping time segments. Each segment is
constructed from an integer multiple of the Time Quantum. The Time Quantum or TQ is
the smallest discrete timing resolution used by a CAN node.

Figure 113.  CAN Bit Construction

Synchronization Segment The first segment is used to synchronize the various bus nodes.

On transmission, at the start of this segment, the current bit level is output. If there is a
bit state change between the previous bit and the current bit, then the bus state change
is expected to occur within this segment by the receiving nodes.

Propagation Time Segment This segment is used to compensate for signal delays across the network.

This is necessary to compensate for signal propagation delays on the bus line and
through the transceivers of the bus nodes.
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Phase Segment 1 Phase Segment 1 is used to compensate for edge phase errors.

This segment may be lengthened during re-synchronization.

Sample Point The sample point is the point of time at which the bus level is read and interpreted as the
value of the respective bit. Its location is at the end of Phase Segment 1 (between the
two Phase Segments).

Phase Segment 2 This segment is also used to compensate for edge phase errors.

This segment may be shortened during re-synchronization, but the length has to be at
least as long as the Information Processing Time (IPT) and may not be more than the
length of Phase Segment 1.

Information Processing Time It is the time required for the logic to determine the bit level of a sampled bit.

The IPT begins at the sample point, is measured in TQ and is fixed at 2TQ for the Atmel
CAN. Since Phase Segment 2 also begins at the sample point and is the last segment in
the bit time, PS2 minimum shall not be less than the IPT.

Bit Lengthening As a result of resynchronization, Phase Segment 1 may be lengthened or Phase Seg-
ment 2 may be shortened to compensate for oscillator tolerances. If, for example, the
transmitter oscillator is slower than the receiver oscillator, the next falling edge used for
resynchronization may be delayed. So Phase Segment 1 is lengthened in order to
adjust the sample point and the end of the bit time.

Bit Shortening If, on the other hand, the transmitter oscillator is faster than the receiver one, the next
falling edge used for resynchronization may be too early. So Phase Segment 2 in bit N
is shortened in order to adjust the sample point for bit N+1 and the end of the bit time

Synchronization Jump Width The limit to the amount of lengthening or shortening of the Phase Segments is set by the
Resynchronization Jump Width.

This segment may not be longer than Phase Segment 2.

Programming the Sample Point Programming of the sample point allows "tuning" of the characteristics to suit the bus.

Early sampling allows more Time Quanta in the Phase Segment 2 so the Synchroniza-
tion Jump Width can be programmed to its maximum. This maximum capacity to
shorten or lengthen the bit time decreases the sensitivity to node oscillator tolerances,
so that lower cost oscillators such as ceramic resonators may be used.

Late sampling allows more Time Quanta in the Propagation Time Segment which allows
a poorer bus topology and maximum bus length.

Synchronization Hard synchronization occurs on the recessive-to-dominant transition of the start bit. The
bit time is restarted from that edge. 

Re-synchronization occurs when a recessive-to-dominant edge doesn't occur within the
Synchronization Segment in a message. 

Arbitration The CAN protocol handles bus accesses according to the concept called “Carrier Sense
Multiple Access with Arbitration on Message Priority”.

During transmission, arbitration on the CAN bus can be lost to a competing device with
a higher priority CAN Identifier. This arbitration concept avoids collisions of messages
whose transmission was started by more than one node simultaneously and makes sure
the most important message is sent first without time loss.
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The bus access conflict is resolved during the arbitration field mostly over the identifier
value. If a data frame and a remote frame with the same identifier are initiated at the
same time, the data frame prevails over the remote frame (c.f. RTR bit). 

Figure 114.  Bus Arbitration

Errors The CAN protocol signals any errors immediately as they occur. Three error detection
mechanisms are implemented at the message level and two at the bit level:

Error at Message Level • Cyclic Redundancy Check (CRC)
The CRC safeguards the information in the frame by adding redundant check bits at 
the transmission end. At the receiver these bits are re-computed and tested against 
the received bits. If they do not agree there has been a CRC error. 

• Frame Check
This mechanism verifies the structure of the transmitted frame by checking the bit 
fields against the fixed format and the frame size. Errors detected by frame checks 
are designated "format errors". 

• ACK Errors
As already mentioned frames received are acknowledged by all receivers through 
positive acknowledgement. If no acknowledgement is received by the transmitter of 
the message an ACK error is indicated. 

Error at Bit Level • Monitoring
The ability of the transmitter to detect errors is based on the monitoring of bus 
signals. Each node which transmits also observes the bus level and thus detects 
differences between the bit sent and the bit received. This permits reliable detection 
of global errors and errors local to the transmitter. 

• Bit Stuffing
The coding of the individual bits is tested at bit level. The bit representation used by 
CAN is "Non Return to Zero (NRZ)" coding, which guarantees maximum efficiency 
in bit coding. The synchronization edges are generated by means of bit stuffing.

Error Signalling If one or more errors are discovered by at least one node using the above mechanisms,
the current transmission is aborted by sending an "error flag". This prevents other nodes
accepting the message and thus ensures the consistency of data throughout the net-
work. After transmission of an erroneous message that has been aborted, the sender
automatically re-attempts transmission.
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CAN Controller The CAN controller implemented into AT90CAN128 offers V2.0B Active.

This full-CAN controller provides the whole hardware for convenient acceptance filtering
and message management. For each message to be transmitted or received this mod-
ule contains one so called message object in which all information regarding the
message (e.g. identifier, data bytes etc.) are stored.

During the initialization of the peripheral, the application defines which messages are to
be sent and which are to be received. Only if the CAN controller receives a message
whose identifier matches with one of the identifiers of the programmed (receive-) mes-
sage objects the message is stored and the application is informed by interrupt. Another
advantage is that incoming remote frames can be answered automatically by the full-
CAN controller with the corresponding data frame. In this way, the CPU load is strongly
reduced compared to a basic-CAN solution.

Using full-CAN controller, high baudrates and high bus loads with many messages can
be handled.

Figure 115.  CAN Controller Structure
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CAN Channel

Configuration The CAN channel can be in:

• Enabled mode

In this mode:
– the CAN channel (internal TXDCAN & RXDCAN) is enabled,
– the input clock is enabled.

• Standby mode

In standby mode:
– the transmitter constantly provides a recessive level (on internal TXDCAN) 

and the receiver is disabled,
– input clock is enabled,
– the registers and pages remain accessible.

• Listening mode

This mode is transparent for the CAN channel:
– enables a hardware loop back, internal TXDCAN on internal RXDCAN
– provides a recessive level on TXDCAN pin
– does not disable RXDCAN
– freezes TEC and REC error counters

Figure 116.  Listening Mode

Bit Timing FSM’s (Finite State Machine) of the CAN channel need to be synchronous to the time
quantum. So, the input clock for bit timing is the clock used into CAN channel FSM’s. 

Field and segment abbreviations:

• BRP: Baud Rate Prescaler.

• TQ: Time Quantum (output of Baud Rate Prescaler).

• SYNS: SYNchronization Segment is 1 TQ long.

• PRS: PRopagation time Segment is programmable to be 1, 2, ..., 8 TQ long.

• PHS1: PHase Segment 1 is programmable to be 1, 2, ..., 8 TQ long.

• PHS2: PHase Segment 2 is programmable to be ≤ PHS1 and ≥ INFORMATION 
PROCESSING TIME.

• INFORMATION PROCESSING TIME is 2 TQ.

• SJW: (Re) Synchronization Jump Width is programmable between 1 and min(4, 
PHS1).

The total number of TQ in a bit time has to be programmed at least from 8 to 25.

1
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Figure 117.  Sample and Transmission Point 

Figure 118.  General Structure of a Bit Period

Baud Rate The baud rate selection is made by Tbit calculation:

Tbit(1) = Tsyns + Tprs + Tphs1 + Tphs2
1. Tsyns = 1 x Tscl = (BRP[5..0]+ 1)/clkIO (= 1TQ) 

2.Tprs = (1 to 8) x Tscl = (PRS[2..0]+ 1) x Tscl 

3.Tphs1 = (1 to 8) x Tscl = (PHS1[2..0]+ 1) x Tscl 

4.Tphs2 = (1 to 8) x Tscl = (PHS2[2..0](2)+ 1) x Tscl 

5.Tsjw = (1 to 4) x Tscl = (SJW[1..0]+ 1) x Tscl

Notes: 1. The total number of Tscl (Time Quanta) in a bit time must be between 8 to 25.
2. PHS2[2..0] 2 is programmable to be ≤ PHS1[2..0] and ≥ 1.

Fault Confinement (c.f. Section  “Error Management”).
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Overload Frame An overload frame is sent by setting an overload request (OVRQ). After the next recep-
t ion, the CAN channel sends an overload frame in accordance with the CAN
specification. A status or flag is set (OVRF) as long as the overload frame is sent.

Figure 119.  Overload Frame

Message Objects The MOb is a CAN frame descriptor. It contains all information to handle a CAN frame.
This means that a MOb has been outlined to allow to describe a CAN message like an
object. The set of MObs is the front end part of the “mailbox” where the messages to
send and/or to receive are pre-defined as well as possible to decrease the work load of
the software.

The MObs are numbered from 0 up to 14 (no MOb [15]). They are independent but pri-
ority is given to the lower one in case of multi matching. The operating modes are:

– Disabled mode 
– Transmit mode
– Receive mode
– Automatic reply
– Frame buffer receive mode

Operating Modes Every MOb has its own fields to control the operating mode. There is no default mode
after RESET. Before enabling the CAN peripheral, each MOb must be configured (ex:
disabled mode - CONMOB=00). 

Disabled In this mode, the MOb is “free”.

Tx Data & Remote Frame 1. Several fields must be initialized before sending:

– Identifier tag (IDT)
– Identifier extension (IDE)

Ident "A" Cmd Message Data "A" CRC InterframeA Ident "B"

Overload   Frame

Overload   FrameRXCAN

Setting OVRQ bit

OVFG bit

Resetting OVRQ bit

TXCAN

OVRQ bit

Instructions

Table 96.  MOb Configuration

MOb Configuration Reply Valid RTR Tag Operating Mode

0 0 x x Disabled

0 1
x 0 Tx Data Frame

x 1 Tx Remote Frame

1 0

x 0 Rx Data Frame

0

1

Rx Remote Frame

1
Rx Remote Frame then,
Tx Data Frame (reply)

1 1 x x Frame Buffer Receive Mode
238 AT90CAN128 Auto
7522C–AUTO–09/06



AT90CAN128 Auto
– Remote transmission request (RTRTAG)
– Data length code (DLC)
– Reserved bit(s) tag (RBnTAG)
– Data bytes of message (MSG)

2. The MOb is ready to send a data or a remote frame when the MOb configuration is
set (CONMOB).

3. Then, the CAN channel scans all the MObs in Tx configuration, finds the MOb hav-
ing the highest priority and tries to send it.

4. When the transmission is completed the TXOK flag is set (interrupt).

5. All the parameters and data are available in the MOb until a new initialization.

Rx Data & Remote Frame 1. Several fields must be initialized before receiving:

– Identifier tag (IDT)
– Identifier mask (IDMSK)
– Identifier extension (IDE)
– Identifier extension mask (IDEMSK)
– Remote transmission request (RTRTAG)
– Remote transmission request mask (RTRMSK)
– Data length code (DLC)
– Reserved bit(s) tag (RBnTAG)

2. The MOb is ready to receive a data or a remote frame when the MOb configuration
is set (CONMOB).

3. When a frame identifier is received on CAN network, the CAN channel scans all the
MObs in receive mode, tries to find the MOb having the highest priority which is
matching. 

4. On a hit, the IDT, the IDE and the DLC of the matched MOb are updated from the
incoming (frame) values.

5. Once the reception is completed, the data bytes of the received message are stored
(not for remote frame) in the data buffer of the matched MOb and the RXOK flag is
set (interrupt).

6. All the parameters and data are available in the MOb until a new initialization.

Automatic Reply A reply (data frame) to a remote frame can be automatically sent after reception of the
expected remote frame.

1. Several fields must be initialized before receiving the remote frame:

– (c.f. Section  “Rx Data & Remote Frame”)
2. When a remote frame matches, automatically the RTRTAG and the reply valid bit

(RPLV) are reset. No flag (or interrupt) is set at this time. Since the CAN data buffer
has not been used by the incoming remote frame, the MOb is then ready to be in
transmit mode without any more setting. The IDT, the IDE, the other tags and the
DLC of the received remote frame are used for the reply.

3. When the transmission of the reply is completed the TXOK flag is set (interrupt).

4. All the parameters and data are available in the MOb until a new initialization.

Frame Buffer Receive Mode This mode is useful to receive multi frames. The priority between MObs offers a man-
agement for these incoming frames. One set MObs (including non-consecutive MObs)
is created when the MObs are set in this mode. Due to the mode setting, only one set is
possible. A frame buffer completed flag (or interrupt) - BXOK - will rise only when all the
MObs of the set will have received their dedicated CAN frame.
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1. MObs in frame buffer receive mode need to be initialized as MObs in standard
receive mode.

2. The MObs are ready to receive data (or a remote) frames when their respective
configurations are set (CONMOB).

3. When a frame identifier is received on CAN network, the CAN channel scans all the
MObs in receive mode, tries to find the MOb having the highest priority which is
matching.

4. On a hit, the IDT, the IDE and the DLC of the matched MOb are updated from the
incoming (frame) values.

5. Once the reception is completed, the data bytes of the received message are stored
(not for remote frame) in the data buffer of the matched MOb and the RXOK flag is
set (interrupt).

6. When the reception in the last MOb of the set is completed, the frame buffer com-
pleted BXOK flag is set (interrupt). BXOK flag can be cleared only if all CONMOB
fields of the set have been re-written before.

7. All the parameters and data are available in the MObs until a new initialization.

Acceptance Filter Upon a reception hit (i.e., a good comparison between the ID + RTR + RBn + IDE
received and an IDT+ RTRTAG + RBnTAG + IDE specified while taking the comparison
mask into account) the IDT + RTRTAG + RBnTAG + IDE received are updated in the
MOb (written over the registers).

Figure 120.  Acceptance Filter Block Diagram

Note: Examples:
To accept only ID = 0x317 in part A. To accept ID from 0x310 up to 0x317 in part A.
- ID MSK = 111 1111 1111 b - ID MSK = 111 1111 1000 b
- ID TAG = 011 0001 0111 b - ID TAG = 011 0001 0xxx b

MOb Page Every MOb is mapped into a page to save place. The page number is the MOb number.
This page number is set in CANPAGE register. The number 15 is reserved for factory
tests.

CANHPMOB register gives the MOb having the highest priority in CANSIT registers. It is
formatted to provide a direct entry for CANPAGE register. Because CANHPMOB codes
CANSIT registers, it will be only updated if the corresponding enable bits (ENRX, ENTX,
ENERR) are enabled (c.f. Figure 124).
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CAN Data Buffers To preserve register allocation, the CAN data buffer is seen such as a FIFO (with
address pointer accessible) into a MOb selection.This also allows to reduce the risks of
un-controlled accesses.

There is one FIFO per MOb. This FIFO is accessed into a MOb page thanks to the CAN
message register.

The data index (INDX) is the address pointer to the required data byte. The data byte
can be read or write. The data index is automatically incremented after every access if
the AINC* bit is reset. A roll-over is implemented, after data index=7 it is data index=0.

The first byte of a CAN frame is stored at the data index=0, the second one at the data
index=1, ...

CAN Timer A programmable 16-bit timer is used for message stamping and time trigger communi-
cation (TTC).

Figure 121.  CAN Timer Block Diagram

Prescaler An 8-bit prescaler is initialized by CANTCON register. It receives the clkIO divided by 8.
It provides CLKCANTIM to the CAN Timer if the CAN controller is enabled.

CLKCANTIM = CLKIO x 8 x (CANTCON [7:0] + 1)

16-bit Timer This timer starts counting from 0x0000 when the CAN controller is enabled (ENFG bit).
When the timer rolls over from 0xFFFF to 0x0000, an interrupt is generated (OVRTIM).

Time Triggering Two synchronization modes are implemented for TTC (TTC bit):
– synchronization on Start of Frame (SYNCTTC=0),
– synchronization on End of Frame (SYNCTTC=1).

In TTC mode, a frame is sent once, even if an error occurs.

Stamping Message The capture of the timer value is done in the MOb which receives or sends the frame. All
managed MOb are stamped, the stamping of a received (sent) frame occurs on RxOk
(TXOK).

÷8CLK
IO

CLKCANTIM

CANTIM

CANTTCCANSTM[i]

CANTCON

TTC SYNCTTC

"EOF "

"SOF "

OVRTIM

TXOK[i]

RXOK[i]

overrun

ENFG
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Error Management

Fault Confinement The CAN channel may be in one of the three following states:

• Error active (default):
The CAN channel takes part in bus communication and can send an active error
frame when the CAN macro detects an error.

• Error passive:
The CAN channel cannot send an active error frame. It takes part in bus
communication, but when an error is detected, a passive error frame is sent. Also,
after a transmission, an error passive unit will wait before initiating further
transmission.

• Bus off:
The CAN channel is not allowed to have any influence on the bus.

For fault confinement, a transmit error counter (TEC) and a receive error counter (REC)
are implemented. BOFF and ERRP bits give the information of the state of the CAN
channel. Setting BOFF to one may generate an interrupt.

Figure 122.  Line Error Mode

Note: More than one REC/TEC change may apply during a given message transfer.

Error Types • BERR: Bit error. The bit value which is monitored is different from the bit value sent.

Note:Exceptions:
- Recessive bit sent monitored as dominant bit during the arbitration field and the 
acknowledge slot.
- Detecting a dominant bit during the sending of an error frame.

• SERR: Stuff error. Detection of more than five consecutive bit with the same polarity.

• CERR: CRC error (Rx only). The receiver performs a CRC check on every destuffed 
received message from the start of frame up to the data field. If this checking does 
not match with the destuffed CRC field, an CRC error is set.

• FERR: Form error. The form error results from one (or more) violations of the fixed 
form of the following bit fields:
– CRC delimiter
– acknowledgement delimiter
– end-of-frame
– error delimiter

ERPP =  0
BOFF = 0
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ERPP =  1
BOFF = 0

Error
Active

Error
Passive

Bus
Off

TEC > 127 or
 REC > 127

TEC > 255

TEC ≤ 127 and
REC ≤ 127

128 occurrences
of 11 consecutive

 recessive bit

Reset

BOFFIT interrupt
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– overload delimiter

• AERR: Acknowledgment error (Tx only). No detection of the dominant bit in the 
acknowledge slot.

Figure 123.  Error Detection Procedures in a Data Frame

Error Setting The CAN channel can detect some errors on the CAN network.

• In transmission:
The error is set at MOb level.

• In reception:
- The identified has matched:

The error is set at MOb level.
- The identified has not or not yet matched:

The error is set at general level. 

After detecting an error, the CAN channel sends an error frame on network. If the CAN
channel detects an error frame on network, it sends its own error frame.

Identifier Message DataRTR
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Interrupts

Interrupt organization The different interrupts are:

• Interrupt on receive completed OK,

• Interrupt on transmit completed OK,

• Interrupt on error (bit error, stuff error, crc error, form error, acknowledge error),

• Interrupt on frame buffer full,

• Interrupt on “Bus Off” setting,

• Interrupt on overrun of CAN timer.

The general interrupt enable is provided by ENIT bit and the specific interrupt enable for
CAN timer overrun is provided by ENORVT bit.

Figure 124.  CAN Controller Interrupt Structure
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Interrupt Behavior When an interrupt occurs, the corresponding bit is set in the CANSITn or CANGIT
registers.

To acknowledge a MOb interrupt, the corresponding bits of CANSTMOB register
(RXOK, TXOK,...) must be cleared by the software application. This operation needs a
read-modify-write software routine.

To acknowledge a general interrupt, the corresponding bits of CANGIT register (BXOK,
BOFFIT,...) must be cleared by the software application. This operation is made writing
a logical one in these interrupt flags (writing a logical zero doesn’t change the interrupt
flag value).

OVRTIM interrupt flag is reset as the other interrupt sources of CANGIT register and is
also reset entering in its dedicated interrupt handler.

When the CAN node is in transmission and detects a Form Error in its frame, a bit Error
will also be raised. Consequently, two consecutive interrupts can occur, both due to the
same error.

When a MOb error occurs and is set in its own CANSTMOB register, no general error is
set in CANGIT register.
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CAN Register Description

Figure 125.  Registers Organization

General Control

General Status

General Interrupt

Bit Timing 1

Bit Timing 2

Bit Timing 3

Enable MOb 2

Enable MOb 1

Enable Interrupt

Status Interrupt MOb 2

Status Interrupt MOb 1

Enable Interrupt MOb 2

Enable Interrupt MOb 1

CAN Timer Control

CAN TTC Low

CAN TTC High

CAN Timer Low

CAN Timer High

TEC Counter

REC Counter

Hightest Priority MOb

Page MOb
MOb Number Data Index

ID Tag 2

ID Tag 1

ID Tag 4

ID Tag 3

ID Mask 2

ID Mask 1

ID Mask 4

ID Mask 3

Time Stamp Low

Time Stamp High

Message Data

MOb Status

MOb Control & DLC

Page MOb

MOb0 - ID Tag 2

MOb0 - ID Tag 1

MOb0 - ID Tag 4

MOb0 - ID Tag 3

MOb0 - ID Mask 2

MOb0 - ID Mask 1

MOb0 - ID Mask 4

MOb0 - ID Mask 3

MOb0 - Time Stamp Low

MOb0 - Time Stamp High

MOb0 - MOb Status

MOb0 - MOb Ctrl & DLC

MOb0 - Mess. Data - byte 0

MOb14 - ID Tag 2

MOb14 - ID Tag 1

MOb14 - ID Tag 4

MOb14 - ID Tag 3

MOb14 - ID Mask 2

MOb14 - ID Mask 1

MOb14 - ID Mask 4

MOb14 - ID Mask 3

MOb14 - Time Stamp Low

MOb14 - Time Stamp High

MOb14 - MOb Status

MOb14 - MOb Ctrl & DLC

MOb14 - Mess. Data - byte 0

15 Message Objects

8 bytes

AVR Registers Registers in Pages
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General CAN Registers

CAN General Control Register 
- CANGCON

• Bit 7 – ABRQ: Abort Request

This is not an auto resettable bit.

– 0 - no request.
– 1 - abort request: a reset of CANEN1 and CANEN2 registers is done. The 

pending communications are immediately disabled and the on-going one will be 
normally terminated, setting the appropriate status flags. 
Note that CONCDMOB register remain unchanged.

• Bit 6 – OVRQ: Overload Frame Request

This is not an auto resettable bit.

– 0 - no request.
– 1 - overload frame request: send an overload frame after the next received 

frame.

The overload frame can be traced observing OVFG in CANGSTA register (c.f. Figure
119 on page 238).

• Bit 5 – TTC: Time Trigger Communication

– 0 - no TTC.
– 1- TTC mode.

• Bit 4 – SYNTTC: Synchronization of TTC

This bit is only used in TTC mode.

– 0 - the TTC timer is caught on SOF.
– 1 - the TTC timer is caught on the last bit of the EOF.

• Bit 3 – LISTEN: Listening Mode

– 0 - no listening mode.
– 1 - listening mode.

• Bit 2 – TEST: Test Mode

– 0 - no test mode
– 1 - test mode: intend for factory testing and not for customer use.

Note: CAN may malfunction if this bit is set.

• Bit 1 – ENA/STB: Enable / Standby Mode

Because this bit is a command and is not immediately effective, the ENFG bit in CANG-
STA register gives the true state of the chosen mode.

– 0 - standby mode: the on-going communication is normally terminated and the 
CAN channel is frozen (the CONMOB bits of every MOb do not change). The 
transmitter constantly provides a recessive level. In this mode, the receiver is 
not enabled but all the registers and mailbox remain accessible from CPU.

– 1 - enable mode: the CAN channel enters in enable mode once 11 recessive 
bits has been read. 

Bit 7 6 5 4 3 2 1 0

ABRQ OVRQ TTC SYNTTC LISTEN TEST ENA/STB SWRES CANGCON

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 0 – SWRES: Software Reset Request

This auto resettable bit only resets the CAN controller.
– 0 - no reset
– 1 - reset: this reset is “ORed” with the hardware reset.

CAN General Status Register - 
CANGSTA

• Bit 7 – Reserved Bit

This bit is reserved for future use. 

• Bit 6 – OVFG: Overload Frame Flag

This flag does not generate an interrupt.
– 0 - no overload frame.
– 1 - overload frame: set by hardware as long as the produced overload frame is 

sent.

• Bit 5 – Reserved Bit

This bit is reserved for future use.

• Bit 4 – TXBSY: Transmitter Busy

This flag does not generate an interrupt.

– 0 - transmitter not busy.
– 1 - transmitter busy: set by hardware as long as a frame (data, remote, overload 

or error frame) or an ACK field is sent. Also set when an inter frame space is 
sent.

• Bit 3 – RXBSY: Receiver Busy

This flag does not generate an interrupt.

– 0 - receiver not busy
– 1 - receiver busy: set by hardware as long as a frame is received or monitored.

• Bit 2 – ENFG: Enable Flag

This flag does not generate an interrupt.

– 0 - CAN controller disable: because an enable/disable command is not 
immediately effective, this status gives the true state of the chosen mode.

– 1 - CAN controller enable.

• Bit 1 – BOFF: Bus Off Mode

BOFF gives the information of the state of the CAN channel. Only entering in bus off
mode generates the BOFFIT interrupt.

– 0 - no bus off mode.
– 1 - bus off mode.

Bit 7 6 5 4 3 2 1 0

- OVFG - TXBSY RXBSY ENFG BOFF ERRP CANGSTA

Read/Write - R - R R R R R

Initial Value - 0 - 0 0 0 0 0
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• Bit 0 – ERRP: Error Passive Mode

ERRP gives the information of the state of the CAN channel. This flag does not generate
an interrupt.

– 0 - no error passive mode.
– 1 - error passive mode.

CAN General Interrupt 
Register - CANGIT

• Bit 7 – CANIT: General Interrupt Flag

This is a read only bit.

– 0 - no interrupt.
– 1 - CAN interrupt: image of all the CAN controller interrupts except for OVRTIM 

interrupt. This bit can be used for polling method.

• Bit 6 – BOFFIT: Bus Off Interrupt Flag

Writing a logical one resets this interrupt flag. BOFFIT flag is only set when the CAN
enters in bus off mode coming from error passive mode.

– 0 - no interrupt.
– 1 - bus off interrupt when the CAN enters in bus off mode.

• Bit 5 – OVRTIM: Overrun CAN Timer

Writing a logical one resets this interrupt flag. Entering in CAN timer overrun interrupt
handler also reset this interrupt flag

– 0 - no interrupt.
– 1 - CAN timer overrun interrupt: set when the CAN timer switches from 0xFFFF 

to 0x0000.

• Bit 4 – BXOK: Frame Buffer Receive Interrupt

Writing a logical one resets this interrupt flag. BXOK flag can be cleared only if all CON-
MOB fields of the MOb’s of the buffer have been re-written before.

– 0 - no interrupt.
– 1 - burst receive interrupt: set when the frame buffer receive is completed.

• Bit 3 – SERG: Stuff Error General

Writing a logical one resets this interrupt flag.

– 0 - no interrupt.
– 1 - stuff error interrupt: detection of more than five consecutive bits with the 

same polarity. 

• Bit 2 – CERG: CRC Error General

Writing a logical one resets this interrupt flag.

– 0 - no interrupt.
– 1 - CRC error interrupt: the CRC check on destuffed message does not fit with 

the CRC field.

Bit 7 6 5 4 3 2 1 0

CANIT BOFFIT OVRTIM BXOK SERG CERG FERG AERG CANGIT

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 1 – FERG: Form Error General

Writing a logical one resets this interrupt flag.

– 0 - no interrupt.
– 1 - form error interrupt: one or more violations of the fixed form in the CRC 

delimiter, acknowledgment delimiter or EOF.

• Bit 0 – AERG: Acknowledgment Error General

Writing a logical one resets this interrupt flag.

– 0 - no interrupt.
– 1 - acknowledgment error interrupt: no detection of the dominant bit in 

acknowledge slot.

CAN General Interrupt Enable 
Register - CANGIE

• Bit 7 – ENIT: Enable all Interrupts (Except for CAN Timer Overrun Interrupt)

– 0 - interrupt disabled.
– 1- CANIT interrupt enabled.

• Bit 6 – ENBOFF: Enable Bus Off Interrupt

– 0 - interrupt disabled.
– 1- bus off interrupt enabled.

• Bit 5 – ENRX: Enable Receive Interrupt

– 0 - interrupt disabled.
– 1- receive interrupt enabled.

• Bit 4 – ENTX: Enable Transmit Interrupt

– 0 - interrupt disabled.
– 1- transmit interrupt enabled.

• Bit 3 – ENERR: Enable MOb Errors Interrupt

– 0 - interrupt disabled.
– 1- MOb errors interrupt enabled.

• Bit 2 – ENBX: Enable Frame Buffer Interrupt

– 0 - interrupt disabled.
– 1- frame buffer interrupt enabled.

• Bit 1 – ENERG: Enable General Errors Interrupt

– 0 - interrupt disabled.
– 1- general errors interrupt enabled.

• Bit 0 – ENOVRT: Enable CAN Timer Overrun Interrupt

– 0 - interrupt disabled.
– 1- CAN timer interrupt overrun enabled.

Bit 7 6 5 4 3 2 1 0

ENIT ENBOFF ENRX ENTX ENERR ENBX ENERG ENOVRT CANGIE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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CAN Enable MOb Registers - 
CANEN2 and CANEN1

• Bits 14:0 - ENMOB14:0: Enable MOb

This bit provides the availability of the MOb.
It is set to one when the MOb is enabled (i.e. CONMOB1:0 of CANCDMOB register).
Once TXOK or RXOK is set to one (TXOK for automatic reply), the corresponding
ENMOB is reset. ENMOB is also set to zero configuring the MOb in disabled mode,
applying abortion or standby mode.

– 0 - message object disabled: MOb available for a new transmission or 
reception.

– 1 - message object enabled: MOb in use.

• Bit 15 – Reserved Bit

This bit is reserved for future use.

CAN Enable Interrupt MOb 
Registers - 
CANIE2 and CANIE1

• Bits 14:0 - IEMOB14:0: Interrupt Enable by MOb

– 0 - interrupt disabled.
– 1 - MOb interrupt enabled

Note: Example: CANIE2 = 0000 1100b : enable of interrupts on MOb 2 & 3.

• Bit 15 – Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANIE1 is written.

CAN Status Interrupt MOb 
Registers - CANSIT2 and 
CANSIT1

Bit 7 6 5 4 3 2 1 0

ENMOB7 ENMOB6 ENMOB5 ENMOB4 ENMOB3 ENMOB2 ENMOB1 ENMOB0 CANEN2

- ENMOB14 ENMOB13 ENMOB12 ENMOB11 ENMOB10 ENMOB9 ENMOB8 CANEN1

Bit 15 14 13 12 11 10 9 8

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Read/Write - R R R R R R R

Initial Value - 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

IEMOB7 IEMOB6 IEMOB5 IEMOB4 IEMOB3 IEMOB2 IEMOB1 IEMOB0 CANIE2

- IEMOB14 IEMOB13 IEMOB12 IEMOB11 IEMOB10 IEMOB9 IEMOB8 CANIE1

Bit 15 14 13 12 11 10 9 8

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Read/Write - R/W R/W R/W R/W R/W R/W R/W

Initial Value - 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

SIT7 SIT6 SIT5 SIT4 SIT3 SIT2 SIT1 SIT0 CANSIT2

- SIT14 SIT13 SIT12 SIT11 SIT10 SIT9 SIT8 CANSIT1

Bit 15 14 13 12 11 10 9 8

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Read/Write - R R R R R R R

Initial Value - 0 0 0 0 0 0 0
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• Bits 14:0 - SIT14:0: Status of Interrupt by MOb

– 0 - no interrupt.
– 1- MOb interrupt.

Note: Example: CANSIT2 = 0010 0001b : MOb 0 & 5 interrupts.

• Bit 15 – Reserved Bit

This bit is reserved for future use.

CAN Bit Timing Register 1 - 
CANBT1

• Bit 7– Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANBT1 is written.

• Bit 6:1 – BRP5:0: Baud Rate Prescaler

The period of the CAN controller system clock Tscl is programmable and determines the
individual bit timing.

• Bit 0 – Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANBT1 is written.

CAN Bit Timing Register 2 - 
CANBT2

• Bit 7– Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANBT2 is written.

• Bit 6:5 – SJW1:0: Re-Synchronization Jump Width

To compensate for phase shifts between clock oscillators of different bus controllers, the
controller must re-synchronize on any relevant signal edge of the current transmission.
The synchronization jump width defines the maximum number of clock cycles. A bit
period may be shortened or lengthened by a re-synchronization.

• Bit 4 – Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANBT2 is written.

Bit 7 6 5 4 3 2 1 0

- BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 - CANBT1

Read/Write - R/W R/W R/W R/W R/W R/W -

Initial Value - 0 0 0 0 0 0 -

Tscl =
BRP[5:0] + 1

clkIO frequency

Bit 7 6 5 4 3 2 1 0

- SJW1 SJW0 - PRS2 PRS1 PRS0 - CANBT2

Read/Write - R/W R/W - R/W R/W R/W -

Initial Value - 0 0 - 0 0 0 -

Tsjw = Tscl x (SJW [1:0] +1)
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• Bit 3:1 – PRS2:0: Propagation Time Segment

This part of the bit time is used to compensate for the physical delay times within the
network. It is twice the sum of the signal propagation time on the bus line, the input com-
parator delay and the output driver delay.

• Bit 0 – Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANBT2 is written.

CAN Bit Timing Register 3 - 
CANBT3

• Bit 7– Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANBT3 is written.

• Bit 6:4 – PHS22:0: Phase Segment 2

This phase is used to compensate for phase edge errors. This segment may be short-
ened by the re-synchronization jump width. PHS2[2..0] shall be ≥1 and ≤PHS1[2..0] (c.f.
Section “CAN Bit Timing” and Section “Baud Rate”).

• Bit 3:1 – PHS12:0: Phase Segment 1

This phase is used to compensate for phase edge errors. This segment may be length-
ened by the re-synchronization jump width. 

• Bit 0 – SMP: Sample Point(s)

– 0 - once, at the sample point.
– 1 - three times, the threefold sampling of the bus is the sample point and twice

over a distance of a 1/2 period of the Tscl. The result corresponds to the
majority decision of the three values.

CAN Timer Control Register - 
CANTCON

• Bit 7:0 – TPRSC7:0: CAN Timer Prescaler

Prescaler for the CAN timer upper counter range 0 to 255. It provides the clock to the
CAN timer if the CAN controller is enabled.

CLKCANTIM = CLKIO x 8 x (CANTCON [7:0] + 1)

Tprs = Tscl x (PRS [2:0] + 1)

Bit 7 6 5 4 3 2 1 0

- PHS22 PHS21 PHS20 PHS12 PHS11 PHS10 SMP CANBT3

Read/Write - R/W R/W R/W R/W R/W R/W R/W

Initial Value - 0 0 0 0 0 0 0

Tphs2 = Tscl x (PHS2 [2:0] + 1)

Tphs1 = Tscl x (PHS1 [2:0] + 1)

Bit 7 6 5 4 3 2 1 0

TPRSC7 TPRSC6 TPRSC5 TPRSC4 TPRSC3 TPRSC2 TRPSC1 TPRSC0 CANTCON

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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CAN Timer Registers - 
CANTIML and CANTIMH

• Bits 15:0 - CANTIM15:0: CAN Timer Count

CAN timer counter range 0 to 65,535.

CAN TTC Timer Registers - 
CANTTCL and CANTTCH

• Bits 15:0 - TIMTTC15:0: TTC Timer Count

CAN TTC timer counter range 0 to 65,535.

CAN Transmit Error Counter 
Register - CANTEC

• Bit 7:0 – TEC7:0: Transmit Error Count

CAN transmit error counter range 0 to 255.

CAN Receive Error Counter 
Register - CANREC

• Bit 7:0 – REC7:0: Receive Error Count

CAN receive error counter range 0 to 255.

Bit 7 6 5 4 3 2 1 0

CANTIM7 CANTIM6 CANTIM5 CANTIM4 CANTIM3 CANTIM2 CANTIM1 CANTIM0 CANTIML

CANTIM15 CANTIM14 CANTIM13 CANTIM12 CANTIM11 CANTIM10 CANTIM9 CANTIM8 CANTIMH

Bit 15 14 13 12 11 10 9 8

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TIMTTC7 TIMTTC6 TIMTTC5 TIMTTC4 TIMTTC3 TIMTTC2 TIMTTC1 TIMTTC0 CANTTCL

TIMTTC15 TIMTTC14 TIMTTC13 TIMTTC12 TIMTTC11 TIMTTC10 TIMTTC9 TIMTTC8 CANTTCH

Bit 15 14 13 12 11 10 9 8

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TEC0 CANTEC

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

REC7 REC6 REC5 REC4 REC3 REC2 REC1 REC0 CANREC

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
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CAN Highest Priority MOb 
Register - CANHPMOB

• Bit 7:4 – HPMOB3:0: Highest Priority MOb Number

MOb having the highest priority in CANSIT registers.
If CANSIT = 0 (no MOb), the return value is 0xF.

• Bit 3:0 – CGP3:0: CAN General Purpose Bits

These bits can be pre-programmed to match with the wanted configuration of the
CANPAGE register (i.e., AINC and INDX2:0 setting).

CAN Page MOb Register - 
CANPAGE

• Bit 7:4 – MOBNB3:0: MOb Number

Selection of the MOb number, the available numbers are from 0 to 14.

• Bit 3 – AINC: Auto Increment of the FIFO CAN Data Buffer Index (Active Low)

– 0 - auto increment of the index (default value).
– 1- no auto increment of the index.

• Bit 2:0 – INDX2:0: FIFO CAN Data Buffer Index

Byte location of the CAN data byte into the FIFO for the defined MOb.

MOb Registers

The MOb registers has no initial (default) value after RESET.

CAN MOb Status Register - 
CANSTMOB

• Bit 7 – DLCW: Data Length Code Warning

The incoming message does not have the DLC expected. Whatever the frame type, the
DLC field of the CANCDMOB register is updated by the received DLC.

• Bit 6 – TXOK: Transmit OK

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

The communication enabled by transmission is completed. When the controller is ready
to send a frame, if two or more message objects are enabled as producers, the lower
MOb index (0 to 14) is supplied first.

Bit 7 6 5 4 3 2 1 0

HPMOB3 HPMOB2 HPMOB1 HPMOB0 CGP3 CGP2 CGP1 CGP0 CANHPMOB

Read/Write R R R R R/W R/W R/W R/W

Initial Value 1 1 1 1 0 0 0 0

Bit 7 6 5 4 3 2 1 0

MOBNB3 MOBNB2 MOBNB1 MOBNB0 AINC INDX2 INDX1 INDX0 CANPAGE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

DLCW TXOK RXOK BERR SERR CERR FERR AERR CANSTMOB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
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• Bit 5 – RXOK: Receive OK

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

The communication enabled by reception is completed. In the case of two or more mes-
sage object reception hits, the lower MOb index (0 to 14) is updated first.

• Bit 4 – BERR: Bit Error (Only in Transmission)

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

The bit value monitored is different from the bit value sent.

Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field
and the acknowledge slot detecting a dominant bit during the sending of an error frame.

• Bit 3 – SERR: Stuff Error

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

Detection of more than five consecutive bits with the same polarity. This flag can gener-
ate an interrupt.

• Bit 2 – CERR: CRC Error

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

The receiver performs a CRC check on every de-stuffed received message from the
start of frame up to the data field. If this checking does not match with the de-stuffed
CRC field, a CRC error is set.

• Bit 1 – FERR: Form Error

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

The form error results from one or more violations of the fixed form in the following bit
fields:

• CRC delimiter.

• Acknowledgment delimiter.

• EOF

• Bit 0 – AERR: Acknowledgment Error

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

No detection of the dominant bit in the acknowledge slot.
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CAN MOb Control and DLC 
Register - CANCDMOB

• Bit 7:6 – CONMOB1:0: Configuration of Message Object

These bits set the communication to be performed (no initial value after RESET).

– 00 - disable.
– 01 - enable transmission.
– 10 - enable reception.
– 11 - enable frame buffer reception

These bits are not cleared once the communication is performed. The user must re-
write the configuration to enable a new communication.

• This operation is necessary to be able to reset the BXOK flag.

• This operation also set the corresponding bit in the CANEN registers.

• Bit 5 – RPLV: Reply Valid

Used in the automatic reply mode after receiving a remote frame.

– 0 - reply not ready.
– 1 - reply ready and valid.

• Bit 4 – IDE: Identifier Extension

IDE bit of the remote or data frame to send.
This bit is updated with the corresponding value of the remote or data frame received.

– 0 - CAN standard rev 2.0 A (identifiers length = 11 bits).
– 1 - CAN standard rev 2.0 B (identifiers length = 29 bits).

• Bit 3:0 – DLC3:0: Data Length Code

Number of Bytes in the data field of the message. 

DLC field of the remote or data frame to send. The range of DLC is from 0 up to 8. If
DLC field >8 then effective DLC=8.

This field is updated with the corresponding value of the remote or data frame received.
If the expected DLC differs from the incoming DLC, a DLC warning appears in the CAN-
STMOB register.

Bit 7 6 5 4 3 2 1 0

CONMOB1 CONMOB0 RPLV IDE DLC3 DLC2 DLC1 DLC0 CANCDMOB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
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CAN Identifier Tag Registers - 
CANIDT1, CANIDT2, CANIDT3, 
and CANIDT4

V2.0 part A

V2.0 part B

V2.0 part A • Bit 31:21 – IDT10:0: Identifier Tag

Identifier field of the remote or data frame to send.

This field is updated with the corresponding value of the remote or data frame received.

• Bit 20:3 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, they must
be written to zero when CANIDTn are written.

When a remote or data frame is received, these bits do not operate in the comparison
but they are updated with un-predicted values.

• Bit 2 – RTRTAG: Remote Transmission Request Tag

RTR bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

• Bit 1 – Reserved Bit

This bit is reserved for future use. For compatibility with future devices, it must be written
to zero when CANIDTn are written.

When a remote or data frame is received, this bit does not operate in the comparison
but it is updated with un-predicted values.

• Bit 0 – RB0TAG: Reserved Bit 0 Tag

RB0 bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

V2.0 part B • Bit 31:3 – IDT28:0: Identifier Tag

Identifier field of the remote or data frame to send.

This field is updated with the corresponding value of the remote or data frame received.

Bit 15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0

- - - - - RTRTAG - RB0TAG CANIDT4

- - - - - - - - CANIDT3

IDT2 IDT1 IDT0 - - - - - CANIDT2

IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 IDT4 IDT3 CANIDT1

Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -

Bit 15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0

IDT4 IDT3 IDT2 IDT1 IDT0 RTRTAG RB1TAG RB0TAG CANIDT4

IDT12 IDT11 IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 CANIDT3

IDT20 IDT19 IDT18 IDT17 IDT16 IDT15 IDT14 IDT13 CANIDT2

IDT28 IDT27 IDT26 IDT25 IDT24 IDT23 IDT22 IDT21 CANIDT1

Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
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• Bit 2 – RTRTAG: Remote Transmission Request Tag

RTR bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

• Bit 1 – RB1TAG: Reserved Bit 1 Tag

RB1 bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

• Bit 0 – RB0TAG: Reserved Bit 0 Tag

RB0 bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

CAN Identifier Mask Registers - 
CANIDM1, CANIDM2, CANIDM3, 
and CANIDM4

V2.0 part A

V2.0 part B

V2.0 part A • Bit 31:21 – IDMSK10:0: Identifier Mask

– 0 - comparison true forced
– 1 - bit comparison enabled.

• Bit 20:3 – Reserved Bits

These bits are reserved for future use. For compatibility with future devices, they must
be written to zero when CANIDMn are written.

• Bit 2 – RTRMSK: Remote Transmission Request Mask

– 0 - comparison true forced
– 1 - bit comparison enabled.

• Bit 1 – Reserved Bit

This bit is reserved for future use. For compatibility with future devices, it must be written
to zero when CANIDTn are written.

Bit 15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0

- - - - - RTRMSK - IDEMSK CANIDM4

- - - - - - - - CANIDM3

IDMSK2 IDMSK1 IDMSK0 - - - - - CANIDM2

IDMSK10 IDMSK9 IDMSK8 IDMSK7 IDMSK6 IDMSK5 IDMSK4 IDMSK3 CANIDM1

Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -

Bit 15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0

IDMSK4 IDMSK3 IDMSK2 IDMSK1 IDMSK0 RTRMSK - IDEMSK CANIDM4

IDMSK12 IDMSK11 IDMSK10 IDMSK9 IDMSK8 IDMSK7 IDMSK6 IDMSK5 CANIDM3

IDMSK20 IDMSK19 IDMSK18 IDMSK17 IDMSK16 IDMSK15 IDMSK14 IDMSK13 CANIDM2

IDMSK28 IDMSK27 IDMSK26 IDMSK25 IDMSK24 IDMSK23 IDMSK22 IDMSK21 CANIDM1

Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
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• Bit 0 – IDEMSK: Identifier Extension Mask

– 0 - comparison true forced
– 1 - bit comparison enabled.

V2.0 part B • Bit 31:3 – IDMSK28:0: Identifier Mask

– 0 - comparison true forced
– 1 - bit comparison enabled.

• Bit 2 – RTRMSK: Remote Transmission Request Mask

– 0 - comparison true forced
– 1 - bit comparison enabled.

• Bit 1 – Reserved Bit

Writing zero in this bit is recommended.

• Bit 0 – IDEMSK: Identifier Extension Mask

– 0 - comparison true forced
– 1 - bit comparison enabled.

CAN Time Stamp Registers - 
CANSTML and CANSTMH

• Bits 15:0 - TIMSTM15:0: Time Stamp Count

CAN time stamp counter range 0 to 65,535.

CAN Data Message Register - 
CANMSG

• Bit 7:0 – MSG7:0: Message Data

This register contains the CAN data byte pointed at the page MOb register.

After writing in the page MOb register, this byte is equal to the specified message loca-
tion of the pre-defined identifier + index. If auto-incrementation is used, at the end of the
data register writing or reading cycle, the index is auto-incremented.
The range of the counting is 8 with no end of loop (0, 1,..., 7, 0,...).

Bit 7 6 5 4 3 2 1 0

TIMSTM7 TIMSTM6 TIMSTM5 TIMSTM4 TIMSTM3 TIMSTM2 TIMSTM1 TIMSTM0 CANSTML

TIMSTM15 TIMSTM14 TIMSTM13 TIMSTM12 TIMSTM11 TIMSTM10 TIMSTM9 TIMSTM8 CANSTMH

Bit 15 14 13 12 11 10 9 8

Read/Write R R R R R R R R

Initial Value - - - - - - - -

Bit 7 6 5 4 3 2 1 0

MSG 7 MSG 6 MSG 5 MSG 4 MSG 3 MSG 2 MSG 1 MSG 0 CANMSG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -
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Examples of CAN 
Baud Rate Setting The CAN bus requires very accurate timing especially for high baud rates. It is recom-

mended to use only an external crystal for CAN operations.

(Refer to “Bit Timing” on page 236 for timing description and page 252 to page 253 for
“CAN Bit Timing Registers”). 

Table 97.  Examples of CAN Baud Rate Settings for Commonly Frequencies 

fclkio

(MHz)

CAN
Baud
Rate

(Kbps)

Description Segments Registers

Sampling
Point

TQ
(µs)

Tbit
(TQ)

Tprs
(TQ)

Tph1
(TQ)

Tph2
(TQ)

Tsjw
(TQ)

CANBT1 CANBT2 CANBT3

 16.000

1000 75 %
0.0625 16 7 4 4 1 0x00 0x0C 0x37

0.125 8 3 2 2 1 0x02 0x04 0x13

500 75 %
0.125 16 7 4 4 1 0x02 0x0C 0x37

0.250 8 3 2 2 1 0x06 0x04 0x13

250 75 %
0.250 16 7 4 4 1 0x06 0x0C 0x37

0.500 8 3 2 2 1 0x0E 0x04 0x13

200 75 %
0.3125 16 7 4 4 1 0x08 0x0C 0x37

0.625 8 3 2 2 1 0x12 0x04 0x13

125 75 %
0.500 16 7 4 4 1 0x0E 0x0C 0x37

1.000 8 3 2 2 1 0x1E 0x04 0x13

100 75 %
0.625 16 7 4 4 1 0x12 0x0C 0x37

1.250 8 3 2 2 1 0x26 0x04 0x13

 12.000

1000 75 %
0.083333 12 5 3 3 1 0x00 0x08 0x25

x -  -  -  n o    d a t a -  -  -

500 75 %
0.166666 12 5 3 3 1 0x02 0x08 0x25

0.250 8 3 2 2 1 0x04 0x04 0x13

250 75 %
0.250 16 7 4 4 1 0x04 0x0C 0x37

0.500 8 3 2 2 1 0x0A 0x04 0x13

200 75 %
0.250 20 8 6 5 1 0x04 0x0E 0x4B

0.416666 12 5 3 3 1 0x08 0x08 0x25

125 75 %
0.500 16 7 4 4 1 0x0A 0x0C 0x37

1.000 8 3 2 2 1 0x16 0x04 0x13

100 75 %
0.500 20 8 6 5 1 0x0A 0x0E 0x4B

0.833333 12 5 3 3 1 0x12 0x08 0x25
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 8.000

1000 75 %
x -  -  -  n o    d a t a -  -  -

0.125 8 3 2 2 1 0x00 0x04 0x13

500 75 %
0.125 16 7 4 4 1 0x00 0x0C 0x37

0.250 8 3 2 2 1 0x02 0x04 0x13

250 75 %
0.250 16 7 4 4 1 0x02 0x0C 0x37

0.500 8 3 2 2 1 0x06 0x04 0x13

200 75 %
0.250 20 8 6 5 1 0x02 0x0E 0x4B

0.625 8 3 2 2 1 0x08 0x04 0x13

125 75 %
0.500 16 7 4 4 1 0x06 0x0C 0x37

1.000 8 3 2 2 1 0x0E 0x04 0x13

100 75 %
0.625 16 7 4 4 1 0x08 0x0C 0x37

1.250 8 3 2 2 1 0x12 0x04 0x13

6.000

1000 -  -  -  n o t    a p p l i c a b l e -  -  -

500 75 %
0.166666 12 5 3 3 1 0x00 0x08 0x25

x -  -  -  n o    d a t a -  -  -

250 75 %
0.333333 12 5 3 3 1 0x02 0x08 0x25

0.500 8 3 2 2 1 0x04 0x04 0x13

200 80 %
0.333333 15 7 4 3 1 0x02 0x0C 0x35

0.500 10 4 3 2 1 0x04 0x06 0x23

125 75 %
0.500 16 7 4 4 1 0x04 0x0C 0x37

1.000 8 3 2 2 1 0x0A 0x04 0x13

100 75 %
0.500 20 8 6 5 1 0x04 0x0E 0x4B

0.833333 12 5 3 3 1 0x08 0x08 0x25

4.000

1000 -  -  -  n o t    a p p l i c a b l e -  -  -

500 75 %
x -  -  -  n o    d a t a -  -  -

0.250 8 3 2 2 1 0x00 0x04 0x13

250 75 %
0.250 16 7 4 4 1 0x00 0x0C 0x37

0.500 8 3 2 2 1 0x02 0x04 0x13

200 75 %
0.250 20 8 6 5 1 0x00 0x0E 0x4B

x -  -  -  n o    d a t a -  -  -

125 75 %
0.500 16 7 4 4 1 0x02 0x0C 0x37

1.000 8 3 2 2 1 0x06 0x04 0x13

100 75 %
0.500 20 8 6 5 1 0x02 0x0E 0x4B

1.250 8 3 2 2 1 0x08 0x04 0x13

Table 97.  Examples of CAN Baud Rate Settings for Commonly Frequencies  (Continued)

fclkio

(MHz)

CAN
Baud
Rate

(Kbps)

Description Segments Registers

Sampling
Point

TQ
(µs)

Tbit
(TQ)

Tprs
(TQ)

Tph1
(TQ)

Tph2
(TQ)

Tsjw
(TQ)

CANBT1 CANBT2 CANBT3
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Analog Comparator The Analog Comparator compares the input values on the positive pin AIN0 and nega-
tive pin AIN1.

Overview When the voltage on the positive pin AIN0 is higher than the voltage on the negative pin
AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set
to trigger the Timer/Counter1 Input Capture function. In addition, the comparator can
trigger a separate interrupt, exclusive to the Analog Comparator. The user can select
Interrupt triggering on comparator output rise, fall or toggle. A block diagram of the com-
parator and its surrounding logic is shown in Figure 126.

Figure 126.  Analog Comparator Block Diagram(1)(2)

Notes: 1. ADC multiplexer output: see Table 99 on page 265.
2. Refer to Figure 2 on page 4 and Table 42 on page 79 for Analog Comparator pin

placement.

Analog Comparator 
Register Description

ADC Control and Status 
Register B – ADCSRB

• Bit 6 – ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is
zero), the ADC multiplexer selects the negative input to the Analog Comparator. When
this bit is written logic zero, AIN1 is applied to the negative input of the Analog Compar-
ator. For a detailed description of this bit, see “Analog Comparator Multiplexed Input” on
page 265. 

Analog Comparator Control 
and Status Register – ACSR

ACBG

BANDGAP
REFERENCE

ADC
MULTIPLEXER

OUTPUT

ACME
ADEN

T/C1 INPUT CAPTURE

Bit 7 6 5 4 3 2 1 0

ADHSM ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R/W R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
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• Bit 7 – ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off.
This bit can be set at any time to turn off the Analog Comparator. This will reduce power
consumption in Active and Idle mode. When changing the ACD bit, the Analog Compar-
ator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt
can occur when the bit is changed.

• Bit 6 – ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the
Analog Comparator. When this bit is cleared, AIN0 is applied to the positive input of the
Analog Comparator. See “Internal Voltage Reference” on page 53 

• Bit 5 – ACO: Analog Comparator Output

The output of the Analog Comparator is synchronized and then directly connected to
ACO. The synchronization introduces a delay of 1 - 2 clock cycles. 

• Bit 4 – ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode
defined by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if
the ACIE bit is set and the I-bit in SREG is set. ACI is cleared by hardware when execut-
ing the corresponding interrupt handling vector. Alternatively, ACI is cleared by writing a
logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Ana-
log Comparator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counter1 to
be triggered by the Analog Comparator. The comparator output is in this case directly
connected to the input capture front-end logic, making the comparator utilize the noise
canceler and edge select features of the Timer/Counter1 Input Capture interrupt. When
written logic zero, no connection between the Analog Comparator and the input capture
function exists. To make the comparator trigger the Timer/Counter1 Input Capture inter-
rupt, the ICIE1 bit in the Timer Interrupt Mask Register (TIMSK1) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator inter-
rupt. The different settings are shown in Table 98.

Table 98.  ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.
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When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be dis-
abled by clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt
can occur when the bits are changed.

Analog Comparator 
Multiplexed Input

It is possible to select any of the ADC7..0 pins to replace the negative input to the Ana-
log Comparator. The ADC multiplexer is used to select this input, and consequently, the
ADC must be switched off to utilize this feature. If the Analog Comparator Multiplexer
Enable bit (ACME in ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is
zero), MUX2..0 in ADMUX select the input pin to replace the negative input to the Ana-
log Comparator, as shown in Table 99. If ACME is cleared or ADEN is set, AIN1 is
applied to the negative input to the Analog Comparator.

Digital Input Disable 
Register 1 – DIDR1

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled.
The corresponding PIN Register bit will always read as zero when this bit is set. When
an analog signal is applied to the AIN1/0 pin and the digital input from this pin is not
needed, this bit should be written logic one to reduce power consumption in the digital
input buffer.

Table 99.  Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

Bit 7 6 5 4 3 2 1 0

– – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Analog to Digital Converter - ADC

Features • 10-bit Resolution
• 0.5 LSB Integral Non-linearity
• ± 2 LSB Absolute Accuracy
• 65 - 260 µs Conversion Time
• Up to 15 kSPS at Maximum Resolution
• Eight Multiplexed Single Ended Input Channels
• Seven Differential input channels
• Optional Left Adjustment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• Selectable 2.56 V ADC Reference Voltage
• Free Running or Single Conversion Mode
• ADC Start Conversion by Auto Triggering on Interrupt Sources
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

The AT90CAN128 features a 10-bit successive approximation ADC. The ADC is con-
nected to an 8-channel Analog Multiplexer which allows eight single-ended voltage
inputs constructed from the pins of Port F. The single-ended voltage inputs refer to 0V
(GND).

The device also supports 16 differential voltage input combinations. Two of the differen-
tial inputs (ADC1, ADC0 and ADC3, ADC2) are equipped with a programmable gain
stage, providing amplification steps of 0 dB (1x), 20 dB (10x), or 46 dB (200x) on the dif-
ferential input voltage before the A/D conversion. Seven differential analog input
channels share a common negative terminal (ADC1), while any other ADC input can be
selected as the positive input terminal. If 1x or 10x gain is used, 8-bit resolution can be
expected. If 200x gain is used, 7-bit resolution can be expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the
ADC is held at a constant level during conversion. A block diagram of the ADC is shown
in Figure 127.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more
than ± 0.3V from VCC. See the paragraph “ADC Noise Canceler” on page 273 on how to
connect this pin.

Internal reference voltages of nominally 2.56V or AVCC are provided On-chip. The volt-
age reference may be externally decoupled at the AREF pin by a capacitor for better
noise performance.
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Figure 127.  Analog to Digital Converter Block Schematic
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Operation The ADC converts an analog input voltage to a 10-bit digital value through successive
approximation. The minimum value represents GND and the maximum value represents
the voltage on the AREF pin minus 1 LSB. Optionally, AVCC or an internal 2.56V refer-
ence voltage may be connected to the AREF pin by writing to the REFSn bits in the
ADMUX Register. The internal voltage reference may thus be decoupled by an external
capacitor at the AREF pin to improve noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in
ADMUX. Any of the ADC input pins, as well as GND and a fixed bandgap voltage refer-
ence, can be selected as single ended inputs to the ADC. A selection of ADC input pins
can be selected as positive and negative inputs to the differential amplifier.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage refer-
ence and input channel selections will not go into effect until ADEN is set. The ADC
does not consume power when ADEN is cleared, so it is recommended to switch off the
ADC before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers,
ADCH and ADCL. By default, the result is presented right adjusted, but can optionally
be presented left adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to
read ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content
of the Data Registers belongs to the same conversion. Once ADCL is read, ADC access
to Data Registers is blocked. This means that if ADCL has been read, and a conversion
completes before ADCH is read, neither register is updated and the result from the con-
version is lost. When ADCH is read, ADC access to the ADCH and ADCL Registers is
re-enabled. 

The ADC has its own interrupt which can be triggered when a conversion completes.
The ADC access to the Data Registers is prohibited between reading of ADCH and
ADCL, the interrupt will trigger even if the result is lost.

Starting a Conversion A single conversion is started by writing a logical one to the ADC Start Conversion bit,
ADSC. This bit stays high as long as the conversion is in progress and will be cleared by
hardware when the conversion is completed. If a different data channel is selected while
a conversion is in progress, the ADC will finish the current conversion before performing
the channel change. 

Alternatively, a conversion can be triggered automatically by various sources. Auto Trig-
gering is enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The
trigger source is selected by setting the ADC Trigger Select bits, ADTS in ADCSRB
(See description of the ADTS bits for a list of the trigger sources). When a positive edge
occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is
started. This provides a method of starting conversions at fixed intervals. If the trigger
signal is still set when the conversion completes, a new conversion will not be started. If
another positive edge occurs on the trigger signal during conversion, the edge will be
ignored. Note that an interrupt flag will be set even if the specific interrupt is disabled or
the Global Interrupt Enable bit in SREG is cleared. A conversion can thus be triggered
without causing an interrupt. However, the interrupt flag must be cleared in order to trig-
ger a new conversion at the next interrupt event. 
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Figure 128.  ADC Auto Trigger Logic

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion
as soon as the ongoing conversion has finished. The ADC then operates in Free Run-
ning mode, constantly sampling and updating the ADC Data Register. The first
conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In this
mode the ADC will perform successive conversions independently of whether the ADC
Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in
ADCSRA to one. ADSC can also be used to determine if a conversion is in progress.
The ADSC bit will be read as one during a conversion, independently of how the conver-
sion was started.

Prescaling and 
Conversion Timing

Figure 129.  ADC Prescaler

By default, the successive approximation circuitry requires an input clock frequency
between 50 kHz and 200 kHz to get maximum resolution. If a lower resolution than 10
bits is needed, the input clock frequency to the ADC can be higher than 200 kHz to get a
higher sample rate. Alternatively, setting the ADHSM bit in ADCSRB allows an
increased ADC clock frequency at the expense of higher power consumption.

The ADC module contains a prescaler, which generates an acceptable ADC clock fre-
quency from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits
in ADCSRA. The prescaler starts counting from the moment the ADC is switched on by
setting the ADEN bit in ADCSRA. The prescaler keeps running for as long as the ADEN
bit is set, and is continuously reset when ADEN is low.
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When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the con-
version starts at the following rising edge of the ADC clock cycle. See “Differential
Channels” on page 271 for details on differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is
switched on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize
the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal
conversion and 13.5 ADC clock cycles after the start of an first conversion. When a con-
version is complete, the result is written to the ADC Data Registers, and ADIF is set. In
Single Conversion mode, ADSC is cleared simultaneously. The software may then set
ADSC again, and a new conversion will be initiated on the first rising ADC clock edge. 

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This
assures a fixed delay from the trigger event to the start of conversion. In this mode, the
sample-and-hold takes place two ADC clock cycles after the rising edge on the trigger
source signal. Three additional CPU clock cycles are used for synchronization logic.

In Free Running mode, a new conversion will be started immediately after the conver-
sion completes, while ADSC remains high. For a summary of conversion times, see
Table 100.

Figure 130.  ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 131.  ADC Timing Diagram, Single Conversion
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ADSC
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Next
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Figure 132.  ADC Timing Diagram, Auto Triggered Conversion

Figure 133.  ADC Timing Diagram, Free Running Conversion

Differential Channels When using differential channels, certain aspects of the conversion need to be taken
into consideration. 

Differential conversions are synchronized to the internal clock CKADC2 equal to half the
ADC clock frequency. This synchronization is done automatically by the ADC interface
in such a way that the sample-and-hold occurs at a specific phase of CKADC2. A conver-
sion initiated by the user (i.e., all single conversions, and the first free running
conversion) when CKADC2 is low will take the same amount of time as a single ended
conversion (13 ADC clock cycles from the next prescaled clock cycle). A conversion ini-
tiated by the user when CKADC2 is high will take 14 ADC clock cycles due to the
synchronization mechanism. In Free Running mode, a new conversion is initiated imme-

Table 100.  ADC Conversion Time

Condition
First 

Conversion

Normal 
Conversion, 
Single Ended

Auto Triggered 
Convertion

Sample & Hold
(Cycles from Start of Convertion)

14.5 1.5 2

Conversion Time
(Cycles)

25 13 13.5

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
CompletePrescaler 

Reset

ADATE

Prescaler
Reset

Sample &
Hold

MUX and REFS 
Update

11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number
1 2

One Conversion Next Conversion

3 4

Conversion
Complete

Sample & Hold

MUX and REFS
Update
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diately after the previous conversion completes, and since CKADC2 is high at this time, all
automatically started (i.e., all but the first) Free Running conversions will take 14 ADC
clock cycles.

If differential channels are used and conversions are started by Auto Triggering, the
ADC must be switched off between conversions. When Auto Triggering is used, the
ADC prescaler is reset before the conversion is started. Since the stage is dependent of
a stable ADC clock prior to the conversion, this conversion will not be valid. By disabling
and then re-enabling the ADC between each conversion (writing ADEN in ADCSRA to
“0” then to “1”), only extended conversions are performed. The result from the extended
conversions will be valid. See “Prescaling and Conversion Timing” on page 269 for tim-
ing details.

The gain stage is optimized for a bandwidth of 4 kHz at all gain settings. Higher frequen-
cies may be subjected to non-linear amplification. An external low-pass filter should be
used if the input signal contains higher frequency components than the gain stage band-
width. Note that the ADC clock frequency is independent of the gain stage bandwidth
limitation. E.g. the ADC clock period may be 6 µs, allowing a channel to be sampled at
12 kSPS, regardless of the bandwidth of this channel.

Changing Channel or 
Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a tem-
porary register to which the CPU has random access. This ensures that the channels
and reference selection only takes place at a safe point during the conversion. The
channel and reference selection is continuously updated until a conversion is started.
Once the conversion starts, the channel and reference selection is locked to ensure a
sufficient sampling time for the ADC. Continuous updating resumes in the last ADC
clock cycle before the conversion completes (ADIF in ADCSRA is set). Note that the
conversion starts on the following rising ADC clock edge after ADSC is written. The user
is thus advised not to write new channel or reference selection values to ADMUX until
one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic.
Special care must be taken when updating the ADMUX Register, in order to control
which conversion will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If
the ADMUX Register is changed in this period, the user cannot tell if the next conversion
is based on the old or the new settings. ADMUX can be safely updated in the following
ways:

1. When ADATE or ADEN is cleared.

2. During conversion, minimum one ADC clock cycle after the trigger event.

3. After a conversion, before the interrupt flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next
ADC conversion.

Special care should be taken when changing differential channels. Once a differential
channel has been selected, the stage may take as much as 125 µs to stabilize to the
new value. Thus conversions should not be started within the first 125 µs after selecting
a new differential channel. Alternatively, conversion results obtained within this period
should be discarded.

The same settling time should be observed for the first differential conversion after
changing ADC reference (by changing the REFS1:0 bits in ADMUX).

The settling time and gain stage bandwidth is independent of the ADHSM bit setting.
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ADC Input Channels When changing channel selections, the user should observe the following guidelines to
ensure that the correct channel is selected:

• In Single Conversion mode, always select the channel before starting the 
conversion. The channel selection may be changed one ADC clock cycle after 
writing one to ADSC. However, the simplest method is to wait for the conversion to 
complete before changing the channel selection.

• In Free Running mode, always select the channel before starting the first 
conversion. The channel selection may be changed one ADC clock cycle after 
writing one to ADSC. However, the simplest method is to wait for the first conversion 
to complete, and then change the channel selection. Since the next conversion has 
already started automatically, the next result will reflect the previous channel 
selection. Subsequent conversions will reflect the new channel selection.

When switching to a differential gain channel, the first conversion result may have a
poor accuracy due to the required settling time for the automatic offset cancellation cir-
cuitry. The user should preferably disregard the first conversion result.

ADC Voltage Reference The reference voltage for the ADC (VREF) indicates the conversion range for the ADC.
Single ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be
selected as either AVCC, internal 2.56V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 2.56V reference is
generated from the internal bandgap reference (VBG) through an internal amplifier. In
either case, the external AREF pin is directly connected to the ADC, and the reference
voltage can be made more immune to noise by connecting a capacitor between the
AREF pin and ground. VREF can also be measured at the AREF pin with a high impedant
voltmeter. Note that VREF is a high impedant source, and only a capacitive load should
be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use
the other reference voltage options in the application, as they will be shorted to the
external voltage. If no external voltage is applied to the AREF pin, the user may switch
between AVCC and 2.56V as reference selection. The first ADC conversion result after
switching reference voltage source may be inaccurate, and the user is advised to dis-
card this result.

If differential channels are used, the selected reference should not be closer to AVCC
than indicated in Table 141 on page 364. 

ADC Noise Canceler The ADC features a noise canceler that enables conversion during sleep mode to
reduce noise induced from the CPU core and other I/O peripherals. The noise canceler
can be used with ADC Noise Reduction and Idle mode. To make use of this feature, the
following procedure should be used:

1. Make sure that the ADC is enabled and is not busy converting. Single Con-
version mode must be selected and the ADC conversion complete interrupt 
must be enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a con-
version once the CPU has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC 
interrupt will wake up the CPU and execute the ADC Conversion Complete 
interrupt routine. If another interrupt wakes up the CPU before the ADC con-
version is complete, that interrupt will be executed, and an ADC Conversion 
Complete interrupt request will be generated when the ADC conversion 
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completes. The CPU will remain in active mode until a new sleep command 
is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes
than Idle mode and ADC Noise Reduction mode. The user is advised to write zero to
ADEN before entering such sleep modes to avoid excessive power consumption.

If the ADC is enabled in such sleep modes and the user wants to perform differential
conversions, the user is advised to switch the ADC off and on after waking up from
sleep to prompt an extended conversion to get a valid result.

Analog Input Circuitry The analog input circuitry for single ended channels is illustrated in Figure 134. An ana-
log source applied to ADCn is subjected to the pin capacitance and input leakage of that
pin, regardless of whether that channel is selected as input for the ADC. When the chan-
nel is selected, the source must drive the S/H capacitor through the series resistance
(combined resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately
10 kΩ or less. If such a source is used, the sampling time will be negligible. If a source
with higher impedance is used, the sampling time will depend on how long time the
source needs to charge the S/H capacitor, with can vary widely. The user is recom-
mended to only use low impedant sources with slowly varying signals, since this
minimizes the required charge transfer to the S/H capacitor.

If differential gain channels are used, the input circuitry looks somewhat different,
although source impedances of a few hundred kΩ or less is recommended.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for
either kind of channels, to avoid distortion from unpredictable signal convolution. The
user is advised to remove high frequency components with a low-pass filter before
applying the signals as inputs to the ADC.

Figure 134.  Analog Input Circuitry

Analog Noise Canceling 
Techniques

Digital circuitry inside and outside the device generates EMI which might affect the
accuracy of analog measurements. If conversion accuracy is critical, the noise level can
be reduced by applying the following techniques:

1. Keep analog signal paths as short as possible. Make sure analog tracks run 
over the analog ground plane, and keep them well away from high-speed 
switching digital tracks.

2. The AVCC pin on the device should be connected to the digital VCC supply 
voltage via an LC network as shown in Figure 135.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do 
not switch while a conversion is in progress.

ADCn

IIH

1..100 kΩ
CS/H= 14 pF

VCC/2

IIL
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Figure 135.  ADC Power Connections

Offset Compensation 
Schemes

The gain stage has a built-in offset cancellation circuitry that nulls the offset of differen-
tial measurements as much as possible. The remaining offset in the analog path can be
measured directly by selecting the same channel for both differential inputs. This offset
residue can be then subtracted in software from the measurement results. Using this
kind of software based offset correction, offset on any channel can be reduced below
one LSB.

ADC Accuracy Definitions An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n

steps (LSBs). The lowest code is read as 0, and the highest code is read as 2n-1. 

Several parameters describe the deviation from the ideal behavior:
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• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal 
transition (at 0.5 LSB). Ideal value: 0 LSB.

Figure 136.  Offset Error

• Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the 
last transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below 
maximum). Ideal value: 0 LSB

Figure 137.  Gain Error
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• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the 
maximum deviation of an actual transition compared to an ideal transition for any 
code. Ideal value: 0 LSB.

Figure 138.  Integral Non-linearity (INL)

• Differential Non-linearity (DNL): The maximum deviation of the actual code width 
(the interval between two adjacent transitions) from the ideal code width (1 LSB). 
Ideal value: 0 LSB.

Figure 139.  Differential Non-linearity (DNL)

• Quantization Error: Due to the quantization of the input voltage into a finite number 
of codes, a range of input voltages (1 LSB wide) will code to the same value. Always 
± 0.5 LSB.

• Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition 
compared to an ideal transition for any code. This is the compound effect of offset, 
gain error, differential error, non-linearity, and quantization error. Ideal value: ± 0.5 
LSB.
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ADC Conversion Result After the conversion is complete (ADIF is high), the conversion result can be found in
the ADC Result Registers (ADCL, ADCH). 

For single ended conversion, the result is:

where VIN is the voltage on the selected input pin and VREF the selected voltage refer-
ence (see Table 102 on page 280 and Table 103 on page 281). 0x000 represents
analog ground, and 0x3FF represents the selected reference voltage minus one LSB.

If differential channels are used, the result is:

where VPOS is the voltage on the positive input pin, VNEG the voltage on the negative
input pin, GAIN the selected gain factor and VREF the selected voltage reference. The
result is presented in two’s complement form, from 0x200 (-512d) through 0x1FF
(+511d). Note that if the user wants to perform a quick polarity check of the result, it is
sufficient to read the MSB of the result (ADC9 in ADCH). If the bit is one, the result is
negative, and if this bit is zero, the result is positive. Figure 140 shows the decoding of
the differential input range.

Table 82 shows the resulting output codes if the differential input channel pair (ADCn -
ADCm) is selected with a reference voltage of VREF.

Figure 140.  Differential Measurement Range
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Example 1:

– ADMUX = 0xED (ADC3 - ADC2, 10x gain, 2.56V reference, left adjusted result) 

– Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV. 

– ADCR = 512 * 10 * (300 - 500) / 2560 = -400 = 0x270 

– ADCL will thus read 0x00, and ADCH will read 0x9C.
Writing zero to ADLAR right adjusts the result: ADCL = 0x70, ADCH = 0x02.

Example 2:

– ADMUX = 0xFB (ADC3 - ADC2, 1x gain, 2.56V reference, left adjusted result) 

– Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV. 

– ADCR = 512 * 1 * (300 - 500) / 2560 = -41 = 0x029.

– ADCL will thus read 0x40, and ADCH will read 0x0A.
Writing zero to ADLAR right adjusts the result: ADCL = 0x00, ADCH = 0x29.

Table 101.  Correlation Between Input Voltage and Output Codes

VADCn Read code Corresponding decimal value

 VADCm + VREF /GAIN 0x1FF 511

VADCm + 0.999 VREF /GAIN 0x1FF 511

VADCm + 0.998 VREF /GAIN 0x1FE 510

... ... ...

VADCm + 0.001 VREF /GAIN 0x001 1

VADCm 0x000 0

VADCm - 0.001 VREF /GAIN 0x3FF -1

... ... ...

VADCm - 0.999 VREF /GAIN 0x201 -511

VADCm - VREF /GAIN 0x200 -512
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ADC Register Description

ADC Multiplexer Selection 
Register – ADMUX

• Bit 7:6 – REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 102. If these bits
are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSRA is set). The internal voltage reference options may not be
used if an external reference voltage is being applied to the AREF pin.

•  Bit 5 – ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data
Register. Write one to ADLAR to left adjust the result. Otherwise, the result is right
adjusted. Changing the ADLAR bit will affect the ADC Data Register immediately,
regardless of any ongoing conversions. For a complete description of this bit, see “The
ADC Data Register – ADCL and ADCH” on page 283.

• Bits 4:0 – MUX4:0: Analog Channel Selection Bits

The value of these bits selects which combination of analog inputs are connected to the
ADC. These bits also select the gain for the differential channels. See Table 103 for
details. If these bits are changed during a conversion, the change will not go in effect
until this conversion is complete (ADIF in ADCSRA is set).

Bit 7 6 5 4 3 2 1 0

REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 ADMUX

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 102.  Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor on AREF pin

1 0 Reserved

1 1 Internal 2.56V Voltage Reference with external capacitor on AREF pin
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Table 103.  Input Channel and Gain Selections 

MUX4..0
Single Ended 
Input

Positive Differential 
Input

Negative Differential 
Input Gain

00000 ADC0

N/A

00001 ADC1

00010 ADC2

00011 ADC3

00100 ADC4

00101 ADC5

00110 ADC6

00111 ADC7

01000

N/A

(ADC0 / ADC0 / 10x)

01001 ADC1 ADC0 10x

01010 (ADC0 / ADC0 / 200x)

01011 ADC1 ADC0 200x

01100 (Reserved - ADC2 / ADC2 / 10x)

01101 ADC3 ADC2 10x

01110 (ADC2 / ADC2 / 200x)

01111 ADC3 ADC2 200x

10000 ADC0 ADC1 1x

10001 (ADC1 / ADC1 / 1x)

10010 ADC2 ADC1 1x

10011 ADC3 ADC1 1x

10100 ADC4 ADC1 1x

10101 ADC5 ADC1 1x

10110 ADC6 ADC1 1x

10111 ADC7 ADC1 1x

11000 ADC0 ADC2 1x

11001 ADC1 ADC2 1x

11010 (ADC2 / ADC2 / 1x)

11011 ADC3 ADC2 1x

11100 ADC4 ADC2 1x

11101 ADC5 ADC2 1x

11110 1.1V (VBand Gap)
N/A

11111 0V (GND)
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ADC Control and Status 
Register A – ADCSRA

• Bit 7 – ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turn-
ing the ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Run-
ning mode, write this bit to one to start the first conversion. The first conversion after
ADSC has been written after the ADC has been enabled, or if ADSC is written at the
same time as the ADC is enabled, will take 25 ADC clock cycles instead of the normal
13. This first conversion performs initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is
complete, it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start
a conversion on a positive edge of the selected trigger signal. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated.
The ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in
SREG are set. ADIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, ADIF is cleared by writing a logical one to the flag.
Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be dis-
abled. This also applies if the SBI and CBI instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Com-
plete Interrupt is activated.

Bit 7 6 5 4 3 2 1 0

ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bits 2:0 – ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input
clock to the ADC.

The ADC Data Register – 
ADCL and ADCH

ADLAR = 0

ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers. If differ-
ential channels are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Conse-
quently, if the result is left adjusted and no more than 8-bit precision (7 bit + sign bit for
differential input channels) is required, it is sufficient to read ADCH. Otherwise, ADCL
must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is
read from the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared
(default), the result is right adjusted. 

Table 104.  ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Bit 15 14 13 12 11 10 9 8

– – – – – – ADC9 ADC8 ADCH

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

Bit 7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

ADC1 ADC0 – – – – – – ADCL

Bit 7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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• ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in “ADC Conversion
Result” on page 278.

ADC Control and Status 
Register B – ADCSRB

• Bit 7 – ADHSM: ADC High Speed Mode

Writing this bit to one enables the ADC High Speed mode. This mode enables higher
conversion rate at the expense of higher power consumption.

• Bit 2:0 – ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will
trigger an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no
effect. A conversion will be triggered by the rising edge of the selected interrupt flag.
Note that switching from a trigger source that is cleared to a trigger source that is set,
will generate a positive edge on the trigger signal. If ADEN in ADCSRA is set, this will
start a conversion. Switching to Free Running mode (ADTS[2:0]=0) will not cause a trig-
ger event, even if the ADC Interrupt Flag is set.

Digital Input Disable 
Register 0 – DIDR0

• Bit 7:0 – ADC7D..ADC0D: ADC7:0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is
disabled. The corresponding PIN Register bit will always read as zero when this bit is
set. When an analog signal is applied to the ADC7..0 pin and the digital input from this
pin is not needed, this bit should be written logic one to reduce power consumption in
the digital input buffer. 

Bit 7 6 5 4 3 2 1 0

ADHSM ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R/W R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 105.  ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event

Bit 7 6 5 4 3 2 1 0

ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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JTAG Interface and On-chip Debug System

Features • JTAG (IEEE std. 1149.1 Compliant) Interface
• Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
• Debugger Access to:

– All Internal Peripheral Units
– Internal and External RAM
– The Internal Register File
– Program Counter
– EEPROM and Flash Memories

• Extensive On-chip Debug Support for Break Conditions, Including
– AVR Break Instruction
– Break on Change of Program Memory Flow
– Single Step Break
– Program Memory Break Points on Single Address or Address Range
– Data Memory Break Points on Single Address or Address Range

• Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
• On-chip Debugging Supported by AVR Studio®

Overview The AVR IEEE std. 1149.1 compliant JTAG interface can be used for:

• Testing PCBs by using the JTAG Boundary-scan capability

• Programming the non-volatile memories, Fuses and Lock bits

• On-chip debugging

A brief description is given in the following sections. Detailed descriptions for Program-
ming via the JTAG interface, and using the Boundary-scan Chain can be found in the
sections “JTAG Programming Overview” on page 343 and “Boundary-scan IEEE 1149.1
(JTAG)” on page 291, respectively. The On-chip Debug support is considered being pri-
vate JTAG instructions, and distributed within ATMEL and to selected third party
vendors only.

Figure 141 shows a block diagram of the JTAG interface and the On-chip Debug sys-
tem. The TAP Controller is a state machine controlled by the TCK and TMS signals. The
TAP Controller selects either the JTAG Instruction Register or one of several Data Reg-
isters as the scan chain (Shift Register) between the TDI – input and TDO – output. The
Instruction Register holds JTAG instructions controlling the behavior of a Data Register.

The ID-Register (IDentifier Register), Bypass Register, and the Boundary-scan Chain
are the Data Registers used for board-level testing. The JTAG Programming Interface
(actually consisting of several physical and virtual Data Registers) is used for serial pro-
gramming via the JTAG interface. The Internal Scan Chain and Break Point Scan Chain
are used for On-chip debugging only.

Test Access Port – TAP The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology,
these pins constitute the Test Access Port – TAP. These pins are:

• TMS: Test mode select. This pin is used for navigating through the TAP-controller 
state machine.

• TCK: Test Clock. JTAG operation is synchronous to TCK.

• TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data 
Register (Scan Chains).

• TDO: Test Data Out. Serial output data from Instruction Register or Data Register 
(Scan Chains).
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The IEEE std. 1149.1 also specifies an optional TAP signal; TRST – Test ReSeT –
which is not provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins
and the TAP controller is in reset. When programmed and the JTD bit in MCUCR is
cleared, the TAP input signals are internally pulled high and the JTAG is enabled for
Boundary-scan and programming. In this case, the TAP output pin (TDO) is left floating
in states where the JTAG TAP controller is not shifting data, and must therefore be con
nected to a pull-up resistor or other hardware having pull-ups (for instance the TDI-input
of the next device in the scan chain). The device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is
monitored by the debugger to be able to detect external reset sources. The debugger
can also pull the RESET pin low to reset the whole system, assuming only open collec-
tors on the reset line are used in the application.

Figure 141.  Block Diagram
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Figure 142.  TAP Controller State Diagram

TAP Controller The TAP controller is a 16-state finite state machine that controls the operation of the
Boundary-scan circuitry, JTAG programming circuitry, or On-chip Debug system. The
state transitions depicted in Figure 142 depend on the signal present on TMS (shown
adjacent to each state transition) at the time of the rising edge at TCK. The initial state
after a Power-on Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG inter-
face is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter 
the Shift Instruction Register – Shift-IR state. While in this state, shift the four bits of 
the JTAG instructions into the JTAG Instruction Register from the TDI input at the 
rising edge of TCK. The TMS input must be held low during input of the 3 LSBs in 
order to remain in the Shift-IR state. The MSB of the instruction is shifted in when 
this state is left by setting TMS high. While the instruction is shifted in from the TDI 
pin, the captured IR-state 0x01 is shifted out on the TDO pin. The JTAG Instruction 
selects a particular Data Register as path between TDI and TDO and controls the 
circuitry surrounding the selected Data Register.
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• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction 
is latched onto the parallel output from the Shift Register path in the Update-IR 
state. The Exit-IR, Pause-IR, and Exit2-IR states are only used for navigating the 
state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the 
Shift Data Register – Shift-DR state. While in this state, upload the selected data 
register (selected by the present JTAG instruction in the JTAG Instruction Register) 
from the TDI input at the rising edge of TCK. In order to remain in the Shift-DR state, 
the TMS input must be held low during input of all bits except the MSB. The MSB of 
the data is shifted in when this state is left by setting TMS high. While the data 
register is shifted in from the TDI pin, the parallel inputs to the data register captured 
in the Capture-DR state is shifted out on the TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected 
data register has a latched parallel-output, the latching takes place in the Update-
DR state. The Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating 
the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between
selecting JTAG instruction and using data registers, and some JTAG instructions may
select certain functions to be performed in the Run-Test/Idle, making it unsuitable as an
Idle state.
Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can

always be entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibli-
ography” on page 290.

Using the Boundary-
scan Chain A complete description of the Boundary-scan capabilities are given in the section

“Boundary-scan IEEE 1149.1 (JTAG)” on page 291.

Using the On-chip Debug 
System As shown in Figure 141, the hardware support for On-chip Debugging consists mainly of

• A scan chain on the interface between the internal AVR CPU and the internal 
peripheral units.

• Break Point unit.

• Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by
applying AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the
result to an I/O memory mapped location which is part of the communication interface
between the CPU and the JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step
Break, two Program Memory Break Points, and two combined Break Points. Together,
the four Break Points can be configured as either:

• 4 single Program Memory Break Points.

• 3 single Program Memory Break Points + 1 single Data Memory Break Point.

• 2 single Program Memory Break Points + 2 single Data Memory Break Points.

• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask 
(“range Break Point”).
288 AT90CAN128 Auto
7522C–AUTO–09/06



AT90CAN128 Auto
• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask 
(“range Break Point”).

A debugger, like the AVR Studio, may however use one or more of these resources for
its internal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Spe-
cific JTAG Instructions” on page 289. 

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addi-
tion, the OCDEN Fuse must be programmed and no Lock bits must be set for the On-
chip debug system to work. As a security feature, the On-chip debug system is disabled
when either of the LB1 or LB2 Lock bits are set. Otherwise, the On-chip debug system
would have provided a back-door into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR
device with On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR
Instruction Set Simulator. AVR Studio® supports source level execution of Assembly
programs assembled with Atmel Corporation’s AVR Assembler and C programs com-
piled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000/NT/XP.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide.
Only highlights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level
and on disassembly level. The user can execute the program, single step through the
code either by tracing into or stepping over functions, step out of functions, place the
cursor on a statement and execute until the statement is reached, stop the execution,
and reset the execution target. In addition, the user can have an unlimited number of
code Break Points (using the BREAK instruction) and up to two data memory Break
Points, alternatively combined as a mask (range) Break Point.

On-chip Debug Specific 
JTAG Instructions The On-chip debug support is considered being private JTAG instructions, and distrib-

uted within ATMEL and to selected third party vendors only. Instruction opcodes are
listed for reference.

PRIVATE0 (0x8) Private JTAG instruction for accessing On-chip debug system.

PRIVATE1 (0x9) Private JTAG instruction for accessing On-chip debug system.

PRIVATE2 (0xA) Private JTAG instruction for accessing On-chip debug system.

PRIVATE3 (0xB) Private JTAG instruction for accessing On-chip debug system.

On-chip Debug Related 
Register in I/O Memory

On-chip Debug Register – 
OCDR Bit 7 6 5 4 3 2 1 0

IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 OCDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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The OCDR Register provides a communication channel from the running program in the
microcontroller to the debugger. The CPU can transfer a byte to the debugger by writing
to this location. At the same time, an internal flag; I/O Debug Register Dirty – IDRD – is
set to indicate to the debugger that the register has been written. When the CPU reads
the OCDR Register the 7 LSB will be from the OCDR Register, while the MSB is the
IDRD bit. The debugger clears the IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard I/O location. In this case,
the OCDR Register can only be accessed if the OCDEN Fuse is programmed, and the
debugger enables access to the OCDR Register. In all other cases, the standard I/O
location is accessed.

Refer to the debugger documentation for further information on how to use this register.

Using the JTAG 
Programming 
Capabilities

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS,
TDI, and TDO. These are the only pins that need to be controlled/observed to perform
JTAG programming (in addition to power pins). It is not required to apply 12V externally.
The JTAGEN Fuse must be programmed and the JTD bit in the MCUCR Register must
be cleared to enable the JTAG Test Access Port.

The JTAG programming capability supports:

• Flash programming and verifying.

• EEPROM programming and verifying.

• Fuse programming and verifying.

• Lock bit programming and verifying.

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or
LB2 are programmed, the OCDEN Fuse cannot be programmed unless first doing a
chip erase. This is a security feature that ensures no back-door exists for reading out the
content of a secured device.

The details on programming through the JTAG interface and programming specific
JTAG instructions are given in the section “JTAG Programming Overview” on page 343.

Bibliography For more information about general Boundary-scan, the following literature can be
consulted:

• IEEE: IEEE Std 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan 
Architecture, IEEE, 1993.

• Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-
Wesley, 1992.
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Boundary-scan IEEE 1149.1 (JTAG)

Features • JTAG (IEEE std. 1149.1 compliant) Interface
• Boundary-scan Capabilities According to the JTAG Standard
• Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
• Supports the Optional IDCODE Instruction
• Additional Public AVR_RESET Instruction to Reset the AVR

System Overview The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connections. At system level, all ICs having JTAG capabilities
are connected serially by the TDI/TDO signals to form a long Shift Register. An external
controller sets up the devices to drive values at their output pins, and observe the input
values received from other devices. The controller compares the received data with the
expected result. In this way, Boundary-scan provides a mechanism for testing intercon-
nections and integrity of components on Printed Circuits Boards by using the four TAP
signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAM-
PLE/PRELOAD, and EXTEST, as well as the AVR specific public JTAG instruction
AVR_RESET can be used for testing the Printed Circuit Board. Initial scanning of the
data register path will show the ID-Code of the device, since IDCODE is the default
JTAG instruction. It may be desirable to have the AVR device in reset during test mode.
If not reset, inputs to the device may be determined by the scan operations, and the
internal software may be in an undetermined state when exiting the test mode. Entering
reset, the outputs of any port pin will instantly enter the high impedance state, making
the HIGHZ instruction redundant. If needed, the BYPASS instruction can be issued to
make the shortest possible scan chain through the device. The device can be set in the
reset state either by pulling the external RESET pin low, or issuing the AVR_RESET
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with
data. The data from the output latch will be driven out on the pins as soon as the
EXTEST instruction is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRE-
LOAD should also be used for setting initial values to the scan ring, to avoid damaging
the board when issuing the EXTEST instruction for the first time. SAMPLE/PRELOAD
can also be used for taking a snapshot of the external pins during normal operation of
the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCR
must be cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency
higher than the internal chip frequency is possible. The chip clock is not required to run.

Data Registers The data registers relevant for Boundary-scan operations are:

• Bypass Register

• Device Identification Register

• Reset Register

• Boundary-scan Chain

Bypass Register The Bypass Register consists of a single Shift Register stage. When the Bypass Regis-
ter is selected as path between TDI and TDO, the register is reset to 0 when leaving the
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Capture-DR controller state. The Bypass Register may be used to shorten the scan
chain on a system when the other devices are to be tested.

Device Identification Register Figure 143 shows the structure of the Device Identification Register. 

Figure 143.  The Format of the Device Identification Register

Version Version is a 4-bit number identifying the revision of the component. The relevant version
number is shown in Table 106.

Part Number The part number is a 16-bit code identifying the component. The JTAG Part Number for
AT90CAN128 is listed in Table 107.

Manufacturer ID The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufac-
turer ID for ATMEL is listed in Table 108.

Device ID The full Device ID is listed in Table 109 following the AT90CAN128 version.

Reset Register The Reset Register is a test data register used to reset the part. Since the AVR tri-states
Port Pins when reset, the Reset Register can also replace the function of the unimple-
mented optional JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the fuse settings for the clock options, the part will remain reset for a reset time-out
period (refer to “System Clock” on page 35) after releasing the Reset Register. The out-

MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part Number Manufacturer ID 1

4 bits 16 bits 11 bits 1-bit

Table 106.  JTAG Version Numbers

Version JTAG Version Number (Hex)

AT90CAN128 revision A 0x0

Table 107.  AVR JTAG Part Number

Part Number JTAG Part Number (Hex)

AT90CAN128 0x9781

Table 108.  Manufacturer ID

Manufacturer JTAG Manufactor ID (Hex)

ATMEL 0x01F

Table 109.  Device ID

Version JTAG Device ID (Hex)

AT90CAN128 revision A 0x0978103F
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put from this data register is not latched, so the reset will take place immediately, as
shown in Figure 144.

Figure 144.  Reset Register

Boundary-scan Chain The Boundary-scan Chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connections.

See “Boundary-scan Chain” on page 295 for a complete description.

Boundary-scan Specific 
JTAG Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are
the JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ
instruction is not implemented, but all outputs with tri-state capability can be set in high-
impedant state by using the AVR_RESET instruction, since the initial state for all port
pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which data register is selected as path between TDI and TDO for
each instruction.

EXTEST (0x0) Mandatory JTAG instruction for selecting the Boundary-scan Chain as data register for
testing circuitry external to the AVR package. For port-pins, Pull-up Disable, Output
Control, Output Data, and Input Data are all accessible in the scan chain. For Analog cir-
cuits having off-chip connections, the interface between the analog and the digital logic
is in the scan chain. The contents of the latched outputs of the Boundary-scan chain is
driven out as soon as the JTAG IR-Register is loaded with the EXTEST instruction.

The active states are:

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.

• Shift-DR: The Internal Scan Chain is shifted by the TCK input.

• Update-DR: Data from the scan chain is applied to output pins.

IDCODE (0x1) Optional JTAG instruction selecting the 32 bit ID-Register as data register. The ID-Reg-
ister consists of a version number, a device number and the manufacturer code chosen
by JEDEC. This is the default instruction after power-up.

The active states are:

• Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan 
Chain.

• Shift-DR: The IDCODE scan chain is shifted by the TCK input.

D QFrom TDI

ClockDR · AVR_RESET

To TDO

From Other Internal and
External Reset Sources Internal reset
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SAMPLE_PRELOAD (0x2) Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of
the input/output pins without affecting the system operation. However, the output latches
are not connected to the pins. The Boundary-scan Chain is selected as data register. 

The active states are: 

• Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain. 

• Shift-DR: The Boundary-scan Chain is shifted by the TCK input. 

• Update-DR: Data from the Boundary-scan chain is applied to the output latches. 
However, the output latches are not connected to the pins. 

AVR_RESET (0xC) The AVR specific public JTAG instruction for forcing the AVR device into the Reset
mode or releasing the JTAG reset source. The TAP controller is not reset by this instruc-
tion. The one bit Reset Register is selected as data register.

Note that the reset will be active as long as there is a logic “one” in the Reset Chain. 

The output from this chain is not latched. 

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

BYPASS (0xF) Mandatory JTAG instruction selecting the Bypass Register for data register.

The active states are:

• Capture-DR: Loads a logic “0” into the Bypass Register.

• Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

Boundary-scan Related 
Register in I/O Memory

MCU Control Register – 
MCUCR

The MCU Control Register contains control bits for general MCU functions.

• Bits 7 – JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed.
If this bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling
or enabling of the JTAG interface, a timed sequence must be followed when changing
this bit: The application software must write this bit to the desired value twice within four
cycles to change its value. Note that this bit must not be altered when using the On-chip
Debug system.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be
set to one. The reason for this is to avoid static current at the TDO pin in the JTAG
interface.

Bit 7 6 5 4 3 2 1 0

JTD – – PUD – – IVSEL IVCE MCUCR

Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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MCU Status Register – 
MCUSR

The MCU Status Register provides information on which reset source caused an MCU
reset.

• Bit 4 – JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

Boundary-scan Chain The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connection. 

Scanning the Digital Port Pins Figure 145 shows the Boundary-scan Cell for a bi-directional port pin with pull-up func-
tion. The cell consists of a standard Boundary-scan cell for the Pull-up Enable – PUExn
– function, and a bi-directional pin cell that combines the three signals Output Control –
OCxn, Output Data – ODxn, and Input Data – IDxn, into only a two-stage Shift Register.
The port and pin indexes are not used in the following description

The Boundary-scan logic is not included in the figures in the datasheet. Figure 146
shows a simple digital port pin as described in the section “I/O-Ports” on page 62. The
Boundary-scan details from Figure 145 replaces the dashed box in Figure 146.

When no alternate port function is present, the Input Data – ID – corresponds to the
PINxn Register value (but ID has no synchronizer), Output Data corresponds to the
PORT Register, Output Control corresponds to the Data Direction – DD Register, and
the Pull-up Enable – PUExn – corresponds to logic expression PUD · DDxn · PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 146 to
make the scan chain read the actual pin value. For Analog function, there is a direct
connection from the external pin to the analog circuit, and a scan chain is inserted on
the interface between the digital logic and the analog circuitry.

Bit 7 6 5 4 3 2 1 0

– – – JTRF WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 See Bit Description
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Figure 145.  Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function.
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Figure 146.  General Port Pin Schematic Diagram

Boundary-scan and the Two-
wire Interface

The two Two-wire Interface pins SCL and SDA have one additional control signal in the
scan-chain; Two-wire Interface Enable – TWIEN. As shown in Figure 147, the TWIEN
signal enables a tri-state buffer with slew-rate control in parallel with the ordinary digital
port pins. A general scan cell as shown in Figure 151 is attached to the TWIEN signal.

Notes: 1. A separate scan chain for the 50 ns spike filter on the input is not provided. The ordi-
nary scan support for digital port pins suffice for connectivity tests. The only reason
for having TWIEN in the scan path, is to be able to disconnect the slew-rate control
buffer when doing boundary-scan. 

2. Make sure the OC and TWIEN signals are not asserted simultaneously, as this will
lead to drive contention.
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Figure 147.  Additional Scan Signal for the Two-wire Interface

Scanning the RESET Pin The RESET pin accepts 3V or 5V active low logic for standard reset operation, and 12V
active high logic for High Voltage Parallel programming. An observe-only cell as shown
in Figure 148 is inserted both for the 3V or 5V reset signal - RSTT, and the 12V reset
signal - RSTHV. 

Figure 148.  Observe-only Cell for RESET pin

Scanning the Clock Pins The AVR devices have many clock options selectable by fuses. These are: Internal RC
Oscillator, External Clock, (High Frequency) Crystal Oscillator, Low-frequency Crystal
Oscillator, and Ceramic Resonator.

Figure 149 shows how each oscillator with external connection is supported in the scan
chain. The Enable signal is supported with a general Boundary-scan cell, while the
Oscillator/clock output is attached to an observe-only cell. In addition to the main clock,
the Timer2 Oscillator is scanned in the same way. The output from the internal RC
Oscillator is not scanned, as this oscillator does not have external connections. 
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Figure 149.  Boundary-scan Cells for Oscillators and Clock Options

Table 110 summaries the scan registers for the external clock pin XTAL1, oscillators
with XTAL1/XTAL2 connections as well as external Timer2 clock pin TOSC1 and 32kHz
Timer2 Oscillator.

Notes: 1. Do not enable more than one clock source as clock at a time.
2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift

between the internal Oscillator and the JTAG TCK clock. If possible, scanning an
external clock is preferred.

3. The main clock configuration is programmed by fuses. As a fuse is not changed run-
time, the main clock configuration is considered fixed for a given application. The
user is advised to scan the same clock option as to be used in the final system. The
enable signals are supported in the scan chain because the system logic can disable
clock options in sleep modes, thereby disconnecting the Oscillator pins from the scan
path if not provided.

Scanning the Analog 
Comparator

The relevant Comparator signals regarding Boundary-scan are shown in Figure 150.
The Boundary-scan cell from Figure 151 is attached to each of these signals. The sig-
nals are described in Table 111.

The Comparator need not be used for pure connectivity testing, since all analog inputs
are shared with a digital port pin as well.

Table 110.  Scan Signals for the Oscillators(1)(2)(3)

Enable Signal
Scanned Clock 

Line Clock Option 
Scanned Clock Line

when not Used

EXTCLKEN EXTCLK (XTAL1) External Main Clock 0

OSCON OSCCK
External Crystal

External Ceramic Resonator

1

OSC32EN OSC32CK Low Freq. External Crystal 1

TOSKON TOSCK 32 kHz Timer2 Oscillator 1

0

1
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Figure 150.  Analog Comparator

Figure 151.  General Boundary-scan cell Used for Signals for Comparator and ADC

Table 111.  Boundary-scan Signals for the Analog Comparator

Signal 
Name

Direction as 
Seen from the 
Comparator Description

Recommended 
Input when Not 
in Use

Output Values when 
Recommended 
Inputs are Used

AC_IDLE input Turns off Analog 
Comparator when 
true

1 Depends upon µC 
code being executed

ACO output Analog 
Comparator Output

Will become 
input to µC 
code being 
executed

0

ACME input Uses output signal 
from ADC mux 
when true

0 Depends upon µC 
code being executed

ACBG input Bandgap 
Reference enable

0 Depends upon µC 
code being executed

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME

AC_IDLE

ACO

ADCEN

0

1
D Q D Q

G

0

1

From
Previous

Cell

ClockDR UpdateDR

ShiftDR

To
Next
Cell EXTEST

To Analog Circuitry/
To Digital Logic

From Digital Logic/
From Analog Ciruitry
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Scanning the ADC Figure 152 shows a block diagram of the ADC with all relevant control and observe sig-
nals. The Boundary-scan cell from Figure 151 is attached to each of these signals. The
ADC need not be used for pure connectivity testing, since all analog inputs are shared
with a digital port pin as well. 

Figure 152.  Analog to Digital Converter

The signals are described briefly in Table 112.

+

-

AREF

PRECH

DACOUT

COMP

MUXEN_7
ADC_7

MUXEN_6
ADC_6

MUXEN_5
ADC_5

MUXEN_4
ADC_4

MUXEN_3
ADC_3

MUXEN_2
ADC_2

MUXEN_1
ADC_1

MUXEN_0
ADC_0

NEGSEL_2
ADC_2

NEGSEL_1
ADC_1

NEGSEL_0
ADC_0

EXTCH

+

-

+

-
10x 20x

10-bit DAC

ST
ACLK

AMPEN

2.56V
ref

IREFEN

AREF

VCCREN

DAC_9..0

ADCEN

HOLD

PRECH

GNDEN

PASSEN

ACTEN

C
O

M
P

SCTEST
ADCBGEN

To Comparator

G20G10

1.22V
ref

ADHSM
ADHSM

Table 112.  Boundary-scan Signals for the ADC(1) 

Signal 
Name

Direction 
as Seen
from the
ADC Description

Recommen-
ded Input 
when not
in Use

Output Values when 
Recommended Inputs 
are Used, and CPU is 
not Using the ADC

COMP Output Comparator Output 0 0

ACLK Input Clock signal to gain 
stages implemented 
as Switch-cap filters

0 0

ACTEN Input Enable path from gain 
stages to the 
comparator

0 0
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ADHSM Input Increases speed of 
comparator at the 
sacrifice of higher 
power consumption

0 0

ADCBGEN Input Enable Band-gap 
reference as negative 
input to comparator

0 0

ADCEN Input Power-on signal to the 
ADC

0 0

AMPEN Input Power-on signal to the 
gain stages

0 0

DAC_9 Input Bit 9 of digital value to 
DAC

1 1

DAC_8 Input Bit 8 of digital value to 
DAC

0 0

DAC_7 Input Bit 7 of digital value to 
DAC

0 0

DAC_6 Input Bit 6 of digital value to 
DAC

0 0

DAC_5 Input Bit 5 of digital value to 
DAC

0 0

DAC_4 Input Bit 4 of digital value to 
DAC

0 0

DAC_3 Input Bit 3 of digital value to 
DAC

0 0

DAC_2 Input Bit 2 of digital value to 
DAC

0 0

DAC_1 Input Bit 1 of digital value to 
DAC

0 0

DAC_0 Input Bit 0 of digital value to 
DAC

0 0

EXTCH Input Connect ADC 
channels 0 - 3 to by-
pass path around gain 
stages

1 1

G10 Input Enable 10x gain 0 0

G20 Input Enable 20x gain 0 0

GNDEN Input Ground the negative 
input to comparator 
when true

0 0

Table 112.  Boundary-scan Signals for the ADC(1)  (Continued)

Signal 
Name

Direction 
as Seen
from the
ADC Description

Recommen-
ded Input 
when not
in Use

Output Values when 
Recommended Inputs 
are Used, and CPU is 
not Using the ADC
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HOLD Input Sample & Hold signal. 
Sample analog signal 
when low. Hold signal 
when high. If gain 
stages are used, this 
signal must go active 
when ACLK is high.

1 1

IREFEN Input Enables Band-gap 
reference as AREF 
signal to DAC

0 0

MUXEN_7 Input Input Mux bit 7 0 0

MUXEN_6 Input Input Mux bit 6 0 0

MUXEN_5 Input Input Mux bit 5 0 0

MUXEN_4 Input Input Mux bit 4 0 0

MUXEN_3 Input Input Mux bit 3 0 0

MUXEN_2 Input Input Mux bit 2 0 0

MUXEN_1 Input Input Mux bit 1 0 0

MUXEN_0 Input Input Mux bit 0 1 1

NEGSEL_2 Input Input Mux for negative 
input for differential 
signal, bit 2

0 0

NEGSEL_1 Input Input Mux for negative 
input for differential 
signal, bit 1

0 0

NEGSEL_0 Input Input Mux for negative 
input for differential 
signal, bit 0

0 0

PASSEN Input Enable pass-gate of 
gain stages.

1 1

PRECH Input Precharge output latch 
of comparator. (Active 
low)

1 1

Table 112.  Boundary-scan Signals for the ADC(1)  (Continued)

Signal 
Name

Direction 
as Seen
from the
ADC Description

Recommen-
ded Input 
when not
in Use

Output Values when 
Recommended Inputs 
are Used, and CPU is 
not Using the ADC
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Note: 1. Incorrect setting of the switches in Figure 152 will make signal contention and may
damage the part. There are several input choices to the S&H circuitry on the negative
input of the output comparator in Figure 152. Make sure only one path is selected
from either one ADC pin, Bandgap reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from Table 112
should be used. The user is recommended not to use the Differential Gain stages dur-
ing scan. Switch-Cap based gain stages require fast operation and accurate timing
which is difficult to obtain when used in a scan chain. Details concerning operations of
the differential gain stage is therefore not provided. For the same reason, the ADC High
Speed mode (ADHSM) bit does not make any sense during boundary-scan operation.

The AVR ADC is based on the analog circuitry shown in Figure 152 with a successive
approximation algorithm implemented in the digital logic. When used in Boundary-scan,
the problem is usually to ensure that an applied analog voltage is measured within some
limits. This can easily be done without running a successive approximation algorithm:
apply the lower limit on the digital DAC[9:0] lines, make sure the output from the com-
parator is low, then apply the upper limit on the digital DAC[9:0] lines, and verify the
output from the comparator to be high. 

The ADC need not be used for pure connectivity testing, since all analog inputs are
shared with a digital port pin as well.

When using the ADC, remember the following

• The port pin for the ADC channel in use must be configured to be an input with pull-
up disabled to avoid signal contention.

• In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed 
when enabling the ADC. The user is advised to wait at least 200ns after enabling 
the ADC before controlling/observing any ADC signal, or perform a dummy 
conversion before using the first result.

• The DAC values must be stable at the midpoint value 0x200 when having the HOLD 
signal low (Sample mode).

SCTEST Input Switch-cap TEST 
enable. Output from 
x10 gain stage send 
out to Port Pin having 
ADC_4

0 0

ST Input Output of gain stages 
will settle faster if this 
signal is high first two 
ACLK periods after 
AMPEN goes high.

0 0

VCCREN Input Selects Vcc as the 
ACC reference 
voltage.

0 0

Table 112.  Boundary-scan Signals for the ADC(1)  (Continued)

Signal 
Name

Direction 
as Seen
from the
ADC Description

Recommen-
ded Input 
when not
in Use

Output Values when 
Recommended Inputs 
are Used, and CPU is 
not Using the ADC
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As an example, consider the task of verifying a 1.5V ± 5% input signal at ADC channel 3
when the power supply is 5.0V and AREF is externally connected to VCC.

The recommended values from Table 112 are used unless other values are given in the
algorithm in Table 113. Only the DAC and port pin values of the Scan Chain are shown.
The column “Actions” describes what JTAG instruction to be used before filling the
Boundary-scan Register with the succeeding columns. The verification should be done
on the data scanned out when scanning in the data on the same row in the table.

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock
frequency. As the algorithm keeps HOLD high for five steps, the TCK clock frequency
has to be at least five times the number of scan bits divided by the maximum hold time,
thold,max

Table 113.  Algorithm for Using the ADC

Step Actions ADCEN DAC MUXEN HOLD PRECH
PA3.
Data

PA3.
Control

PA3.
Pullup_
Enable

1
SAMPLE_
PRELOAD

1 0x200 0x08 1 1 0 0 0

2 EXTEST 1 0x200 0x08 0 1 0 0 0

3 1 0x200 0x08 1 1 0 0 0

4 1 0x123 0x08 1 1 0 0 0

5 1 0x123 0x08 1 0 0 0 0

6

Verify the 
COMP bit 
scanned 
out to be 0

1 0x200 0x08 1 1 0 0 0

7 1 0x200 0x08 0 1 0 0 0

8 1 0x200 0x08 1 1 0 0 0

9 1 0x143 0x08 1 1 0 0 0

10 1 0x143 0x08 1 0 0 0 0

11

Verify the 
COMP bit 
scanned 
out to be 1

1 0x200 0x08 1 1 0 0 0

The lower limit is:      1024 1,5V 0,95 5V⁄⋅ ⋅ 291 0x123= =       
The upper limit is:      1024 1,5V 1,05 5V⁄⋅ ⋅ 323 0x143= =
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AT90CAN128 Boundary-
scan Order

Table 114 shows the Scan order between TDI and TDO when the Boundary-scan chain
is selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit
scanned out. The scan order follows the pin-out order as far as possible. Therefore, the
bits of Port A is scanned in the opposite bit order of the other ports. Exceptions from the
rules are the Scan chains for the analog circuits, which constitute the most significant
bits of the scan chain regardless of which physical pin they are connected to. In Figure
145, PXn. Data corresponds to FF0, PXn. Control corresponds to FF1, and PXn.
Pullup_enable corresponds to FF2. Bit 2, 3, 4, and 5 of Port C is not in the scan chain,
since these pins constitute the TAP pins when the JTAG is enabled.

Table 114.  AT90CAN128 Boundary-scan Order 

Bit Number Signal Name Comment Module

200 AC_IDLE Comparator

199 ACO

198 ACME

197 AINBG

196 COMP ADC

195 ACLK

194 ACTEN

193 ADHSM

192 ADCBGEN

191 ADCEN

190 AMPEN

189 DAC_9

188 DAC_8

187 DAC_7

186 DAC_6

185 DAC_5

184 DAC_4

183 DAC_3

182 DAC_2

181 DAC_1

180 DAC_0

179 EXTCH

178 G10

177 G20

176 GNDEN

175 HOLD

174 IREFEN

173 MUXEN_7

172 MUXEN_6

171 MUXEN_5

170 MUXEN_4
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169 MUXEN_3 ADC

168 MUXEN_2

167 MUXEN_1

166 MUXEN_0

165 NEGSEL_2

164 NEGSEL_1

163 NEGSEL_0

162 PASSEN

161 PRECH

160 SCTEST

159 ST

158 VCCREN

157 PE0.Data Port E

156 PE0.Control

155 PE0.Pullup_Enable

154 PE1.Data

153 PE1.Control

152 PE1.Pullup_Enable

151 PE2.Data

150 PE2.Control

149 PE2.Pullup_Enable

148 PE3.Data

147 PE3.Control

146 PE3.Pullup_Enable

145 PE4.Data

144 PE4.Control

143 PE4.Pullup_Enable

142 PE5.Data

141 PE5.Control

140 PE5.Pullup_Enable

139 PE6.Data

138 PE6.Control

137 PE6.Pullup_Enable

136 PE7.Data

135 PE7.Control

134 PE7.Pullup_Enable

133 PB0.Data Port B

132 PB0.Control

Table 114.  AT90CAN128 Boundary-scan Order  (Continued)

Bit Number Signal Name Comment Module
307      
7522C–AUTO–09/06



      
131 PB0.Pullup_Enable Port B

130 PB1.Data

129 PB1.Control

128 PB1.Pullup_Enable

127 PB2.Data

126 PB2.Control

125 PB2.Pullup_Enable

124 PB3.Data

123 PB3.Control

122 PB3.Pullup_Enable

121 PB4.Data

120 PB4.Control

119 PB4.Pullup_Enable

118 PB5.Data

117 PB5.Control

116 PB5.Pullup_Enable

115 PB6.Data

114 PB6.Control

113 PB6.Pullup_Enable

112 PB7.Data

111 PB7.Control

110 PB7.Pullup_Enable

109 PG3.Data Port G

108 PG3.Control

107 PG3.Pullup_Enable

106 PG4.Data

105 PG4.Control

104 PG4.Pullup_Enable

103 - (Private Signal)

102 RSTT (Observe Only) RESET Logic 

101 RSTHV

100 EXTCLKEN Oscillators

99 OSCON

98 OSC32EN

97 TOSKON

96 EXTCLK (XTAL1)

95 OSCCK

94 OSC32CK

Table 114.  AT90CAN128 Boundary-scan Order  (Continued)

Bit Number Signal Name Comment Module
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93 TOSK Oscillators

92 PD0.Data Port D

91 PD0.Control

90 PD0.Pullup_Enable

89 PD1.Data

88 PD1.Control

87 PD1.Pullup_Enable

86 PD2.Data

85 PD2.Control

84 PD2.Pullup_Enable

83 PD3.Data

82 PD3.Control

81 PD3.Pullup_Enable

80 PD4.Data

79 PD4.Control

78 PD4.Pullup_Enable

77 PD5.Data

76 PD5.Control

75 PD5.Pullup_Enable

74 PD6.Data

73 PD6.Control

72 PD6.Pullup_Enable

71 PD7.Data

70 PD7.Control

69 PD7.Pullup_Enable

68 PG0.Data Port G

67 PG0.Control

66 PG0.Pullup_Enable

65 PG1.Data

64 PG1.Control

63 PG1.Pullup_Enable

62 PC0.Data Port C

61 PC0.Control

60 PC0.Pullup_Enable

59 PC1.Data

58 PC1.Control

57 PC1.Pullup_Enable

56 PC2.Data

Table 114.  AT90CAN128 Boundary-scan Order  (Continued)

Bit Number Signal Name Comment Module
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55 PC2.Control Port C

54 PC2.Pullup_Enable

53 PC3.Data

52 PC3.Control

51 PC3.Pullup_Enable

50 PC4.Data

49 PC4.Control

48 PC4.Pullup_Enable

47 PC5.Data

46 PC5.Control

45 PC5.Pullup_Enable

44 PC6.Data

43 PC6.Control

42 PC6.Pullup_Enable

41 PC7.Data

40 PC7.Control

39 PC7.Pullup_Enable

38 PG2.Data Port G

37 PG2.Control

36 PG2.Pullup_Enable

35 PA7.Data Port A

34 PA7.Control

33 PA7.Pullup_Enable

32 PA6.Data

31 PA6.Control

30 PA6.Pullup_Enable

29 PA5.Data

28 PA5.Control

27 PA5.Pullup_Enable

26 PA4.Data

25 PA4.Control

24 PA4.Pullup_Enable

23 PA3.Data

22 PA3.Control

21 PA3.Pullup_Enable

20 PA2.Data

19 PA2.Control

18 PA2.Pullup_Enable

Table 114.  AT90CAN128 Boundary-scan Order  (Continued)

Bit Number Signal Name Comment Module
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Boundary-scan 
Description Language 
Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable
devices in a standard format used by automated test-generation software. The order
and function of bits in the Boundary-scan Data Register are included in this description.
A BSDL file for AT90CAN128 is available.

17 PA1.Data Port A

16 PA1.Control

15 PA1.Pullup_Enable

14 PA0.Data

13 PA0.Control

12 PA0.Pullup_Enable

11 PF3.Data Port F

10 PF3.Control

9 PF3.Pullup_Enable

8 PF2.Data

7 PF2.Control

6 PF2.Pullup_Enable

5 PF1.Data

4 PF1.Control

3 PF1.Pullup_Enable

2 PF0.Data

1 PF0.Control

0 PF0.Pullup_Enable

Table 114.  AT90CAN128 Boundary-scan Order  (Continued)

Bit Number Signal Name Comment Module
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Boot Loader Support – Read-While-Write Self-Programming
The Boot Loader Support provides a real Read-While-Write Self-Programming mecha-
nism for downloading and uploading program code by the MCU itself. This feature
allows flexible application software updates controlled by the MCU using a Flash-resi-
dent Boot Loader program. The Boot Loader program can use any available data
interface and associated protocol to read code and write (program) that code into the
Flash memory, or read the code from the program memory. The program code within
the Boot Loader section has the capability to write into the entire Flash, including the
Boot Loader memory. The Boot Loader can thus even modify itself, and it can also
erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with fuses and the Boot Loader has two separate sets of
Boot Lock bits which can be set independently. This gives the user a unique flexibility to
select different levels of protection. 

Features • Read-While-Write Self-Programming
• Flexible Boot Memory Size
• High Security (Separate Boot Lock Bits for a Flexible Protection)
• Separate Fuse to Select Reset Vector
• Optimized Page(1) Size
• Code Efficient Algorithm
• Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 132 on page
331) used during programming. The page organization does not affect normal
operation.

Application and Boot 
Loader Flash Sections The Flash memory is organized in two main sections, the Application section and the

Boot Loader section (see Figure 154). The size of the different sections is configured by
the BOOTSZ Fuses as shown in Table 120 on page 324 and Figure 154. These two
sections can have different level of protection since they have different sets of Lock bits.

AS - Application Section The Application section is the section of the Flash that is used for storing the application
code. The protection level for the Application section can be selected by the application
Boot Lock bits (BLB02 and BLB01 bits), see Table 116 on page 316. The Application
section can never store any Boot Loader code since the SPM instruction is disabled
when executed from the Application section.

BLS – Boot Loader Section While the Application section is used for storing the application code, the The Boot
Loader software must be located in the BLS since the SPM instruction can initiate a pro-
gramming when executing from the BLS only. The SPM instruction can access the
entire Flash, including the BLS itself. The protection level for the Boot Loader section
can be selected by the Boot Loader Lock bits (BLB12 and BLB11 bits), see Table 117
on page 316.

Read-While-Write and No 
Read-While-Write Flash 
Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot
Loader software update is dependent on which address that is being programmed. In
addition to the two sections that are configurable by the BOOTSZ Fuses as described
above, the Flash is also divided into two fixed sections, the Read-While-Write (RWW)
section and the No Read-While-Write (NRWW) section. The limit between the RWW-
and NRWW sections is given in Table 121 on page 324 and Figure 154 on page 315.
The main difference between the two sections is:
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• When erasing or writing a page located inside the RWW section, the NRWW section 
can be read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted 
during the entire operation.

Note that the user software can never read any code that is located inside the RWW
section during a Boot Loader software operation. The syntax “Read-While-Write sec-
tion” refers to which section that is being programmed (erased or written), not which
section that actually is being read during a Boot Loader software update.

RWW – Read-While-Write 
Section

If a Boot Loader software update is programming a page inside the RWW section, it is
possible to read code from the Flash, but only code that is located in the NRWW sec-
tion. During an on-going programming, the software must ensure that the RWW section
never is being read. If the user software is trying to read code that is located inside the
RWW section (i.e., by a call/jmp/lpm or an interrupt) during programming, the software
might end up in an unknown state. To avoid this, the interrupts should either be disabled
or moved to the Boot Loader section. The Boot Loader section is always located in the
NRWW section. The RWW Section Busy bit (RWWSB) in the Store Program Memory
Control and Status Register (SPMCSR) will be read as logical one as long as the RWW
section is blocked for reading. After a programming is completed, the RWWSB must be
cleared by software before reading code located in the RWW section. See “Store Pro-
gram Memory Control and Status Register – SPMCSR” on page 317  for details on how
to clear RWWSB.

NRWW – No Read-While-Write 
Section

The code located in the NRWW section can be read when the Boot Loader software is
updating a page in the RWW section. When the Boot Loader code updates the NRWW
section, the CPU is halted during the entire Page Erase or Page Write operation.

Table 115.  Read-While-Write Features

Which Section does the Z-
pointer Address During the 

Programming?

Which Section Can 
be Read During 
Programming?

Is the CPU 
Halted?

Read-While-Write 
Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No
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Figure 153.  Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

No Read-While-Write 
(NRWW) Section

Z-pointer
Addresses RWW
Section

Z-pointer
Addresses NRWW
Section

CPU is Halted
During the Operation

Code Located in 
NRWW Section
Can be Read During
the Operation
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Figure 154.  Memory Sections

Note: 1. The parameters in the figure above are given in Table 120 on page 324.

Boot Loader Lock Bits If no Boot Loader capability is needed, the entire Flash is available for application code.
The Boot Loader has two separate sets of Boot Lock bits which can be set indepen-
dently. This gives the user a unique flexibility to select different levels of protection. 

The user can select:

• To protect the entire Flash from a software update by the MCU.

• To protect only the Boot Loader Flash section from a software update by the MCU.

• To protect only the Application Flash section from a software update by the MCU.

• Allow software update in the entire Flash.
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See Table 116 and Table 117 for further details. The Boot Lock bits can be set in soft-
ware and in Serial or Parallel Programming mode, but they can be cleared by a Chip
Erase command only. The general Write Lock (Lock Bit mode 2) does not control the
programming of the Flash memory by SPM instruction. Similarly, the general
Read/Write Lock (Lock Bit mode 1) does not control reading nor writing by LPM/SPM
(Load Program Memory / Store Program Memory) instructions, if it is attempted. 

Note: 1. “1” means unprogrammed, “0” means programmed

Note: 1. “1” means unprogrammed, “0” means programmed

Entering the Boot Loader 
Program

Entering the Boot Loader takes place by a jump or call from the application program.
This may be initiated by a trigger such as a command received via USART, or SPI inter-
face. Alternatively, the Boot Reset Fuse can be programmed so that the Reset Vector is
pointing to the Boot Flash start address after a reset. In this case, the Boot Loader is
started after a reset. After the application code is loaded, the program can start execut-
ing the application code. Note that the fuses cannot be changed by the MCU itself. This
means that once the Boot Reset Fuse is programmed, the Reset Vector will always

Table 116.  Boot Lock Bit0 Protection Modes (Application Section)(1)

Lock Bit 
Mode BLB02 BLB01 Protection

1 1 1 No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0 SPM is not allowed to write to the Application section, and 
LPM executing from the Boot Loader section is not allowed 
to read from the Application section. If Interrupt Vectors are 
placed in the Boot Loader section, interrupts are disabled 
while executing from the Application section.

4 0 1 LPM executing from the Boot Loader section is not allowed 
to read from the Application section. If Interrupt Vectors are 
placed in the Boot Loader section, interrupts are disabled 
while executing from the Application section.

Table 117.  Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

Lock Bit 
Mode BLB12 BLB11 Protection

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader 
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0 SPM is not allowed to write to the Boot Loader section, and 
LPM executing from the Application section is not allowed to 
read from the Boot Loader section. If Interrupt Vectors are 
placed in the Application section, interrupts are disabled 
while executing from the Boot Loader section.

4 0 1 LPM executing from the Application section is not allowed to 
read from the Boot Loader section. If Interrupt Vectors are 
placed in the Application section, interrupts are disabled 
while executing from the Boot Loader section.
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point to the Boot Loader Reset and the fuse can only be changed through the serial or
parallel programming interface.

Note: 1. “1” means unprogrammed, “0” means programmed

Store Program Memory 
Control and Status Register – 
SPMCSR

The Store Program Memory Control and Status Register contains the control bits
needed to control the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the
SPM ready interrupt will be enabled. The SPM ready Interrupt will be executed as long
as the SPMEN bit in the SPMCSR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy

When a Self-Programming (Page Erase or Page Write) operation to the RWW section is
initiated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the
RWW section cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit
is written to one after a Self-Programming operation is completed. Alternatively the
RWWSB bit will automatically be cleared if a page load operation is initiated.

• Bit 5 – Res: Reserved Bit

This bit is a reserved bit in the AT90CAN128 and always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section
is blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW
section, the user software must wait until the programming is completed (SPMEN will be
cleared). Then, if the RWWSRE bit is written to one at the same time as SPMEN, the
next SPM instruction within four clock cycles re-enables the RWW section. The RWW
section cannot be re-enabled while the Flash is busy with a Page Erase or a Page Write
(SPMEN is set). If the RWWSRE bit is written while the Flash is being loaded, the Flash
load operation will abort and the data loaded will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles sets Boot Lock bits, according to the data in R0. The data in R1 and
the address in the Z-pointer/RAMPZ are ignored. The BLBSET bit will automatically be
cleared upon completion of the Lock bit set, or if no SPM instruction is executed within
four clock cycles. 

An LPM instruction within three cycles after BLBSET and SPMEN are set in the
SPMCSR Register, will read either the Lock bits or the Fuse bits (depending on Z0 in

Table 118.  Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 120 on page 324)

Bit 7 6 5 4 3 2 1 0

SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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the Z-pointer) into the destination register. See “Reading the Fuse and Lock Bits from
Software” on page 321 for details.

• Bit 2 – PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes Page Write, with the data stored in the temporary buffer. The
page address is taken from the high part of the Z-pointer and the low part of RAMPZ.
The data in R1 and R0 are ignored. The PGWRT bit will auto-clear upon completion of a
Page Write, or if no SPM instruction is executed within four clock cycles. The CPU is
halted during the entire Page Write operation if the NRWW section is addressed.

• Bit 1 – PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes Page Erase. The page address is taken from the high part of
the Z-pointer and the low part of RAMPZ. The data in R1 and R0 are ignored. The
PGERS bit will auto-clear upon completion of a Page Erase, or if no SPM instruction is
executed within four clock cycles. The CPU is halted during the entire Page Write oper-
ation if the NRWW section is addressed.

• Bit 0 – SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one
together with either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM
instruction will have a special meaning, see description above. If only SPMEN is written,
the following SPM instruction will store the value in R1:R0 in the temporary page buffer
addressed by the Z-pointer/RAMPZ. The LSB of the Z-pointer is ignored. The SPMEN
bit will auto-clear upon completion of an SPM instruction, or if no SPM instruction is exe-
cuted within four clock cycles. During Page Erase and Page Write, the SPMEN bit
remains high until the operation is completed. 

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the
lower five bits will have no effect.

Addressing the Flash 
During Self-
Programming

The Z-pointer together with RAMPZ are used to address the SPM commands. For
details on how to use the RAMPZ, see “RAM Page Z Select Register – RAMPZ” on
page 13.

Since the Flash is organized in pages (see Table 132 on page 331), the program
counter can be treated as having two different sections. One section, consisting of the
least significant bits, is addressing the words within a page, while the most significant
bits are addressing the pages. This is shown in Figure 155. Note that the page erase
and page write operations are addressed independently. Therefore it is of major impor-
tance that the Boot Loader software addresses the same page in both the page erase
and page write operation. Once a programming operation is initiated, the address is
latched and the Z-pointer/RAMPZ can be used for other operations. 

The only SPM operation that does not use the Z-pointer/RAMPZ is setting the Boot
Loader Lock bits. The content of the Z-pointer/RAMPZ is ignored and will have no effect
on the operation. The (E)LPM instruction does also use the Z-pointer/RAMPZ to store

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0
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the address. Since this instruction addresses the Flash byte by byte, also the LSB (bit
Z0) of the Z-pointer is used.

Figure 155.  Addressing the Flash During SPM(1)

Note: 1. The different variables used in Figure 155 are listed in Table 122 on page 325. 

Self-Programming the 
Flash

The program memory is updated in a page by page fashion. Before programming a
page with the data stored in the temporary page buffer, the page must be erased. The
temporary page buffer is filled one word at a time using SPM and the buffer can be filled
either before the Page Erase command or between a Page Erase and a Page Write
operation:

Alternative 1: fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2: fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for
example in the temporary page buffer) before the erase, and then be rewritten. When
using alternative 1, the Boot Loader provides an effective Read-Modify-Write feature
which allows the user software to first read the page, do the necessary changes, and
then write back the modified data. If alternative 2 is used, it is not possible to read the
old data while loading since the page is already erased. The temporary page buffer can
be accessed in a random sequence. It is essential that the page address used in both
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the Page Erase and Page Write operation is addressing the same page. See “Simple
Assembly Code Example for a Boot Loader” on page 322 for an assembly code
example.

Performing Page Erase by 
SPM

To execute Page Erase, set up the address in the Z-pointer/RAMPZ, write “X0000011”
to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data
in R1 and R0 is ignored. The page address must be written to PCPAGE in the Z-register
and RAMPZ. Other bits in the Z-pointer must be written zero during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the page 
erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

Filling the Temporary Buffer 
(Page Loading)

To write an instruction word, set up the address in the Z-pointer/RAMPZ and data in
R1:R0, write “00000001” to SPMCSR and execute SPM within four clock cycles after
writing SPMCSR. The content of PCWORD in the Z-register is used to address the data
in the temporary buffer. The temporary buffer will auto-erase after a Page Write opera-
tion or by writing the RWWSRE bit in SPMCSR. It is also erased after a system reset.
Note that it is not possible to write more than one time to each address without erasing
the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded
will be lost.

Performing a Page Write To execute Page Write, set up the address in the Z-pointer/RAMPZ, write “X0000101” to
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data in
R1 and R0 is ignored. The page address must be written to PCPAGE. Other bits in the
Z-pointer will be ignored during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page 
Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

Using the SPM Interrupt If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt
when the SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used
instead of polling the SPMCSR Register in software. When using the SPM interrupt, the
Interrupt Vectors should be moved to the BLS section to avoid that an interrupt is
accessing the RWW section when it is blocked for reading. How to move the interrupts
is described in “Interrupts” on page 57.

Consideration While Updating 
BLS

Special care must be taken if the user allows the Boot Loader section to be updated by
leaving Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can
corrupt the entire Boot Loader, and further software updates might be impossible. If it is
not necessary to change the Boot Loader software itself, it is recommended to program
the Boot Lock bit11 to protect the Boot Loader software from any internal software
changes.

Prevent Reading the RWW 
Section During Self-
Programming

During Self-Programming (either Page Erase or Page Write), the RWW section is
always blocked for reading. The user software itself must prevent that this section is
addressed during the self programming operation. The RWWSB in the SPMCSR will be
set as long as the RWW section is busy. During Self-Programming the Interrupt Vector
table should be moved to the BLS as described in “Interrupts” on page 57, or the inter-
rupts must be disabled. Before addressing the RWW section after the programming is
completed, the user software must clear the RWWSB by writing the RWWSRE. See
“Simple Assembly Code Example for a Boot Loader” on page 322 for an example.
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Setting the Boot Loader Lock 
Bits by SPM

To set the Boot Loader Lock bits, write the desired data to R0, write “X0001001” to
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The only
accessible Lock bits are the Boot Lock bits that may prevent the Application and Boot
Loader section from any software update by the MCU. 

See Table 116 and Table 117 for how the different settings of the Boot Loader bits affect
the Flash access.

If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed
if an SPM instruction is executed within four cycles after BLBSET and SPMEN are set in
SPMCSR. The Z-pointer is don’t care during this operation, but for future compatibility it
is recommended to load the Z-pointer with 0x0001 (same as used for reading the Lock
bits). For future compatibility it is also recommended to set bits 7, 6, 1, and 0 in R0 to “1”
when writing the Lock bits. When programming the Lock bits the entire Flash can be
read during the operation.

EEPROM Write Prevents 
Writing to SPMCSR

Note that an EEPROM write operation will block all software programming to Flash.
Reading the Fuses and Lock bits from software will also be prevented during the
EEPROM write operation. It is recommended that the user checks the status bit (EEWE)
in the EECR Register and verifies that the bit is cleared before writing to the SPMCSR
Register.

Reading the Fuse and Lock 
Bits from Software

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits,
load the Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR.
When an LPM instruction is executed within three CPU cycles after the BLBSET and
SPMEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the destina-
tion register. The BLBSET and SPMEN bits will auto-clear upon completion of reading
the Lock bits or if no LPM instruction is executed within three CPU cycles or no SPM
instruction is executed within four CPU cycles. When BLBSET and SPMEN are cleared,
LPM will work as described in the Instruction set Manual.

The algorithm for reading the Fuse Low byte is similar to the one described above for
reading the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and
set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruction is executed
within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the value
of the Fuse Low byte (FLB) will be loaded in the destination register as shown below.
Refer to Table 127 on page 328 for a detailed description and mapping of the Fuse Low
byte.

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in
the SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination
register as shown below. Refer to Table 126 on page 327 for detailed description and
mapping of the Fuse High byte.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 1 1

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0001) – – BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0000) FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0003) FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0
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When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in
the SPMCSR, the value of the Extended Fuse byte (EFB) will be loaded in the destina-
tion register as shown below. Refer to Table 125 on page 327 for detailed description
and mapping of the Extended Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that
are unprogrammed, will be read as one.

Preventing Flash Corruption During periods of low VCC, the Flash program can be corrupted because the supply volt-
age is too low for the CPU and the Flash to operate properly. These issues are the same
as for board level systems using the Flash, and the same design solutions should be
applied. 

A Flash program corruption can be caused by two situations when the voltage is too low. 

• First, a regular write sequence to the Flash requires a minimum voltage to operate 
correctly.

• Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage 
for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one
is sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot 
Loader Lock bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply 
voltage. This can be done by enabling the internal Brown-out Detector (BOD) if 
the operating voltage matches the detection level. If not, an external low VCC 
reset protection circuit can be used. If a reset occurs while a write operation is in 
progress, the write operation will be completed provided that the power supply 
voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This 
will prevent the CPU from attempting to decode and execute instructions, effec-
tively protecting the SPMCSR Register and thus the Flash from unintentional 
writes.

Programming Time for Flash 
when Using SPM

The calibrated RC Oscillator is used to time Flash accesses. Table 119 shows the typi-
cal programming time for Flash accesses from the CPU.

Simple Assembly Code 
Example for a Boot Loader

;- the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y-pointer
; the first data location in Flash is pointed to by the Z-pointer
;- error handling is not included
;- the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;- registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24), 

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0002) – – – – EFB3 EFB2 EFB1 EFB0

Table 119.  SPM Programming Time

Symbol Min Programming Time Max Programming Time

Flash write (Page Erase, Page Write, 
and write Lock bits by SPM)

3.7 ms 4.5 ms
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; loophi (r25), spmcsrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;- it is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART

Write_page:
; Page Erase
ldi spmcsrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcsrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcsrval, (1<<SPMEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcsrval, (1<<PGWRT) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
ldi spmcsrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
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ldi spmcsrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SPMEN
rjmp Wait_spm
; input: spmcsrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcsrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret

AT90CAN128 Boot Loader 
Parameters

In Table 120 through Table 122, the parameters used in the description of the Self-Pro-
gramming are given. 

Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 154

Note: 1. For details about these two section, see “NRWW – No Read-While-Write Section” on
page 313 and “RWW – Read-While-Write Section” on page 313.

Table 120.  Boot Size Configuration (Word Addresses)(1)

B
O

O
T

S
Z

1

B
O

O
T

S
Z

0

Boot 
Size Pages

Application 
Flash Section

Boot 
Loader 
Flash 
Section

End
Application 
Section

Boot Reset 
Address 
(Start Boot 
Loader 
Section)

1 1
512 
words

4
0x0000 - 
0xFDFF

0xFE00 - 
0xFFFF

0xFDFF 0xFE00

1 0
1024 
words

8
0x0000 - 
0xFBFF

0xFC00 - 
0xFFFF

0xFBFF 0xFC00

0 1
2048 
words

16
0x0000 - 
0xF7FF

0xF800 - 
0xFFFF

0xF7FF 0xF800

0 0
4096 
words

32
0x0000 - 
0xEFFF

0xF000 - 
0xFFFF

0xEFFF 0xF000

Table 121.  Read-While-Write Limit (Word Addresses)(1)

Section Pages Address

Read-While-Write section (RWW) 480 0x0000 - 0xEFFF

No Read-While-Write section (NRWW) 32 0xF000 - 0xFFFF
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Notes: 1. The Z-register is only 16 bits wide. Bit 16 is located in the RAMPZ register in the I/O
map.

2. Z0: should be zero for all SPM commands, byte select for the (E)LPM instruction.
3. See “Addressing the Flash During Self-Programming” on page 318 for details about

the use of Z-pointer/RAMPZ during self-programming.

Table 122.  Explanation of Different Variables Used in Figure 155 and the Mapping to
the Z-Pointer/RAMPZ(3)

Variable
Corresponding 

Z-value Description(2)

PCMSB 15
Most significant bit in the program counter.
(The program counter is 16 bits PC[15:0])

PAGEMSB 6
Most significant bit which is used to address the 
words within one page (128 words in a page 
requires 7 bits PC [6:0]).

ZPCMSB Z16(1)
Bit in Z-register that is mapped to PCMSB. 
Because Z0 is not used, the ZPCMSB equals 
PCMSB + 1. 

ZPAGEMSB Z7
Bit in Z-register that is mapped to PAGEMSB. 
Because Z0 is not used, the ZPAGEMSB 
equals PAGEMSB + 1.

PCPAGE PC[15:7] Z16(1):Z7
Program counter page address: Page select, 
for Page Erase and Page Write.

PCWORD PC[6:0] Z7:Z1
Program counter word address: Word select, 
for filling temporary buffer (must be zero during 
PAGE WRITE operation).
325      
7522C–AUTO–09/06



      
Memory Programming

Program and Data 
Memory Lock Bits

The AT90CAN128 provides six Lock bits which can be left unprogrammed (“1”) or can
be programmed (“0”) to obtain the additional features listed in Table 124. The Lock bits
can only be erased to “1” with the Chip Erase command.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 123.  Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12 5 Boot Lock bit 1 (unprogrammed)

BLB11 4 Boot Lock bit 1 (unprogrammed)

BLB02 3 Boot Lock bit 1 (unprogrammed)

BLB01 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Table 124.  Lock Bit Protection Modes(1)(2) 

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the Flash and EEPROM is disabled 
in Parallel and Serial Programming mode. The Fuse bits are 
locked in both Serial and Parallel Programming mode.(1)

3 0 0

Further programming and verification of the Flash and 
EEPROM is disabled in Parallel and Serial Programming 
mode. The Boot Lock bits and Fuse bits are locked in both 
Serial and Parallel Programming mode.(1)

BLB0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM (Store Program Memory) or LPM 
(Load Program Memory) accessing the Application section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and 
LPM executing from the Boot Loader section is not allowed 
to read from the Application section. If Interrupt Vectors are 
placed in the Boot Loader section, interrupts are disabled 
while executing from the Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed 
to read from the Application section. If Interrupt Vectors are 
placed in the Boot Loader section, interrupts are disabled 
while executing from the Application section.

BLB1 Mode BLB12 BLB11

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader 
section.
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Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed

Fuse Bits The AT90CAN128 has three Fuse bytes. Table 125, Table 126 and Table 127 describe
briefly the functionality of all the fuses and how they are mapped into the Fuse bytes.
Note that the fuses are read as logical zero, “0”, if they are programmed.

Notes: 1. See Table 21 on page 51 for BODLEVEL Fuse decoding.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and 
LPM executing from the Application section is not allowed to 
read from the Boot Loader section. If Interrupt Vectors are 
placed in the Application section, interrupts are disabled 
while executing from the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to 
read from the Boot Loader section. If Interrupt Vectors are 
placed in the Application section, interrupts are disabled 
while executing from the Boot Loader section.

Table 124.  Lock Bit Protection Modes(1)(2)  (Continued)

Memory Lock Bits Protection Type

Table 125.  Extended Fuse Byte

Fuse Extended 
Byte

Bit 
No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

BODLEVEL2(1) 3 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL1(1) 2 Brown-out Detector trigger level 1 (unprogrammed)

BODLEVEL0(1) 1 Brown-out Detector trigger level 1 (unprogrammed)

TA0SEL 0 (Reserved for factory tests) 1 (unprogrammed)

Table 126.  Fuse High Byte

Fuse High 
Byte

Bit 
No Description Default Value

OCDEN(4) 7 Enable OCD 1 (unprogrammed, OCD disabled)

JTAGEN(5) 6 Enable JTAG 0 (programmed, JTAG enabled)

SPIEN(1) 5
Enable Serial Program and Data 
Downloading

0 (programmed, SPI prog. enabled)

WDTON(3) 4 Watchdog Timer always on 1 (unprogrammed)

EESAVE 3
EEPROM memory is preserved 
through the Chip Erase

1 (unprogrammed, EEPROM not 
preserved)
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Note: 1. The SPIEN Fuse is not accessible in serial programming mode.

2. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 120 on
page 324 for details.

3. See “Watchdog Timer Control Register – WDTCR” on page 55 for details.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of

Lock bits and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of
the clock system to be running in all sleep modes. This may increase the power
consumption.

5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be dis-
abled. This to avoid static current at the TDO pin in the JTAG interface.

Note: 1. The default value of SUT1..0 results in maximum start-up time for the default clock
source. See Table 13 on page 40 for details.

2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 8 MHz. See
Table 6 on page 36 for details.

3. The CKOUT Fuse allow the system clock to be output on Port PC7. See “Clock Out-
put Buffer” on page 41 for details.

4. See “System Clock Prescaler” on page 42 for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are
locked if Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the
Lock bits.

Latching of Fuses The fuse values are latched when the device enters programming mode and changes of
the fuse values will have no effect until the part leaves Programming mode. This does
not apply to the EESAVE Fuse which will take effect once it is programmed. The fuses
are also latched on Power-up in Normal mode.

BOOTSZ1 2
Select Boot Size
(see Table 120 for details)

0 (programmed)(2)

BOOTSZ0 1
Select Boot Size
(see Table 120 for details)

0 (programmed)(2)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Table 127.  Fuse Low Byte

Fuse Low 
Byte

Bit 
No Description Default Value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 1 (unprogrammed)(2)

CKSEL0 0 Select Clock source 0 (programmed)(2)

Table 126.  Fuse High Byte (Continued)

Fuse High 
Byte

Bit 
No Description Default Value
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Signature Bytes All Atmel microcontrollers have a three-byte signature code which identifies the device.
This code can be read in both serial and parallel mode, also when the device is locked.
The three bytes reside in a separate address space.

For the AT90CAN128 the signature bytes are:

1. 0x000: 0x1E (indicates manufactured by Atmel).

2. 0x001: 0x97 (indicates 128KB Flash memory).

3. 0x002: 0x81 (indicates AT90CAN128 device when 0x001 is 0x97).

Calibration Byte The AT90CAN128 has a byte calibration value for the internal RC Oscillator. This byte
resides in the high byte of address 0x000 in the signature address space. During reset,
this byte is automatically written into the OSCCAL Register to ensure correct frequency
of the calibrated RC Oscillator.
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Parallel Programming 
Overview

This section describes how to parallel program and verify Flash Program memory,
EEPROM Data memory, Memory Lock bits, and Fuse bits in the AT90CAN128. Pulses
are assumed to be at least 250 ns unless otherwise noted.

Signal Names In this section, some pins of the AT90CAN128 are referenced by signal names describ-
ing their functionality during parallel programming, see Figure 156 and Table 128. Pins
not described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a posi-
tive pulse. The bit coding is shown in Table 130.

When pulsing WR or OE, the command loaded determines the action executed. The dif-
ferent Commands are shown in Table 131.

Figure 156.  Parallel Programming

Pin Mapping

VCC

+2.7 - +5.5V

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6
 PB7 - PB0 DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PA0

WR

BS2

AVCC

+2.7 - +5.5V

Table 128.  Pin Name Mapping

Signal Name in 
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming,
1: Device is ready for new command.

OE PD2 I Output Enable (Active low).

WR PD3 I Write Pulse (Active low).

BS1 PD4 I
Byte Select 1
(“0” selects low byte, “1” selects high byte).

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I Program Memory and EEPROM data Page Load.

BS2 PA0 I
Byte Select 2
(“0” selects low byte, “1” selects 2’nd high byte).

DATA PB7-0 I/O Bi-directional Data bus (Output when OE is low).
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Commands

Parameters

Table 129.  Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

Table 130.  XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte 
determined by BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle

Table 131.  Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

Table 132.  No. of Words in a Page and No. of Pages in the Flash

Flash Size Page Size PCWORD No. of Pages PCPAGE PCMSB

64K words (128K bytes) 128 words PC[6:0] 512 PC[15:7] 15

Table 133.  No. of Words in a Page and No. of Pages in the EEPROM

EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB

4K bytes 8 bytes EEA[2:0] 512 EEA[11:3] 11
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Parallel Programming

Enter Programming Mode The following algorithm puts the device in parallel programming mode:

1. Apply 4.5 - 5.5V between VCC and GND.

2. Set RESET to “0” and toggle XTAL1 at least six times.

3. Set the Prog_enable pins listed in Table 129 on page 331 to “0000” and wait at 
least 100 ns.

4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns 
after +12V has been applied to RESET, will cause the device to fail entering pro-
gramming mode.

5. Wait at least 50 µs before sending a new command.

Considerations for 
Efficient Programming

The loaded command and address are retained in the device during programming. For
efficient programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory 
locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless 
the EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address high byte needs only be loaded before programming or reading a new 256 
word window in Flash or 256 byte EEPROM. This consideration also applies to 
Signature bytes reading.

Chip Erase The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock
bits are not reset until the program memory has been completely erased. The Fuse bits
are not changed. A Chip Erase must be performed before the Flash and/or EEPROM
are reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is
programmed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

Programming the Flash The Flash is organized in pages, see Table 132 on page 331. When programming the
Flash, the program data is latched into a page buffer. This allows one page of program
data to be programmed simultaneously. The following procedure describes how to pro-
gram the entire Flash memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte
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1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 158 for 
signal waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is
loaded.

While the lower bits in the address are mapped to words within the page, the higher bits
address the pages within the FLASH. This is illustrated in Figure 157 on page 334. Note
that if less than eight bits are required to address words in the page (pagesize < 256),
the most significant bit(s) in the address low byte are used to address the page when
performing a Page Write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. 
RDY/BSYgoes low.

2. Wait until RDY/BSY goes high (See Figure 158 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write sig-
nals are reset.
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Figure 157.  Addressing the Flash Which is Organized in Pages(1)

Note: 1. PCPAGE and PCWORD are listed in Table 132 on page 331.

Figure 158.  Programming the Flash Waveforms(1)

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

Programming the EEPROM The EEPROM is organized in pages, see Table 133 on page 331. When programming
the EEPROM, the program data is latched into a page buffer. This allows one page of
data to be programmed simultaneously. The programming algorithm for the EEPROM
data memory is as follows (refer to “Programming the Flash” on page 332 for details on
Command, Address and Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte (0x00 - 0xFF).

PROGRAM MEMORY

015

WORD address
within a PAGE

PAGE address
within the FLASH

INSTRUCTION WORD

PAGE PCWORD [PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGHDATA
DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F
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3. B: Load Address Low Byte (0x00 - 0xFF).

4. C: Load Data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS1 to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. 
RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 
159 for signal waveforms).

Figure 159.  Programming the EEPROM Waveforms

Reading the Flash The algorithm for reading the Flash memory is as follows (refer to “Programming the
Flash” on page 332 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at 
DATA.

5. Set BS1 to “1”. The Flash word high byte can now be read at DATA.

6. Set OE to “1”.

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGH
DATA

ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K
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Reading the EEPROM The algorithm for reading the EEPROM memory is as follows (refer to “Programming the
Flash” on page 332 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at 
DATA.

5. Set OE to “1”.

Programming the 
Fuse Low Bits

The algorithm for programming the Fuse Low bits is as follows (refer to “Programming
the Flash” on page 332 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

Programming the 
Fuse High Bits

The algorithm for programming the Fuse High bits is as follows (refer to “Programming
the Flash” on page 332 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

Programming the 
Extended Fuse Bits

The algorithm for programming the Extended Fuse bits is as follows (refer to “Program-
ming the Flash” on page 332 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS2 to “0”. This selects low data byte.

Figure 160.  Programming the FUSES Waveforms

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40
DATA

DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

0x40 DATA XX

A C

Write Extended Fuse byte

BS2
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Programming the Lock Bits The algorithm for programming the Lock bits is as follows (refer to “Programming the
Flash” on page 332 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is pro-
grammed (LB1 and LB2 is programmed), it is not possible to program the Boot 
Lock bits by any External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

Reading the Fuse and 
Lock Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming
the Flash” on page 332 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can 
now be read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can 
now be read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status fo the Extended Fuse bits 
can now be read at DATA (“0” means programmed).

5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be 
read at DATA (“0” means programmed).

6. Set OE to “1”.

Figure 161.  Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

Reading the Signature Bytes The algorithm for reading the Signature bytes is as follows (refer to “Programming the
Flash” on page 332 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.

4. Set OE to “1”.

Reading the Calibration Byte The algorithm for reading the Calibration byte is as follows (refer to “Programming the
Flash” on page 332 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

BS2

DATA

0

1

BS2

Extended Fuse Byte

Fuse Low Byte

0

1Fuse High Byte

Lock Bits

BS1

0

1
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SPI Serial Programming 
Overview

This section describes how to serial program and verify Flash Program memory,
EEPROM Data memory, Memory Lock bits, and Fuse bits in the AT90CAN128.

Signal Names Both the Flash and EEPROM memory arrays can be programmed using the serial SPI
bus while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI
(input) and MISO (output). After RESET is set low, the Programming Enable instruction
needs to be executed first before program/erase operations can be executed. NOTE, in
Table 134 on page 339, the pin mapping for SPI programming is listed. Not all parts use
the SPI pins dedicated for the internal SPI interface. Note that throughout the descrip-
tion about Serial downloading, MOSI and MISO are used to describe the serial data in
and serial data out respectively. For AT90CAN128 these pins are mapped to PDI (PE0)
and PDO (PE1).

Figure 162.  Serial Programming and Verify(1)

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock
source to the XTAL1 pin.

When programming the EEPROM, an auto-erase cycle is built into the self-timed pro-
gramming operation (in the Serial mode ONLY) and there is no need to first execute the
Chip Erase instruction. The Chip Erase operation turns the content of every memory
location in both the Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and
high periods for the serial clock (SCK) input are defined as follows:

Low: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck ≥ 12 MHz

High: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck ≥ 12 MHz

VCC

+2.7 - +5.5V

GND

XTAL1

PB1

RESET

PDO PE1

PE0PDI

SCK

AVCC

+2.7 - +5.5V
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Pin Mapping

Parameters The Flash parameters are given in Table 132 on page 331 and the EEPROM parame-
ters in Table 133 on page 331.

SPI Serial Programming When writing serial data to the AT90CAN128, data is clocked on the rising edge of SCK.
When reading data from the AT90CAN128, data is clocked on the falling edge of SCK.

To program and verify the AT90CAN128 in the serial programming mode, the following
sequence is recommended (See four byte instruction formats in Table 136):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some 
systems, the programmer can not guarantee that SCK is held low during power-up. 
In this case, RESET must be given a positive pulse of at least two CPU clock cycles 
duration after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Programming 
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of syn-
chronization. When in sync. the second byte (0x53), will echo back when issuing the 
third byte of the Programming Enable instruction. Whether the echo is correct or 
not, all four bytes of the instruction must be transmitted. If the 0x53 did not echo 
back, give RESET a positive pulse and issue a new Programming Enable 
command. 

4. The Flash is programmed one page at a time. The memory page is loaded one byte 
at a time by supplying the 7 LSB of the address and data together with the Load 
Program Memory Page instruction. To ensure correct loading of the page, the data 
low byte must be loaded before data high byte is applied for a given address. The 
Program Memory Page is stored by loading the Write Program Memory Page 
instruction with the 9 MSB of the address. If polling is not used, the user must wait at 
least tWD_FLASH before issuing the next page. (See Table 135.) Accessing the serial 
programming interface before the Flash write operation completes can result in 
incorrect programming.

5. The EEPROM array is programmed one byte at a time by supplying the address 
and data together with the appropriate Write instruction. An EEPROM memory loca-
tion is first automatically erased before new data is written. If polling is not used, the 
user must wait at least tWD_EEPROM before issuing the next byte. (See Table 135.) In 
a chip erased device, no 0xFFs in the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the 
content at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence nor-
mal operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off.

Table 134.  Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI (PDI) PE0 I Serial Data in

MISO (PDO) PE1 O Serial Data out

SCK PB1 I Serial Clock
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Data Polling Flash When a page is being programmed into the Flash, reading an address location within
the page being programmed will give the value 0xFF. At the time the device is ready for
a new page, the programmed value will read correctly. This is used to determine when
the next page can be written. Note that the entire page is written simultaneously and any
address within the page can be used for polling. Data polling of the Flash will not work
for the value 0xFF, so when programming this value, the user will have to wait for at
least tWD_FLASH before programming the next page. As a chip-erased device contains
0xFF in all locations, programming of addresses that are meant to contain 0xFF, can be
skipped. See Table 135 for tWD_FLASH value.

Data Polling EEPROM When a new byte has been written and is being programmed into EEPROM, reading the
address location being programmed will give the value 0xFF. At the time the device is
ready for a new byte, the programmed value will read correctly. This is used to deter-
mine when the next byte can be written. This will not work for the value 0xFF, but the
user should have the following in mind: As a chip-erased device contains 0xFF in all
locations, programming of addresses that are meant to contain 0xFF, can be skipped.
This does not apply if the EEPROM is re-programmed without chip erasing the device.
In this case, data polling cannot be used for the value 0xFF, and the user will have to
wait at least tWD_EEPROM before programming the next byte. See Table 135 for
tWD_EEPROM value.

Figure 163.  Serial Programming Waveforms

Table 135.  Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FUSE 4.5 ms

tWD_FLASH 4.5 ms

tWD_EEPROM 9.0 ms

tWD_ERASE 9.0 ms

MSB LSB

LSB

SERIAL CLOCK INPUT
(SCK)

SERIAL DATA INPUT
 (MOSI-PDI)

(MISO-PDO)

Sample

SERIAL DATA OUTPUT MSB
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Table 136.  Serial Programming Instruction Set

Instruction

Instruction Format

OperationByte 1 Byte 2 Byte 3 Byte4

Programming 
Enable

1010 1100 0101 0011 xxxx xxxx xxxx xxxx
Enable Serial Programming after RESET goes 
low.

Chip Erase 1010 1100 100x xxxx xxxx xxxx xxxx xxxx Chip Erase EEPROM and Flash.

Read Program 
Memory

0010 H000 aaaa aaaa bbbb bbbb oooo oooo
Read H (high or low) data o from Program 
memory at word address a:b.

Load Program 
Memory Page

0100 H000 000x xxxx xbbb bbbb iiii iiii

Write H (high or low) data i to Program Memory 
page at word address b. Data low byte must be 
loaded before Data high byte is applied within the 
same address.

Write Program 
Memory Page

0100 1100 aaaa aaaa bxxx xxxx xxxx xxxx Write Program Memory Page at address a:b.

Read EEPROM 
Memory

1010 0000 000x aaaa bbbb bbbb oooo oooo
Read data o from EEPROM memory at address 
a:b.

Write EEPROM 
Memory

1100 0000 000x aaaa bbbb bbbb iiii iiii Write data i to EEPROM memory at address a:b.

Load EEPROM 
Memory Page
(page access)

1100 0001 0000 0000 0000 0bbb iiii iiii
Load data i to EEPROM memory page buffer. 
After data is loaded, program EEPROM page.

Write EEPROM 
Memory Page
(page access)

1100 0010 00xx aaaa bbbb b000 xxxx xxxx Write EEPROM page at address a:b.

Read Lock bits 0101 1000 0000 0000 xxxx xxxx xxoo oooo
Read Lock bits.
“0” = programmed, “1” = unprogrammed.
See Table 123 on page 326 for details.

Write Lock bits 1010 1100 111x xxxx xxxx xxxx 11ii iiii
Write Lock bits. Set bits = “0” to program Lock 
bits. See Table 123 on page 326 for details.

Read Signature 
Byte

0011 0000 000x xxxx xxxx xxbb oooo oooo Read Signature Byte o at address b.

Write Fuse Low bits 1010 1100 1010 0000 xxxx xxxx iiii iiii
Set bits = “0” to program, “1” to unprogram. See 
Table 127 on page 328 for details.

Write Fuse High bits 1010 1100 1010 1000 xxxx xxxx iiii iiii
Set bits = “0” to program, “1” to unprogram. See 
Table 126 on page 327 for details.

Write Extended 
Fuse Bits

1010 1100 1010 0100 xxxx xxxx xxxx iiii
Set bits = “0” to program, “1” to unprogram. See 
Table 125 on page 327 for details.

Read Fuse Low bits 0101 0000 0000 0000 xxxx xxxx oooo oooo
Read Fuse bits. “0” = programmed, “1” = 
unprogrammed. See Table 127 on page 328 for 
details.

Read Fuse High bits 0101 1000 0000 1000 xxxx xxxx oooo oooo
Read Fuse High bits. “0” = pro-grammed, “1” = 
unprogrammed. See Table 126 on page 327 for 
details.
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Note: a = address high bits
b = address low bits
H = 0 - Low byte, 1 - High Byte
o = data out
i = data in
x = don’t care

Read Extended 
Fuse Bits

0101 0000 0000 1000 xxxx xxxx oooo oooo
Read Extended Fuse bits. “0” = pro-grammed, “1” 
= unprogrammed. See Table 125 on page 327 for 
details.

Read Calibration 
Byte

0011 1000 000x xxxx 0000 0000 oooo oooo Read Calibration Byte

Poll RDY/BSY 1111 0000 0000 0000 xxxx xxxx xxxx xxxo
If o = “1”, a programming operation is still busy. 
Wait until this bit returns to “0” before applying 
another command.

Table 136.  Serial Programming Instruction Set (Continued)

Instruction

Instruction Format

OperationByte 1 Byte 2 Byte 3 Byte4
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JTAG Programming 
Overview

Programming through the JTAG interface requires control of the four JTAG specific
pins: TCK, TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The
device is default shipped with the fuse programmed. In addition, the JTD bit in MCUCR
must be cleared. Alternatively, if the JTD bit is set, the external reset can be forced low.
Then, the JTD bit will be cleared after two chip clocks, and the JTAG pins are available
for programming. This provides a means of using the JTAG pins as normal port pins in
Running mode while still allowing In-System Programming via the JTAG interface. Note
that this technique can not be used when using the JTAG pins for Boundary-scan or On-
chip Debug. In these cases the JTAG pins must be dedicated for this purpose.

During programming the clock frequency of the TCK Input must be less than the maxi-
mum frequency of the chip. The System Clock Prescaler can not be used to divide the
TCK Clock Input into a sufficiently low frequency.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.

Programming Specific JTAG 
Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. The JTAG instruc-
tions useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which data register is selected as path between TDI and TDO for
each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can
also be used as an idle state between JTAG sequences. The state machine sequence
for changing the instruction word is shown in Figure 164.
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Figure 164.  State Machine Sequence for Changing the Instruction Word

AVR_RESET (0xC) The AVR specific public JTAG instruction for setting the AVR device in the Reset mode
or taking the device out from the Reset mode. The TAP controller is not reset by this
instruction. The one bit Reset Register is selected as data register. Note that the reset
will be active as long as there is a logic “one” in the Reset Chain. The output from this
chain is not latched. 

The active states are:

• Shift-DR: The Reset Register is shifted by the TCK input.

PROG_ENABLE (0x4) The AVR specific public JTAG instruction for enabling programming via the JTAG port.
The 16-bit Programming Enable Register is selected as data register. The active states
are the following:

• Shift-DR: The programming enable signature is shifted into the data register.

• Update-DR: The programming enable signature is compared to the correct value, 
and Programming mode is entered if the signature is valid.

PROG_COMMANDS (0x5) The AVR specific public JTAG instruction for entering programming commands via the
JTAG port. The 15-bit Programming Command Register is selected as data register.
The active states are the following:
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• Capture-DR: The result of the previous command is loaded into the data register.

• Shift-DR: The data register is shifted by the TCK input, shifting out the result of the 
previous command and shifting in the new command.

• Update-DR: The programming command is applied to the Flash inputs

• Run-Test/Idle: One clock cycle is generated, executing the applied command (not 
always required, see Table 137 below).

PROG_PAGELOAD (0x6) The AVR specific public JTAG instruction to directly load the Flash data page via the
JTAG port. An 8-bit Flash Data Byte Register is selected as the data register. This is
physically the 8 LSBs of the Programming Command Register. The active states are the
following:

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

• Update-DR: The content of the Flash Data Byte Register is copied into a temporary 
register. A write sequence is initiated that within 11 TCK cycles loads the content of 
the temporary register into the Flash page buffer. The AVR automatically alternates 
between writing the low and the high byte for each new Update-DR state, starting 
with the low byte for the first Update-DR encountered after entering the 
PROG_PAGELOAD command. The Program Counter is pre-incremented before 
writing the low byte, except for the first written byte. This ensures that the first data 
is written to the address set up by PROG_COMMANDS, and loading the last 
location in the page buffer does not make the program counter increment into the 
next page.

PROG_PAGEREAD (0x7) The AVR specific public JTAG instruction to directly capture the Flash content via the
JTAG port. An 8-bit Flash Data Byte Register is selected as the data register. This is
physically the 8 LSBs of the Programming Command Register. The active states are the
following:

• Capture-DR: The content of the selected Flash byte is captured into the Flash Data 
Byte Register. The AVR automatically alternates between reading the low and the 
high byte for each new Capture-DR state, starting with the low byte for the first 
Capture-DR encountered after entering the PROG_PAGEREAD command. The 
Program Counter is post-incremented after reading each high byte, including the 
first read byte. This ensures that the first data is captured from the first address set 
up by PROG_COMMANDS, and reading the last location in the page makes the 
program counter increment into the next page.

• Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

Data Registers The data registers are selected by the JTAG instruction registers described in section
“Programming Specific JTAG Instructions” on page 343. The data registers relevant for
programming operations are:

• Reset Register

• Programming Enable Register

• Programming Command Register

• Flash Data Byte Register

Reset Register The Reset Register is a Test Data Register used to reset the part during programming. It
is required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the Fuse settings for the clock options, the part will remain reset for a Reset Time-out
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period (refer to “Clock Sources” on page 36) after releasing the Reset Register. The out-
put from this data register is not latched, so the reset will take place immediately, as
shown in Figure 144 on page 293.

Programming Enable Register The Programming Enable Register is a 16-bit register. The contents of this register is
co m pare d  t o  t h e  p r ogra m m ing  en ab l e  s i gna tu re ,  b ina ry  cod e
0b1010_0011_0111_0000. When the contents of the register is equal to the program-
ming enable signature, programming via the JTAG port is enabled. The register is reset
to 0 on Power-on Reset, and should always be reset when leaving Programming mode.

Figure 165.  Programming Enable Register

Programming Command 
Register

The Programming Command Register is a 15-bit register. This register is used to seri-
ally shift in programming commands, and to serially shift out the result of the previous
command, if any. The JTAG Programming Instruction Set is shown in Table 137. The
state sequence when shifting in the programming commands is illustrated in Figure 167.
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Figure 166.  Programming Command Register
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Table 137.  JTAG Programming Instruction 
Set  a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes

1a. Chip Erase 0100011_10000000

0110001_10000000

0110011_10000000

0110011_10000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx (2)

2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx

2b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

2d. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

2e. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx

2f. Latch Data 0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2g. Write Flash Page 0110111_00000000

0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

2h. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx

3b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

3d. Read Data Low and High Byte 0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
xxxxxxx_oooooooo

Low byte

High byte

4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx

4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)

4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx

4e. Latch Data 0110111_00000000

1110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4f. Write EEPROM Page 0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx

5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (9)
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5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

5d. Read Data Byte 0110011_bbbbbbbb
0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

6a. Enter Fuse Write 0100011_01000000 xxxxxxx_xxxxxxxx

6b. Load Data Low Byte(6) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6c. Write Fuse Extended Byte 0111011_00000000

0111001_00000000

0111011_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6e. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6f. Write Fuse High Byte 0110111_00000000

0110101_00000000

0110111_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6g. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2)

6h. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3)

6i. Write Fuse Low Byte 0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

6j. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx

7b. Load Data Byte(9) 0010011_11iiiiii xxxxxxx_xxxxxxxx (4)

7c. Write Lock Bits 0110011_00000000

0110001_00000000

0110011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

(1)

7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2)

8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx

8b. Read Extended Fuse Byte(6) 0111010_00000000

0111011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8c. Read Fuse High Byte(7) 0111110_00000000

0111111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8d. Read Fuse Low Byte(8) 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

8e. Read Lock Bits(9) 0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxoooooo

(5)

Table 137.  JTAG Programming Instruction  (Continued)
Set  (Continued) a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes
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Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is
normally the case).

2. Repeat until o = “1”.
3. Set bits to “0” to program the corresponding Fuse, “1” to unprogram the Fuse.
4. Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.
5. “0” = programmed, “1” = unprogrammed.
6. The bit mapping for Fuses Extended byte is listed in Table 125 on page 327
7. The bit mapping for Fuses High byte is listed in Table 126 on page 327
8. The bit mapping for Fuses Low byte is listed in Table 127 on page 328
9. The bit mapping for Lock bits byte is listed in Table 123 on page 326
10. Address bits exceeding PCMSB and EEAMSB (Table 132 and Table 133) are don’t care
11. All TDI and TDO sequnces are represented by binary digits (0b...).

8f. Read Fuses and Lock Bits 0111010_00000000

0111110_00000000

0110010_00000000

0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo
xxxxxxx_oooooooo

(5)

Fuse Ext. byte

Fuse High byte

Fuse Low byte

Lock bits

9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

9c. Read Signature Byte 0110010_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx

10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx

10c. Read Calibration Byte 0110110_00000000

0110111_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_oooooooo

11a. Load No Operation Command 0100011_00000000

0110011_00000000

xxxxxxx_xxxxxxxx

xxxxxxx_xxxxxxxx

Table 137.  JTAG Programming Instruction  (Continued)
Set  (Continued) a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes
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Figure 167.  State Machine Sequence for Changing/Reading the Data Word

Flash Data Byte Register The Flash Data Byte Register provides an efficient way to load the entire Flash page
buffer before executing Page Write, or to read out/verify the content of the Flash. A state
machine sets up the control signals to the Flash and senses the strobe signals from the
Flash, thus only the data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit tempo-
rary register. During page load, the Update-DR state copies the content of the scan
chain over to the temporary register and initiates a write sequence that within 11 TCK
cycles loads the content of the temporary register into the Flash page buffer. The AVR
automatically alternates between writing the low and the high byte for each new Update-
DR state, starting with the low byte for the first Update-DR encountered after entering
the PROG_PAGELOAD command. The Program Counter is pre-incremented before
writing the low byte, except for the first written byte. This ensures that the first data is
written to the address set up by PROG_COMMANDS, and loading the last location in
the page buffer does not make the Program Counter increment into the next page.

During Page Read, the content of the selected Flash byte is captured into the Flash
Data Byte Register during the Capture-DR state. The AVR automatically alternates
between reading the low and the high byte for each new Capture-DR state, starting with
the low byte for the first Capture-DR encountered after entering the PROG_PAGEREAD
command. The Program Counter is post-incremented after reading each high byte,

Test-Logic-Reset

Run-Test/Idle

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Select-DR Scan

Capture-DR

0

1

0 1 1 1

0 0

0 0

1 1

1 0

1

1

0

1

0

0

1 0

1

1

0

1

0

0

00

11
351      
7522C–AUTO–09/06



      
including the first read byte. This ensures that the first data is captured from the first
address set up by PROG_COMMANDS, and reading the last location in the page
makes the program counter increment into the next page.

Figure 168.  Flash Data Byte Register

The state machine controlling the Flash Data Byte Register is clocked by TCK. During
normal operation in which eight bits are shifted for each Flash byte, the clock cycles
needed to navigate through the TAP controller automatically feeds the state machine for
the Flash Data Byte Register with sufficient number of clock pulses to complete its oper-
ation transparently for the user. However, if too few bits are shifted between each
Update-DR state during page load, the TAP controller should stay in the Run-Test/Idle
state for some TCK cycles to ensure that there are at least 11 TCK cycles between each
Update-DR state.

Programming Algorithm All references below of type “1a”, “1b”, and so on, refer to Table 137.

Entering Programming Mode 1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Pro-
gramming Enable Register.

Leaving Programming Mode 1. Enter JTAG instruction PROG_COMMANDS.

2. Disable all programming instructions by using no operation instruction 11a.

3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the 
programming Enable Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

Performing Chip Erase 1. Enter JTAG instruction PROG_COMMANDS.

2. Start Chip Erase using programming instruction 1a.

3. Poll for Chip Erase complete using programming instruction 1b, or wait for 
tWLRH_CE (refer to Table 151 on page 373).
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Programming the Flash 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address High byte using programming instruction 2b.

4. Load address Low byte using programming instruction 2c.

5. Load data using programming instructions 2d, 2e and 2f.

6. Repeat steps 4 and 5 for all instruction words in the page.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH 
(refer to ).

9. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. PCWORD 
(refer to Table 132 on page 331) is used to address within one page and must be 
written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page byte-by-byte, 
starting with the LSB of the first instruction in the page and ending with the MSB 
of the last instruction in the page. Use Update-DR to copy the contents of the 
Flash Data Byte Register into the Flash page location and to auto-increment the 
Program Counter before each new word.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH 
(refer to Table 151 on page 373).

9. Repeat steps 3 to 8 until all data have been programmed.

Reading the Flash 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b and 3c.

4. Read data using programming instruction 3d.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD
instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3b and 3c. PCWORD 
(refer to Table 132 on page 331) is used to address within one page and must be 
written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page (or Flash) by shifting out all instruction words in the page 
(or Flash), starting with the LSB of the first instruction in the page (Flash) and 
ending with the MSB of the last instruction in the page (Flash). The Capture-DR 
state both captures the data from the Flash, and also auto-increments the pro-
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gram counter after each word is read. Note that Capture-DR comes before the 
shift-DR state. Hence, the first byte which is shifted out contains valid data.

6. Enter JTAG instruction PROG_COMMANDS.

7. Repeat steps 3 to 6 until all data have been read.

Programming the EEPROM 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM write using programming instruction 4a.

3. Load address High byte using programming instruction 4b.

4. Load address Low byte using programming instruction 4c.

5. Load data using programming instructions 4d and 4e.

6. Repeat steps 4 and 5 for all data bytes in the page.

7. Write the data using programming instruction 4f.

8. Poll for EEPROM write complete using programming instruction 4g, or wait for 
tWLRH (refer to Table 151 on page 373).

9. Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the
EEPROM.

Reading the EEPROM 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable EEPROM read using programming instruction 5a.

3. Load address using programming instructions 5b and 5c.

4. Read data using programming instruction 5d.

5. Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the
EEPROM.

Programming the Fuses 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse write using programming instruction 6a.

3. Load data high byte using programming instructions 6b. A bit value of “0” will 
program the corresponding fuse, a “1” will unprogram the fuse.

4. Write Fuse High byte using programming instruction 6c.

5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH 
(refer to Table 151 on page 373).

6. Load data low byte using programming instructions 6e. A “0” will program the 
fuse, a “1” will unprogram the fuse.

7. Write Fuse low byte using programming instruction 6f.

8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH 
(refer to Table 151 on page 373).

Programming the Lock Bits 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the 
corresponding lock bit, a “1” will leave the lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for 
tWLRH (refer to Table 151 on page 373).
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Reading the Fuses and 
Lock Bits

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Fuse/Lock bit read using programming instruction 8a.

3. To read all Fuses and Lock bits, use programming instruction 8f.
To only read Extended Fuse byte, use programming instruction 8b.
To only read Fuse High byte, use programming instruction 8c.
To only read Fuse Low byte, use programming instruction 8d.
To only read Lock bits, use programming instruction 8e.

Reading the Signature Bytes 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Signature byte read using programming instruction 9a.

3. Load address 0x00 using programming instruction 9b.

4. Read first signature byte using programming instruction 9c.

5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second 
and third signature bytes, respectively.

Reading the Calibration Byte 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Calibration byte read using programming instruction 10a.

3. Load address 0x00 using programming instruction 10b.

4. Read the calibration byte using programming instruction 10c.
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Electrical Characteristics(1)

Absolute Maximum Ratings*

DC Characteristics

Operating Temperature.................................– 40°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute 
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or 
other conditions beyond those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect 
device reliability.

Storage Temperature ....................................– 65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground ..............................– 0.5V to VCC+0.5V

Voltage on RESET with respect to Ground....– 0.5V to +13.0V

Voltage on VCC with respect to Ground............. – 0.5V to 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current VCC and GND Pins................................ 200.0 mA

TA = -40°C to +125°C, VCC = 2.7V to 5.5V (unless otherwise noted) 

Symbol Parameter Condition Min. Typ. Max. Units

VIL Input Low Voltage
Except XTAL1 and 
RESET pins

– 0.5 0.2 Vcc (1) V

VIL1 Input Low Voltage
XTAL1 pin - External 
Clock Selected

– 0.5 0.1 Vcc (1) V

VIL2 Input Low Voltage RESET pin – 0.5 0.2 Vcc (1) V

VIH Input High Voltage
Except XTAL1 and 
RESET pins

0.6 Vcc (2) Vcc + 0.5 V

VIH1 Input High Voltage
XTAL1 pin - External 
Clock Selected

0.7 Vcc (2) Vcc + 0.5 V

VIH2 Input High Voltage RESET pin 0.85 Vcc (2) Vcc + 0.5 V

VOL
Output Low Voltage (3)

(Ports A, B, C, D, E, F, G)
IOL = 18 mA, VCC = 5V

IOL = 8 mA, VCC = 3V
0.7
0.5

V

VOH
Output High Voltage (4)

(Ports A, B, C, D, E, F, G)
IOH = – 20 mA, VCC = 5V

IOH = – 10 mA, VCC = 3V
4.2
2.4

V

IIL
Input Leakage
Current I/O Pin

VCC = 5.5V, pin low
(absolute value)

1.0 µA

IIH
Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value)

1.0 µA

RRST Reset Pull-up Resistor 30 100 kΩ

Rpu I/O Pin Pull-up Resistor 20 50 kΩ
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Note: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (18 mA at VCC = 5V, 8 mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:
All Packages:
1] The sum of all IOL, for all ports, should not exceed 400 mA.
2] The sum of all IOL, for ports A0 - A7, G2, C3 - C7 should not exceed 300 mA.
3] The sum of all IOL, for ports C0 - C2, G0 - G1, D0 - D7, XTAL2 should not exceed 150 mA.
4] The sum of all IOL, for ports B0 - B7, G3 - G4, E0 - E7 should not exceed 150 mA.
5] The sum of all IOL, for ports F0 - F7, should not exceed 200 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (-20 mA at VCC = 5V, -10 mA at VCC = 3V) under steady
state conditions (non-transient), the following must be observed:
All Packages:
1] The sum of all IOH, for all ports, should not exceed -400 mA.
2] The sum of all IOH, for ports A0 - A7, G2, C3 - C7 should not exceed -300 mA.
3] The sum of all IOH, for ports C0 - C2, G0 - G1, D0 - D7, XTAL2 should not exceed 1-50 mA.
4] The sum of all IOH, for ports B0 - B7, G3 - G4, E0 - E7 should not exceed -150 mA.
5] The sum of all IOH, for ports F0 - F7, should not exceed -200 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

ICC

Power Supply Current

Active Mode

8 MHz, VCC = 5V 25 mA

16 MHz, VCC = 5V 40 mA

4 MHz, VCC = 3V 6 mA

8 MHz, VCC = 3V 11 mA

Power Supply Current

Idle Mode

8 MHz, VCC = 5V 13 mA

16 MHz, VCC = 5V 25 mA

4 MHz, VCC = 3V 4 mA

8 MHz, VCC = 3V 7 mA

Power Supply Current

Power-down Mode

WDT enabled, VCC = 5V 15 350 µA

WDT disabled, VCC = 5V 2 300 µA

WDT enabled, VCC = 3V 6 200 µA

WDT disabled, VCC = 3V 1 150 µA

VACIO
Analog Comparator 
Input Offset Voltage

VCC = 5V

Vin = VCC/2
8.0 20 mV

IACLK
Analog Comparator 
Input Leakage Current

VCC = 5V
Vin = VCC/2

– 100 100 nA

tACID Analog Comparator 
Propagation Delay 
Common Mode Vcc/2

VCC = 2.7V to 5.5V 170 ns

TA = -40°C to +125°C, VCC = 2.7V to 5.5V (unless otherwise noted)  (Continued)

Symbol Parameter Condition Min. Typ. Max. Units
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External Clock Drive Characteristics

Figure 169.  External Clock Drive Waveforms

Table 138.  External Clock Drive

Symbol Parameter

VCC = 2.7 - 5.5V VCC = 4.5 - 5.5V

UnitsMin. Max. Min. Max.

1/tCLCL Oscillator Frequency 0 8 0 16 MHz

tCLCL Clock Period 125 62.5 ns

tCHCX High Time 50 25 ns

tCLCX Low Time 50 25 ns

tCLCH Rise Time 1.6 0.5 μs

tCHCL Fall Time 1.6 0.5 μs

ΔtCLCL

Change in period from one clock 
cycle to the next

2 2 %

VIL1

VIH1
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Maximum Speed vs. VCC

Maximum frequency is depending on VCC. As shown in Figure 170., the Maximum Fre-
quency vs. VCC curve is linear between 2.7V < VCC < 4.5V. To calculate the maximum
frequency at a given voltage in this interval, use this equation:

To calculate required voltage for a given frequency, use this equation:

At 3 Volt, this gives:

Thus, when VCC = 3V, maximum frequency will be 9.33 MHz.

At 8 MHz this gives:

Thus, a maximum frequency of 8 MHz requires VCC = 2.7V.

Figure 170.  Maximum Frequency vs. VCC, AT90CAN128 

Table 139.  Constants used to calculate maximum speed vs. VCC

Voltage and Frequency range a b Vx Fy

2.7 < VCC < 4.5 or 8 < Frequency < 16 8/1.8 1.8/8 2.7 8

Frequency a V Vx–( ) Fy+•=

Voltage b F Fy–( ) Vx+•=

Frequency
8

1,8
-------- 3 2,7–( ) 8+• 9,33= =

Voltage
1,8
8
-------- 8 8–( ) 2,7+• 2,7= =

Safe Operating Area

4.5V2.7V 5.5V

8 MHz

16 MHz

Frequency

Voltage
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Two-wire Serial Interface Characteristics

Table 140 describes the requirements for devices connected to the Two-wire Serial Bus.
The AT90CAN128 Two-wire Serial Interface meets or exceeds these requirements
under the noted conditions.

Timing symbols refer to Figure 171.

Table 140.  Two-wire Serial Bus Requirements (Preliminary)

Symbol Parameter Condition Min Max Units

VIL Input Low-voltage – 0.5 0.3 Vcc V

VIH Input High-voltage 0.7 Vcc Vcc + 0.5 V

Vhys
(1) Hysteresis of Schmitt Trigger Inputs 0.05 Vcc (2) – V

VOL
(1) Output Low-voltage 3 mA sink current 0 0.4 V

tr
(1) Rise Time for both SDA and SCL

20 + 0.1Cb 
(3)(2) 300 ns

tof
(1) Output Fall Time from VIHmin to VILmax 10 pF < Cb < 400 pF (3) 20 + 0.1Cb 

(3)(2) 250 ns

tSP
(1) Spikes Suppressed by Input Filter 0 50 (2) ns

Ii Input Current each I/O Pin 0.1 VCC < Vi < 0.9 VCC – 10 10 µA

Ci
(1) Capacitance for each I/O Pin – 10 pF

fSCL SCL Clock Frequency fCK 
(4) > max(16fSCL, 250kHz) (5) 0 400 kHz

Rp Value of Pull-up resistor

fSCL ≤ 100 kHz

fSCL > 100 kHz

tHD;STA Hold Time (repeated) START Condition
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tLOW Low Period of the SCL Clock
fSCL ≤ 100 kHz (6) 4.7 – µs

fSCL > 100 kHz (7) 1.3 – µs

tHIGH High period of the SCL clock
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tSU;STA
Set-up time for a repeated START 
condition

fSCL ≤ 100 kHz 4.7 – µs

fSCL > 100 kHz 0.6 – µs

tHD;DAT Data hold time
fSCL ≤ 100 kHz 0 3.45 µs

fSCL > 100 kHz 0 0.9 µs

tSU;DAT Data setup time
fSCL ≤ 100 kHz 250 – ns

fSCL > 100 kHz 100 – ns

V
CC

0,4V–

3mA
----------------------------

1000ns
C
b

------------------- Ω

V
CC

0,4V–

3mA
----------------------------

300ns
C
b

---------------- Ω
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Notes: 1. In AT90CAN128, this parameter is characterized and not 100% tested.
2. Required only for fSCL > 100 kHz.

3. Cb = capacitance of one bus line in pF.

4. fCK = CPU clock frequency

5. This requirement applies to all AT90CAN128 Two-wire Serial Interface operation. Other devices connected to the Two-wire
Serial Bus need only obey the general fSCL requirement.

6. The actual low period generated by the AT90CAN128 Two-wire Serial Interface is (1/fSCL - 2/fCK), thus fCK must be greater
than 6 MHz for the low time requirement to be strictly met at fSCL = 100 kHz.

7. The actual low period generated by the AT90CAN128 Two-wire Serial Interface is (1/fSCL - 2/fCK), thus the low time require-
ment will not be strictly met for fSCL > 308 kHz when fCK = 8 MHz. Still, AT90CAN128 devices connected to the bus may
communicate at full speed (400 kHz) with other AT90CAN128 devices, as well as any other device with a proper tLOW accep-
tance margin.

Figure 171.  Two-wire Serial Bus Timing

tSU;STO Setup time for STOP condition
fSCL ≤ 100 kHz 4.0 – µs

fSCL > 100 kHz 0.6 – µs

tBUF
Bus free time between a STOP and 
START condition

fSCL ≤ 100 kHz 4.7 – µs

Table 140.  Two-wire Serial Bus Requirements  (Continued)(Preliminary)

Symbol Parameter Condition Min Max Units

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr
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SPI Timing Characteristics

See Figure 172 and Figure 173 for details.

Notes: 1. In SPI Programming mode the minimum SCK high/low period is:
- 2 tCLCL for fCK < 12 MHz
- 3 tCLCL for fCK >12 MHz

Figure 172.  SPI Interface Timing Requirements (Master Mode)

Table 141.  SPI Timing Parameters

Description Mode Min. Typ. Max.

1 SCK period Master See Table 75

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low (1) Slave 2 • tck

12 Rise/Fall time Slave 1.6 µs

13 Setup Slave 10

ns

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 2 • tck

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87
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Figure 173.  SPI Interface Timing Requirements (Slave Mode)

CAN Physical Layer Characteristics

Only pads dedicated to the CAN communication belong to the physical layer. 

Notes: 1. Characteristics for CAN physical layer have not yet been finalized.
2. Metastable immunity flip-flop.

MISO
(Data Output)

SCK
(CPOL = 1)

MOSI
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1715

9

X

16

18

Table : CAN Physical Layer Characteristics (1)

Parameter Condition Min. Max. Units

1 TxCAN output delay

Vcc=2.7 V
Load=20 pF

VOL/VOH=VCC/2 
9

ns

Vcc=4.5 V
Load=20 pF

VOL/VOH=VCC/2
5.3

2 RxCAN input delay

Vcc=2.7 V
VIL/VIH=VCC/2

9 + 
1/ fCLKIO

(2)

Vcc=4.5 V
VIL/VIH=VCC/2

7.2 + 
1/ fCLKIO

(2)
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ADC Characteristics

Note: 1. Values are guidelines only. 

2. Minimum for AVCC is 2.7 V.

3. Maximum for AVCC is 5.5 V

Table 142.  ADC Characteristics, Single Ended Channels 

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

Resolution Single Ended Conversion 10 Bits

Absolute accuracy
(Included INL, DNL, 
Quantization Error, Gain and 
Offset Error)

Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 200 kHz

1.5 3 LSB

Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 200 kHz
Noise Reduction Mode

1.5 3 LSB

Integral Non-linearity (INL)
Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 200 kHz

0.5 1.5 LSB

Differential Non-linearity (DNL)
Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 200 kHz

0.3 1.5 LSB

Gain Error
Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 200 kHz

– 3 0 + 3 LSB

Offset Error
Single Ended Conversion
VREF = 4V, Vcc = 4V
ADC clock = 200 kHz

– 2.5 0 + 2.5 LSB

Clock Frequency Free Running Conversion 50 200 kHz

Conversion Time Free Running Conversion 65 260 µs

AVCC Analog Supply Voltage VCC – 0.3 (2) VCC + 0.3 (3) V

VREF External Reference Voltage 2.0 AVCC V

VIN Input voltage GND VREF V

VINT Internal Voltage Reference 2.4 2.56 2.7 V

RREF Reference Input Resistance 26 kΩ

RAIN Analog Input Resistance 100 MΩ
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Note: 1. Values are guidelines only. 

2. Minimum for AVCC is 2.7 V.

3. Maximum for AVCC is 5.5 V

Table 143.  ADC Characteristics, Differential Channels 

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

Resolution

Differential Conversion
Gain = 1x or 10x

8 Bits

Differential Conversion
Gain = 200x

7 Bits

Absolute accuracy (8bits)
Gain = 1x , 10x
VREF = 4V, Vcc = 5V
ADC clock = 50 - 200 kHz

1 4 LSB

Absolute accuracy (7bits)
Gain = 200x
VREF = 4V, Vcc = 5V
ADC clock = 50 - 200 kHz

1 3 LSB

Integral Non-linearity (INL)
(Accuracy after Calibration 
for Offset and Gain Error)

Gain = 1x , 10x or 200x
VREF = 4V, Vcc = 5V
ADC clock = 50 - 200 kHz

0.5 3 LSB

Gain Error Gain = 1x , 10x or 200x – 4 0 + 4 LSB

DNL
Gain = x1, x10 0.5 3 LSB

Gain = x200 1.0 3 LSB

Offset Error
Gain = 1x , 10x or 200x
VREF = 4V, Vcc = 5V
ADC clock = 50 - 200 kHz

– 3 0 + 3 LSB

Clock Frequency Free Running Conversion 50 200 kHz

Conversion Time Free Running Conversion 65 260 µs

AVCC Analog Supply Voltage VCC – 0.3 (2) VCC + 0.3 (3) V

VREF External Reference Voltage Differential Conversion 2.0 AVCC - 0.5 V

VIN Input voltage Differential Conversion 0 AVCC
 V

VDIFF Input Differential Voltage –VREF/Gain +VREF/Gain V

ADC Convertion Output –511 511 LSB

VINT Internal Voltage Reference 2.4 2.56 2.7 V

RREF Reference Input Resistance 26 kΩ

RAIN Analog Input Resistance 100 MΩ
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AT90CAN128 Auto
External Data Memory Characteristics

Notes: 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1.
2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1.

Table 144.  External Data Memory Characteristics, VCC = 4.5 - 5.5 Volts, No Wait-state 

Symbol Parameter

8 MHz Oscillator Variable Oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

1 tLHLL ALE Pulse Width 115 1.0 tCLCL – 10 ns

2 tAVLL Address Valid A to ALE Low 57.5 0.5 tCLCL – 5 (1) ns

3a tLLAX_ST

Address Hold After ALE Low, 
write access

5 5
ns

3b tLLAX_LD

Address Hold after ALE Low, 
read access

5 5
ns

4 tAVLLC Address Valid C to ALE Low 57.5 0.5 tCLCL – 5 (1) ns

5 tAVRL Address Valid to RD Low 115 1.0 tCLCL – 10 ns

6 tAVWL Address Valid to WR Low 115 1.0 tCLCL – 10 ns

7 tLLWL ALE Low to WR Low 47.5 67.5 0.5 tCLCL – 15 (2) 0.5 tCLCL + 5 (2) ns

8 tLLRL ALE Low to RD Low 47.5 67.5 0.5 tCLCL – 15 (2) 0.5 tCLCL + 5 (2) ns

9 tDVRH Data Setup to RD High 40 40 ns

10 tRLDV Read Low to Data Valid 75 1.0 tCLCL – 50 ns

11 tRHDX Data Hold After RD High 0 0 ns

12 tRLRH RD Pulse Width 115 1.0 tCLCL – 10 ns

13 tDVWL Data Setup to WR Low 42.5 0.5 tCLCL – 20 (1) ns

14 tWHDX Data Hold After WR High 115 1.0 tCLCL – 10 ns

15 tDVWH Data Valid to WR High 125 1.0 tCLCL ns

16 tWLWH WR Pulse Width 115 1.0 tCLCL – 10 ns
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Table 145.  External Data Memory Characteristics, VCC = 4.5 - 5.5 Volts, 1 Cycle Wait-state

Symbol Parameter

8 MHz Oscillator Variable Oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

10 tRLDV Read Low to Data Valid 200 2.0 tCLCL – 50 ns

12 tRLRH RD Pulse Width 240 2.0 tCLCL – 10 ns

15 tDVWH Data Valid to WR High 240 2.0 tCLCL ns

16 tWLWH WR Pulse Width 240 2.0 tCLCL – 10 ns

Table 146.  External Data Memory Characteristics, VCC = 4.5 - 5.5 Volts, SRWn1 = 1, SRWn0 = 0

Symbol Parameter

8 MHz Oscillator Variable Oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

10 tRLDV Read Low to Data Valid 325 3.0 tCLCL – 50 ns

12 tRLRH RD Pulse Width 365 3.0 tCLCL – 10 ns

15 tDVWH Data Valid to WR High 375 3.0 tCLCL ns

16 tWLWH WR Pulse Width 365 3.0 tCLCL – 10 ns

Table 147.  External Data Memory Characteristics, VCC = 4.5 - 5.5 Volts, SRWn1 = 1, SRWn0 = 1

Symbol Parameter

8 MHz Oscillator Variable Oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 16 MHz

10 tRLDV Read Low to Data Valid 200 3.0 tCLCL – 50 ns

12 tRLRH RD Pulse Width 365 3.0 tCLCL – 10 ns

14 tWHDX Data Hold After WR High 240 2.0 tCLCL – 10 ns

15 tDVWH Data Valid to WR High 375 3.0 tCLCL ns

16 tWLWH WR Pulse Width 365 3.0 tCLCL – 10 ns
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Notes: 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1.
2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1.

Table 148.  External Data Memory Characteristics, VCC = 2.7 - 5.5 Volts, No Wait-state 

Symbol Parameter

4 MHz Oscillator Variable Oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 8 MHz

1 tLHLL ALE Pulse Width 235 tCLCL – 15 ns

2 tAVLL Address Valid A to ALE Low 115 0.5 tCLCL – 10 (1) ns

3a tLLAX_ST

Address Hold After ALE Low, 
write access

5 5
ns

3b tLLAX_LD

Address Hold after ALE Low, 
read access

5 5
ns

4 tAVLLC Address Valid C to ALE Low 115 0.5 tCLCL – 10 (1) ns

5 tAVRL Address Valid to RD Low 235 1.0 tCLCL – 15 ns

6 tAVWL Address Valid to WR Low 235 1.0 tCLCL – 15 ns

7 tLLWL ALE Low to WR Low 115 130 0.5 tCLCL – 10 (2) 0.5 tCLCL + 5 (2) ns

8 tLLRL ALE Low to RD Low 115 130 0.5 tCLCL – 10 (2) 0.5 tCLCL + 5 (2) ns

9 tDVRH Data Setup to RD High 45 45 ns

10 tRLDV Read Low to Data Valid 190 1.0 tCLCL – 60 ns

11 tRHDX Data Hold After RD High 0 0 ns

12 tRLRH RD Pulse Width 235 1.0 tCLCL – 15 ns

13 tDVWL Data Setup to WR Low 105 0.5 tCLCL – 20 (1) ns

14 tWHDX Data Hold After WR High 235 1.0 tCLCL – 15 ns

15 tDVWH Data Valid to WR High 250 1.0 tCLCL ns

16 tWLWH WR Pulse Width 235 1.0 tCLCL – 15 ns
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Table 149.  External Data Memory Characteristics, VCC = 2.7 - 5.5 Volts, SRWn1 = 0, SRWn0 = 1

Symbol Parameter

4 MHz Oscillator Variable Oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 8 MHz

10 tRLDV Read Low to Data Valid 440 2.0 tCLCL – 60 ns

12 tRLRH RD Pulse Width 485 2.0 tCLCL – 15 ns

15 tDVWH Data Valid to WR High 500 2.0 tCLCL ns

16 tWLWH WR Pulse Width 485 2.0 tCLCL – 15 ns

Table 150.  External Data Memory Characteristics, VCC = 2.7 - 5.5 Volts, SRWn1 = 1, SRWn0 = 0

Symbol Parameter

4 MHz Oscillator Variable Oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 8 MHz

10 tRLDV Read Low to Data Valid 690 3.0 tCLCL – 60 ns

12 tRLRH RD Pulse Width 735 3.0 tCLCL – 15 ns

15 tDVWH Data Valid to WR High 750 3.0 tCLCL ns

16 tWLWH WR Pulse Width 735 3.0 tCLCL – 15 ns

Table 151.  External Data Memory Characteristics, VCC = 2.7 - 5.5 Volts, SRWn1 = 1, SRWn0 = 1

Symbol Parameter

4 MHz Oscillator Variable Oscillator

UnitMin. Max. Min. Max.

0 1/tCLCL Oscillator Frequency 0.0 8 MHz

10 tRLDV Read Low to Data Valid 690 3.0 tCLCL – 60 ns

12 tRLRH RD Pulse Width 735 3.0 tCLCL – 15 ns

14 tWHDX Data Hold After WR High 485 2.0 tCLCL – 15 ns

15 tDVWH Data Valid to WR High 750 3.0 tCLCL ns

16 tWLWH WR Pulse Width 735 3.0 tCLCL – 15 ns
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Figure 174.  External Memory Timing (SRWn1 = 0, SRWn0 = 0)

Figure 175.  External Memory Timing (SRWn1 = 0, SRWn0 = 1)
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Figure 176.  External Memory Timing (SRWn1 = 1, SRWn0 = 0)

Figure 177.  External Memory Timing (SRWn1 = 1, SRWn0 = 1)(1)

Note: 1. The ALE pulse in the last period (T4-T7) is only present if the next instruction
accesses the RAM (internal or external). 
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Parallel Programming Characteristics

Figure 178.  Paral lel  Programming Timing, Including some General Timing
Requirements

Figure 179.  Parallel  Programming Timing, Loading Sequence with Timing
Requirements(1)

Note: 1. The timing requirements shown in Figure 178 (i.e., tDVXH, tXHXL, and tXLDX) also apply
to loading operation.

Data & Contol
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA 
(LOW BYTE)
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Figure 180.  Parallel Programming Timing, Reading Sequence (within the Same Page)
with Timing Requirements(1)

Note: 1. The timing requirements shown in Figure 178 (i.e., tDVXH, tXHXL, and tXLDX) also apply
to reading operation.
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tOHDZ

Table 152.  Parallel Programming Characteristics, VCC = 5V ± 10% 

Symbol Parameter Min. Typ. Max. Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 10 ms

tXLOL XTAL1 Low to OE Low 0 ns
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Notes: 1.  tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock
bits commands.

2.  tWLRH_CE is valid for the Chip Erase command.

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

Table 152.  Parallel Programming Characteristics, VCC = 5V ± 10%  (Continued)

Symbol Parameter Min. Typ. Max. Units
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AT90CAN128 Typical 
Characteristics

• The following charts show typical behavior. These figures are not tested during 
manufacturing. All current consumption measurements are performed with all I/O 
pins configured as inputs and with internal pull-ups enabled. A sine wave generator 
with rail-to-rail output is used as clock source.

• The power consumption in Power-down mode is independent of clock selection.

• The current consumption is a function of several factors such as: operating voltage, 
operating frequency, loading of I/O pins, switching rate of I/O pins, code executed 
and ambient temperature. The dominating factors are operating voltage and 
frequency.

• The current drawn from capacitive loaded pins may be estimated (for one pin) as 
CL*VCC*f where CL = load capacitance, VCC = operating voltage and f = average 
switching frequency of I/O pin.

• The parts are characterized at frequencies higher than test limits. Parts are not 
guaranteed to function properly at frequencies higher than the ordering code 
indicates.

• The difference between current consumption in Power-down mode with Watchdog 
Timer enabled and Power-down mode with Watchdog Timer disabled represents the 
differential current drawn by the Watchdog Timer.

Active Supply Current Figure 181.  Active Supply Current vs. Frequency (0.1 - 1.0 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY (25°C, 0.1 - 1 MHz)
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Figure 182.  Active Supply Current vs. Frequency (1 - 16 MHz)

Figure 183.  Active Supply Current vs. Vcc (Internal RC Oscillator 8 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY (25°C, 1 - 16 MHz)
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Figure 184.  Active Supply Current vs. Vcc (Internal RC Oscillator 1 MHz)

Figure 185.  Active Supply Current vs. Vcc (32 kHz Watch Crystal)

ACTIVE SUPPLY CURRENT vs. Vcc (Internal RC Oscillator 1 MHz)
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Idle Supply Current Figure 186.  Idle Supply Current vs. Frequency (0.1 - 1.0 MHz)

Figure 187.  Idle Supply Current vs. Frequency (1 - 16 MHz)

IDLE SUPPLY CURRENT vs. FREQUENCY (25°C, 0.1 - 1 MHz)
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Figure 188.  Idle Supply Current vs. Vcc (Internal RC Oscillator 8 MHz)

Figure 189.  Idle Supply Current vs. Vcc (Internal RC Oscillator 1 MHz)

IDLE SUPPLY CURRENT vs. Vcc (Internal RC Oscillator 8 MHz)
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Figure 190.  Idle Supply Current vs. Vcc (32 kHz Watch Crystal)

Power-down Supply 
Current

Figure 191.  Power-down Supply Current vs. Vcc (Watchdog Timer Disabled) 

IDLE SUPPLY CURRENT vs. Vcc (32 KHz Watch Crystal)
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Figure 192.  Power-down Supply Current vs. Vcc (Watchdog Timer Enabled) 

Power-save Supply 
Current

Figure 193.  Power-save Supply Current vs. Vcc (Watchdog Timer Disabled) 

POWER-DOWN SUPPLY CURRENT vs. Vcc (Watchdog Timer Enabled)
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Standby Supply Current Figure 194.  Power-save Supply Current vs. Vcc (25°C, Watchdog Timer Disabled) 

Pin Pull-up Figure 195.  I/O Pin Pull-up Resistor Current vs. Input Voltage (Vcc = 5V) 

STANDBY SUPPLY CURRENT vs. Vcc (25°C, Watchdog Timer Disabled)
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Figure 196.  I/O Pin Pull-up Resistor Current vs. Input Voltage (Vcc = 2.7V) 

Figure 197.  Reset Pull-up Resistor Current vs. Reset Pin Voltage (Vcc = 5V) 

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE (Vcc = 2.7V)
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Figure 198.  Reset Pull-up Resistor Current vs. Reset Pin Voltage (Vcc = 2.7V) 

Pin Driver Strength Figure 199.  I/O Pin Output Voltage vs. Source Current (Vcc = 5V) 

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE (Vcc = 2.7V)
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Figure 200.  I/O Pin Output Voltage vs. Soure Current (Vcc = 3.0V) 

Figure 201.  I/O Pin Output Voltage vs. Sink Current (Vcc = 5V) 
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Figure 202.  I/O Pin Output Voltage vs. Sink Current (Vcc = 3.0V) 

BOD Thresholds and 
Analog Comparator 
Offset Figure 203.  BOD Thresholds vs. Temperature (BOD level is 4.1V) 
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Figure 204.  BOD Thresholds vs. Temperature (BOD level is 2.7V) 

Figure 205.  Bandgap Voltage vs. Operating Voltage 

BOD THRESHOLDS vs. TEMPERATURE (BOD level is 2.7V)
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Figure 206.  Analog Comparator Offset vs. Common Mode Voltage (Vcc = 5V) 

Internal Oscillator Speed

Figure 207.  Watchdog Oscillator Frequency vs. Operating Voltage 

ANALOG COMPARATOR OFFSET vs. COMMON MODE VOLTAGE (Vcc = 5V)
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Figure 208.  Calibrated 8 MHz RC Oscillator Frequency vs. Temperature 

Figure 209.  Calibrated 8 MHz RC Oscillator Frequency vs. Operating Voltage 
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Figure 210.  Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value 

Current Consumption of 
Peripheral Units

Figure 211.  Brownout Detector Current vs. Operating Voltage 

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE
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Figure 212.  ADC Current vs. Operating Voltage (ADC at 1 MHz) 

Figure 213.  AREF External Reference Current vs. Operating Voltage 
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Figure 214.  Analog Comparator Current vs. Operating Voltage 

Figure 215.  Programming Current vs. Operating Voltage 
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Current Consumption in 
Reset and 
Reset Pulse Width Figure 216.  Reset Supply Current vs. Operating Voltage (0.1 - 1.0 MHz)

(Excluding Current Through the Reset Pull-up) 

Figure 217.  Reset Supply Current vs. Operating Voltage (1 - 16 MHz)
(Excluding Current Through the Reset Pull-up) 
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Figure 218.  Minimum Reset Pulse Width vs. Operating Voltage 
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Decoupling 
Capacitors

The operating frequency (i.e. system clock) of the processor determines in 95% of
cases the value needed for microcontroller decoupling capacitors.

The hypotheses used as first evaluation for decoupling capacitors are:

• The operating frequency (fop) supplies itself the maximum peak levels of noise. The 
main peaks are located at fop and 2 • fop.

• An SMC capacitor connected to 2 micro-vias on a PCB has the following 
characteristics:

– 1.5 nH from the connection of the capacitor to the PCB,

– 1.5 nH from the capacitor intrinsic inductance.

Figure 219.  Capacitor description

According to the operating frequency of the product, the decoupling capacitances are
chosen considering the frequencies to filter, fop and 2 • fop.

The relation between frequencies to cut and decoupling characteristics are defined by:

and 

where: 

– L: the inductance equivalent to the global inductance on the Vcc/Gnd lines.

– C1 & C2: decoupling capacitors (C1 = 4 • C2).

Then, in normalized value range, the decoupling capacitors become: 

These decoupling capacitors must to be implemented as close as possible to each pair
of power supply pins:

– 21-22 and 52-53 for logic sub-system,

– 64-63 for analogic sub-system.

Nevertheless, a bulk capacitor of 10-47 µF is also needed on the power distribution net-
work of the PCB, near the power source.

For further information, please refer to Application Notes AVR040 “EMC Design Consi-
derations“ and AVR042 “Hardware Design Considerations“ on the Atmel web site.

Table 153.  Decoupling Capacitors vs. Frequency

fop, operating frequency C1 C2

16 MHz 33 nF 10 nF

12 MHz 56 nF 15 nF

10 MHz 82 nF 22 nF

8 MHz 120 nF 33 nF

6 MHz 220 nF 56 nF

4 MHz 560 nF 120 nF

capacitor 0.75nH0.75nH

1.5nH

PCB

fop 1

2Π LC1

-----------------------= 2 fop• 1

2Π LC2

-----------------------=



      
Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved

(0xFE) Reserved

(0xFD) Reserved

(0xFC) Reserved

(0xFB) Reserved

(0xFA) CANMSG MSG 7 MSG 6 MSG 5 MSG 4 MSG 3 MSG 2 MSG 1 MSG 0 page 260

(0xF9) CANSTMH TIMSTM15 TIMSTM14 TIMSTM13 TIMSTM12 TIMSTM11 TIMSTM10 TIMSTM9 TIMSTM8 page 260

(0xF8) CANSTML TIMSTM7 TIMSTM6 TIMSTM5 TIMSTM4 TIMSTM3 TIMSTM2 TIMSTM1 TIMSTM0 page 260

(0xF7) CANIDM1 IDMSK28 IDMSK27 IDMSK26 IDMSK25 IDMSK24 IDMSK23 IDMSK22 IDMSK21 page 259

(0xF6) CANIDM2 IDMSK20 IDMSK19 IDMSK18 IDMSK17 IDMSK16 IDMSK15 IDMSK14 IDMSK13 page 259

(0xF5) CANIDM3 IDMSK12 IDMSK11 IDMSK10 IDMSK9 IDMSK8 IDMSK7 IDMSK6 IDMSK5 page 259

(0xF4) CANIDM4 IDMSK4 IDMSK3 IDMSK2 IDMSK1 IDMSK0 RTRMSK – IDEMSK page 259

(0xF3) CANIDT1 IDT28 IDT27 IDT26 IDT25 IDT24 IDT23 IDT22 IDT21 page 258

(0xF2) CANIDT2 IDT20 IDT19 IDT18 IDT17 IDT16 IDT15 IDT14 IDT13 page 258

(0xF1) CANIDT3 IDT12 IDT11 IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 page 258

(0xF0) CANIDT4 IDT4 IDT3 IDT2 IDT1 IDT0 RTRTAG RB1TAG RB0TAG page 258

(0xEF) CANCDMOB CONMOB1 CONMOB0 RPLV IDE DLC3 DLC2 DLC1 DLC0 page 257

(0xEE) CANSTMOB DLCW TXOK RXOK BERR SERR CERR FERR AERR page 255

(0xED) CANPAGE MOBNB3 MOBNB2 MOBNB1 MOBNB0 AINC INDX2 INDX1 INDX0 page 255

(0xEC) CANHPMOB HPMOB3 HPMOB2 HPMOB1 HPMOB0 CGP3 CGP2 CGP1 CGP0 page 255

(0xEB) CANREC REC7 REC6 REC5 REC4 REC3 REC2 REC1 REC0 page 254

(0xEA) CANTEC TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TEC0 page 254

(0xE9) CANTTCH TIMTTC15 TIMTTC14 TIMTTC13 TIMTTC12 TIMTTC11 TIMTTC10 TIMTTC9 TIMTTC8 page 254

(0xE8) CANTTCL TIMTTC7 TIMTTC6 TIMTTC5 TIMTTC4 TIMTTC3 TIMTTC2 TIMTTC1 TIMTTC0 page 254

(0xE7) CANTIMH CANTIM15 CANTIM14 CANTIM13 CANTIM12 CANTIM11 CANTIM10 CANTIM9 CANTIM8 page 254

(0xE6) CANTIML CANTIM7 CANTIM6 CANTIM5 CANTIM4 CANTIM3 CANTIM2 CANTIM1 CANTIM0 page 254

(0xE5) CANTCON TPRSC7 TPRSC6 TPRSC5 TPRSC4 TPRSC3 TPRSC2 TRPSC1 TPRSC0 page 253

(0xE4) CANBT3 – PHS22 PHS21 PHS20 PHS12 PHS11 PHS10 SMP page 253

(0xE3) CANBT2 – SJW1 SJW0 – PRS2 PRS1 PRS0 – page 252

(0xE2) CANBT1 – BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 – page 252

(0xE1) CANSIT1 – SIT14 SIT13 SIT12 SIT11 SIT10 SIT9 SIT8 page 251

(0xE0) CANSIT2 SIT7 SIT6 SIT5 SIT4 SIT3 SIT2 SIT1 SIT0 page 251

(0xDF) CANIE1 – IEMOB14 IEMOB13 IEMOB12 IEMOB11 IEMOB10 IEMOB9 IEMOB8 page 251

(0xDE) CANIE2 IEMOB7 IEMOB6 IEMOB5 IEMOB4 IEMOB3 IEMOB2 IEMOB1 IEMOB0 page 251

(0xDD) CANEN1 – ENMOB14 ENMOB13 ENMOB12 ENMOB11 ENMOB10 ENMOB9 ENMOB8 page 251

(0xDC) CANEN2 ENMOB7 ENMOB6 ENMOB5 ENMOB4 ENMOB3 ENMOB2 ENMOB1 ENMOB0 page 251

(0xDB) CANGIE ENIT ENBOFF ENRX ENTX ENERR ENBX ENERG ENOVRT page 250

(0xDA) CANGIT CANIT BOFFIT OVRTIM BXOK SERG CERG FERG AERG page 249

(0xD9) CANGSTA – OVRG – TXBSY RXBSY ENFG BOFF ERRP page 248

(0xD8) CANGCON ABRQ OVRQ TTC SYNTTC LISTEN TEST ENA/STB SWRES page 247

(0xD7) Reserved

(0xD6) Reserved

(0xD5) Reserved

(0xD4) Reserved

(0xD3) Reserved

(0xD2) Reserved

(0xD1) Reserved

(0xD0) Reserved

(0xCF) Reserved

(0xCE) UDR1 UDR17 UDR16 UDR15 UDR14 UDR13 UDR12 UDR11 UDR10 page 190

(0xCD) UBRR1H – – – – UBRR111 UBRR110 UBRR19 UBRR18 page 194

(0xCC) UBRR1L UBRR17 UBRR16 UBRR15 UBRR14 UBRR13 UBRR12 UBRR11 UBRR10 page 194

(0xCB) Reserved

(0xCA) UCSR1C – UMSEL1 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPOL1 page 193

(0xC9) UCSR1B RXCIE1 TXCIE1 UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 page 192

(0xC8) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 UPE1 U2X1 MPCM1 page 190

(0xC7) Reserved

(0xC6) UDR0 UDR07 UDR06 UDR05 UDR04 UDR03 UDR02 UDR01 UDR00 page 190

(0xC5) UBRR0H – – – – UBRR011 UBRR010 UBRR09 UBRR08 page 194

(0xC4) UBRR0L UBRR07 UBRR06 UBRR05 UBRR04 UBRR03 UBRR02 UBRR01 UBRR00 page 194

(0xC3) Reserved

(0xC2) UCSR0C – UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 page 192

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 page 191

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 page 190
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(0xBF) Reserved

(0xBE) Reserved

(0xBD) Reserved

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE page 208

(0xBB) TWDR TWDR7 TWDR6 TWDR5 TWDR4 TWDR3 TWDR2 TWDR1 TWDR0 page 210

(0xBA) TWAR TWAR6 TWAR5 TWAR4 TWAR3 TWAR2 TWAR1 TWAR0 TWGCE page 210

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 page 209

(0xB8) TWBR TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 page 208

(0xB7) Reserved

(0xB6) ASSR – – – EXCLK AS2 TCN2UB OCR2UB TCR2UB page 155

(0xB5) Reserved

(0xB4) Reserved

(0xB3) OCR2A OCR2A7 OCR2A6 OCR2A5 OCR2A4 OCR2A3 OCR2A2 OCR2A1 OCR2A0 page 155

(0xB2) TCNT2 TCNT27 TCNT26 TCNT25 TCNT24 TCNT23 TCNT22 TCNT21 TCNT20 page 154

(0xB1) Reserved

(0xB0) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 page 160

(0xAF) Reserved

(0xAE) Reserved

(0xAD) Reserved

(0xAC) Reserved

(0xAB) Reserved

(0xAA) Reserved

(0xA9) Reserved

(0xA8) Reserved

(0xA7) Reserved

(0xA6) Reserved

(0xA5) Reserved

(0xA4) Reserved

(0xA3) Reserved

(0xA2) Reserved

(0xA1) Reserved

(0xA0) Reserved

(0x9F) Reserved

(0x9E) Reserved

(0x9D) OCR3CH OCR3C15 OCR3C14 OCR3C13 OCR3C12 OCR3C11 OCR3C10 OCR3C9 OCR3C8 page 137

(0x9C) OCR3CL OCR3C7 OCR3C6 OCR3C5 OCR3C4 OCR3C3 OCR3C2 OCR3C1 OCR3C0 page 137

(0x9B) OCR3BH OCR3B15 OCR3B14 OCR3B13 OCR3B12 OCR3B11 OCR3B10 OCR3B9 OCR3B8 page 137

(0x9A) OCR3BL OCR3B7 OCR3B6 OCR3B5 OCR3B4 OCR3B3 OCR3B2 OCR3B1 OCR3B0 page 137

(0x99) OCR3AH OCR3A15 OCR3A14 OCR3A13 OCR3A12 OCR3A11 OCR3A10 OCR3A9 OCR3A8 page 137

(0x98) OCR3AL OCR3A7 OCR3A6 OCR3A5 OCR3A4 OCR3A3 OCR3A2 OCR3A1 OCR3A0 page 137

(0x97) ICR3H ICR315 ICR314 ICR313 ICR312 ICR311 ICR310 ICR39 ICR38 page 138

(0x96) ICR3L ICR37 ICR36 ICR35 ICR34 ICR33 ICR32 ICR31 ICR30 page 138

(0x95) TCNT3H TCNT315 TCNT314 TCNT313 TCNT312 TCNT311 TCNT310 TCNT39 TCNT38 page 136

(0x94) TCNT3L TCNT37 TCNT36 TCNT35 TCNT34 TCNT33 TCNT32 TCNT31 TCNT30 page 136

(0x93) Reserved

(0x92) TCCR3C FOC3A FOC3B FOC3C – – – – page 136

(0x91) TCCR3B ICNC3 ICES3 – WGM33 WGM32 CS32 CS31 CS30 page 134

(0x90) TCCR3A COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30 page 132

(0x8F) Reserved

(0x8E) Reserved

(0x8D) OCR1CH OCR1C15 OCR1C14 OCR1C13 OCR1C12 OCR1C11 OCR1C10 OCR1C9 OCR1C8 page 137

(0x8C) OCR1CL OCR1C7 OCR1C6 OCR1C5 OCR1C4 OCR1C3 OCR1C2 OCR1C1 OCR1C0 page 137

(0x8B) OCR1BH OCR1B15 OCR1B14 OCR1B13 OCR1B12 OCR1B11 OCR1B10 OCR1B9 OCR1B8 page 137

 (0x8A) OCR1BL OCR1B7 OCR1B6 OCR1B5 OCR1B4 OCR1B3 OCR1B2 OCR1B1 OCR1B0 page 137

(0x89) OCR1AH OCR1A15 OCR1A14 OCR1A13 OCR1A12 OCR1A11 OCR1A10 OCR1A9 OCR1A8 page 137

(0x88) OCR1AL OCR1A7 OCR1A6 OCR1A5 OCR1A4 OCR1A3 OCR1A2 OCR1A1 OCR1A0 page 137

(0x87) ICR1H ICR115 ICR114 ICR113 ICR112 ICR111 ICR110 ICR19 ICR18 page 137

(0x86) ICR1L ICR17 ICR16 ICR15 ICR14 ICR13 ICR12 ICR11 ICR10 page 137

(0x85) TCNT1H TCNT115 TCNT114 TCNT113 TCNT112 TCNT111 TCNT110 TCNT19 TCNT18 page 136

(0x84) TCNT1L TCNT17 TCNT16 TCNT15 TCNT14 TCNT13 TCNT12 TCNT11 TCNT10 page 136

(0x83) Reserved

(0x82) TCCR1C FOC1A FOC1B FOC1C – – – – – page 135

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 page 134

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10 page 132

(0x7F) DIDR1 – – – – – – AIN1D AIN0D page 265

(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D page 284

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
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(0x7D) Reserved

(0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 page 280

(0x7B) ADCSRB ADHSM ACME – – – ADTS2 ADTS1 ADTS0 page 284, 263

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 page 282

(0x79) ADCH - / ADC9 - / ADC8 - / ADC7 - / ADC6 - / ADC5 - / ADC4 ADC9 / ADC3 ADC8 / ADC2 page 283

(0x78) ADCL ADC7 / ADC1 ADC6 / ADC0 ADC5 / - ADC4 / - ADC3 / - ADC2 / - ADC1 / - ADC0 / page 283

(0x77) Reserved

(0x76) Reserved

(0x75) XMCRB XMBK – – – – XMM2 XMM1 XMM0 page 31

(0x74) XMCRA SRE SRL2 SRL1 SRL0 SRW11 SRW10 SRW01 SRW00 page 29

(0x73) Reserved

(0x72) Reserved

(0x71) TIMSK3 – – ICIE3 – OCIE3C OCIE3B OCIE3A TOIE3 page 138

(0x70) TIMSK2 – – – – – – OCIE2A TOIE2 page 157

(0x6F) TIMSK1 – – ICIE1 – OCIE1C OCIE1B OCIE1A TOIE1 page 138

(0x6E) TIMSK0 – – – – – – OCIE0A TOIE0 page 108

(0x6D) Reserved

(0x6C) Reserved

(0x6B) Reserved

(0x6A) EICRB ISC71 ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 ISC40 page 90

(0x69) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 page 89

(0x68) Reserved

(0x67) Reserved

(0x66) OSCCAL – CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 page 40

(0x65) Reserved

(0x64) Reserved

(0x63) Reserved

(0x62) Reserved

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 page 42

(0x60) WDTCR – – – WDCE WDE WDP2 WDP1 WDP0 page 55

0x3F (0x5F) SREG I T H S V N Z C page 11

0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 page 13

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 page 13

0x3C (0x5C) Reserved

0x3B (0x5B) RAMPZ – – – – – – – RAMPZ0 page 13

0x3A (0x5A) Reserved

0x39 (0x59) Reserved

0x38 (0x58) Reserved

0x37 (0x57) SPMCSR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN page 317

0x36 (0x56) Reserved – – – – – – – –

0x35 (0x55) MCUCR JTD – – PUD – – IVSEL IVCE page 60, 69, 294

0x34 (0x54) MCUSR – – – JTRF WDRF BORF EXTRF PORF page 52, 295

0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE page 44

0x32 (0x52) Reserved

0x31 (0x51) OCDR IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 page 289

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 page 263

0x2F (0x4F) Reserved

0x2E (0x4E) SPDR SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPD0 page 170

0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X page 169

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 page 168

0x2B (0x4B) GPIOR2 GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 page 34

0x2A (0x4A) GPIOR1 GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 page 34

0x29 (0x49) Reserved

0x28 (0x48) Reserved

0x27 (0x47) OCR0A OCR0A7 OCR0A6 OCR0A5 OCR0A4 OCR0A3 OCR0A2 OCR0A1 OCR0A0 page 108

0x26 (0x46) TCNT0 TCNT07 TCNT06 TCNT05 TCNT04 TCNT03 TCNT02 TCNT01 TCNT00 page 107

0x25 (0x45) Reserved

0x24 (0x44) TCCR0A FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 page 105

0x23 (0x43) GTCCR TSM – – – – – PSR2 PSR310 page 93, 160

0x22 (0x42) EEARH – – – – EEAR11 EEAR10 EEAR9 EEAR8 page 20

0x21 (0x41) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 page 20

0x20 (0x40) EEDR EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 page 20

0x1F (0x3F) EECR – – – – EERIE EEMWE EEWE EERE page 21

0x1E (0x3E) GPIOR0 GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 page 34

0x1D (0x3D) EIMSK INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0 page 91

0x1C (0x3C) EIFR INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 INTF0 page 91

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
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Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The AT90CAN128 is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

0x1B (0x3B) Reserved

0x1A (0x3A) Reserved
0x19 (0x39) Reserved

0x18 (0x38) TIFR3 – – ICF3 – OCF3C OCF3B OCF3A TOV3 page 139

0x17 (0x37) TIFR2 – – – – – – OCF2A TOV2 page 158

0x16 (0x36) TIFR1 – – ICF1 – OCF1C OCF1B OCF1A TOV1 page 139

0x15 (0x35) TIFR0 – – – – – – OCF0A TOV0 page 108

0x14 (0x34) PORTG – – – PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 page 88

0x13 (0x33) DDRG – – – DDG4 DDG3 DDG2 DDG1 DDG0 page 88

0x12 (0x32) PING – – – PING4 PING3 PING2 PING1 PING0 page 88

0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 page 87

0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 page 87

0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 page 88

0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 page 87

0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 page 87

0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 page 87

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 page 87

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 page 87

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 page 87

0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 page 86

0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 page 86

0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 page 87

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 page 86

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 page 86

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 page 86

0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 page 86

0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 page 86

0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 page 86

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
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Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd  ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← 0xFF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k  + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL k Direct Subroutine Call PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2

BREQ  k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2

BRNE  k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2

BRCS  k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2

BRCC  k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2

BRSH  k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2

BRLO  k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2

BRMI  k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2

BRPL  k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2

BRGE  k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2

BRLT  k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2

BRHS  k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2

BRHC  k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2

BRTS  k Branch if T Flag Set if (T = 1) then PC ← PC + k  + 1 None 1/2

BRTC  k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2

BRVS  k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2

BRVC  k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2
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BRIE  k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1/2

BRID  k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd  ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd  ← (k) None 2

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

ELPM Extended Load Program Memory R0 ← (RAMPZ:Z) None 3

ELPM Rd, Z Extended Load Program Memory Rd ← (RAMPZ:Z) None 3

ELPM Rd, Z+ Extended Load Program Memory and Post-Inc Rd ← (RAMPZ:Z), RAMPZ:Z ← RAMPZ:Z+1 None 3

SPM Store Program Memory (Z) ← R1:R0 None -

Mnemonics Operands Description Operation Flags #Clocks
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IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

MCU CONTROL INSTRUCTIONS

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clocks
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Ordering Information

Notes: 1. Indicates Green and ROHS packaging.

Packaging Information

Ordering Code
Speed 
(MHz) Power Supply (V) Operation Range Package(1) Packing

AT90CAN128-15AT 16 2.7 - 5.5
-40°C to +85°C

RQ
Tape & Reel with 

Dry-pack

AT90CAN128-15AT1 16 2.7 - 5.5 -40°C to +105°C RQ
Tape & Reel with 

Dry-pack

AT90CAN128-15AZ 16 2.7 - 5.5 -40°C to +125°C RQ
Tape & Reel with 

Dry-pack

AT90CAN128-15MT 16 2.7 - 5.5
-40°C to +85°C

PB
Tape & Reel with 

Dry-pack

AT90CAN128-15MT1 16 2.7 - 5.5 -40°C to +105°C PB
Tape & Reel with 

Dry-pack

AT90CAN128-15MZ 16 2.7 - 5.5 -40°C to +125°C PB
Tape & Reel with 

Dry-pack

Package Type

RQ 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)

PB 64-Lead, Quad Flat No lead (QFN)
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TQFP64

INDEX CORNER

0˚~7˚

PIN 1 

L

C

A1 A2 A

D1

D

e E1 E

B

11˚~13˚

PIN 64 

64 LEADS Thin Quad Flat Package

Notes: 1. This package conforms to JEDEC reference MS-026,
    Variation AEB. 
2. Dimensions D1 and E1 do not include mold protrusion.
    Allowable protrusion is 0.25 mm per side. Dimensions
    D1 and E1 are maximum plastic body size dimensions
    including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.

SYMBOL MIN NOM

MM

MAX

(2)

(2)

A – – 1.20

A1 0.05 – 0.15

A2  0.95 1.00 1.05

D 15.75 16.00 16.25

D1 13.90 14.00 14.10

E 15.75 16.00 16.25

E1 13.90 14.00 14.10

B           0.30 – 0.45

C 0.09 – 0.20

L 0.45 –  0.75

e 0.80 TYP

MIN NOM

INCH

MAX

– – . 047

. 002 – . 006

. 037 . 039 . 041

. 620 . 630 . 640

. 547 . 551 . 555

. 620 . 630 . 640

. 547 . 551 . 555

. 012 – . 018

. 004 – . 008

. 018 –  . 030

. 0315 TYP
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QFN64

1

INDEX CORNER

2
3

646362
64x b

J

K

64x L

e

EXPOSED DIE
ATTACH PADBOTTOM VIEW

TOP VIEW

D

E

INDEX CORNER

A2
A1

0.08

A

C

SEATING PLANE

SIDE VIEW

b

L

e

A2

N

A1

D / E

J / K

A

6.47

0.80

MIN

6.57

NOM

MM

9.00 BSC

6.67

1.00

0.00 0.05

MAX

. 255

. 031

MIN

. 259

NOM

INCH

. 354 BSC

0.50 BSC . 020 BSC

64

. 263

0.40 0.45 0.50 . 016 . 018 . 020

0.17 0.25 0.27 . 007 . 010 . 011

. 039

. 000 . 002

0.75 1.00 . 029 . 039

MAX

64 LEADS Quad Flat No lead

Note: Compliant JEDEC MO-220
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