Features

 High-performance, Low-power AVR® 8-bit Microcontroller
* Advanced RISC Architecture
— 133 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers + Peripheral Control Registers
Fully Static Operation
— Up to 16 MIPS Throughput at 16 MHz
— On-chip 2-cycle Multiplier
* Non volatile Program and Data Memories
— 128K Bytes of In-System Reprogrammable Flash
Endurance: 10,000 Write/Erase Cycles
— Optional Boot Code Section with Independent Lock Bits
Selectable Boot Size: 1K Bytes, 2K Bytes, 4K Bytes or 8K Bytes
In-System Programming by On-Chip Boot Program (CAN, UART)
True Read-While-Write Operation
— 4K Bytes EEPROM (Endurance: 100,000 Write/Erase Cycles)
— 4K Bytes Internal SRAM
— Up to 64K Bytes Optional External Memory Space
Programming Lock for Software Security
— Fuses and Lock bits Endurance 1000 Write/Erase Cycles
* JTAG (IEEE std. 1149.1 Compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard
— Programming Flash (Hardware ISP), EEPROM, Lock & Fuse Bits
— Extensive On-chip Debug Support
* CAN Controller 2.0A & 2.0B
— 15 Full Message Objects with Separate Identifier Tags and Masks
— Transmit, Receive, Automatic Reply and Frame Buffer Receive Modes
— 1Mbits/s Maximum Transfer Rate at 8 MHz
— Time stamping, TTC & Listening Mode (Spying or Autobaud)
* Peripheral Features
— Programmable Watchdog Timer with On-chip Oscillator
— 8-bit Synchronous Timer/Counter-0
10-bit Prescaler
External Event Counter
Output Compare or 8-bit PWM Output
— 8-bit Asynchronous Timer/Counter-2
10-bit Prescaler
External Event Counter
Output Compare or 8-Bit PWM Output
32Khz Oscillator for RTC Operation
— Dual 16-bit Synchronous Timer/Counters-1 & 3
10-bit Prescaler
Input Capture with Noise Canceler
External Event Counter
3-Output Compare or 16-Bit PWM Output
Output Compare Modulation
— 8-channel, 10-bit SAR ADC
8 Single-ended channels
7 Differential Channels
2 Differential Channels With Programmable Gain at 1x, 10x, or 200x
— On-chip Analog Comparator
— Byte-oriented Two-wire Serial Interface
— Dual Programmable Serial USART
— Master/Slave SPI Serial Interface
Programming Flash (Hardware ISP)
* Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated RC Oscillator
— 8 External Interrupt Sources

— Software Selectable Clock Frequency
— Global Pull-up Disable
* 1/O and Packages
— 53 Programmable I/O Lines
— 64-lead TQFP and 64-lead QFN
* Operating Voltages
— 2.7-5.5V
* Operating temperature
— Automotive (-40°C to +125°C)
* Maximum Frequency
— 8 MHz at 2.7V - Automotive range
— 16 MHz at 4.5V - Automotive range

AIMEL

I)

Y ()

8-bit AVR"
Microcontroller
with

128K Bytes of
ISP Flash

and

CAN Controller

5 Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down & Standby

AT90CAN128
Automotive

Preliminary

Rev. 7522C-AUTO-09/06

Description

ATMEL

The AT90CAN128 is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle,
the AT90CAN128 achieves throughputs approaching 1 MIPS per MHz allowing the sys-
tem designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose working registers.
All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two
independent registers to be accessed in one single instruction executed in one clock
cycle. The resulting architecture is more code efficient while achieving throughputs up to
ten times faster than conventional CISC microcontrollers.

The AT90CAN128 provides the following features: 128K bytes of In-System Program-
mable Flash with Read-While-Write capabilities, 4K bytes EEPROM, 4K bytes SRAM,
53 general purpose I/O lines, 32 general purpose working registers, a CAN controller,
Real Time Counter (RTC), four flexible Timer/Counters with compare modes and PWM,
2 USARTS, a byte oriented Two-wire Serial Interface, an 8-channel 10-bit ADC with
optional differential input stage with programmable gain, a programmable Watchdog
Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test
interface, also used for accessing the On-chip Debug system and programming and five
software selectable power saving modes.

The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI/CAN ports
and interrupt system to continue functioning. The Power-down mode saves the register
contents but freezes the Oscillator, disabling all other chip functions until the next inter-
rupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run,
allowing the user to maintain a timer base while the rest of the device is sleeping. The
ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous
Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode,
the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This
allows very fast start-up combined with low power consumption.

The device is manufactured using Atmel’'s high-density nonvolatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed in-system
through an SPI serial interface, by a conventional nonvolatile memory programmer, or
by an On-chip Boot program running on the AVR core. The boot program can use any
interface to download the application program in the application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU
with In-System Self-Programmable Flash on a monolithic chip, the Atmel AT90CAN128
is a powerful microcontroller that provides a highly flexible and cost effective solution to
many embedded control applications.

The AT90CAN128 AVR is supported with a full suite of program and system develop-
ment tools including: C compilers, macro assemblers, program debugger/simulators, in-
circuit emulators, and evaluation kits.

Applications that use the ATmegal28 AVR microcontroller can be made compatible to
use the AT90CAN128, refer to Application Note AVR 096, on the Atmel web site.

2 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Block Diagram

Figure 1. Block Diagram

PF7 - PFO PA7 - PAO PC7 - PCO
A A A A A A A

e m = RN DR N (U R A

I XTAL1

1
1
1
1 A Yy V.V V V Y%
1

VCC 1 | PORTF DRIVERS | | PORTA DRIVERS | | PORTC DRIVERS

GND |
1

= | DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATA REGISTER DATA DIR.
i PORTF REG. PORTF PORTA REG. PORTA PORTC REG. PORTC
1
1
| i 1 i i 8-BIT DATA BUS i i
! < D
. A A
! » POR-BOD [%
RESET |«
AVCC | < INTERNAL
m— »> | OSCILLATOR | CALIB.OSC
AGND— > ADC

! >

OSCILLATOR

WATCHDOG

i !
Ay v A v >
< A A] A A
A l A 4 ¢ YV 4 \4 ¢ Y_V Y

>

1
! PROGRAM STACK || o TIMER
:—Pl JTAGTAP | "l COUNTER |‘ | POINTER [€
! OSCILLATOR 1
D a3 :
: PROGRAM MCU CONTROL TIMING AND CAN
SRAM |‘ » NTROLLER
:"lON‘CH'PDEBUGI: "l FLASH | ::I < ’l REGISTER | 3| CONTROL CONTRO
! A Y Y
1
1
1
| BO%"(‘:[/;’:‘RY' INSTRUCTION GENERAL) ,| TIMER/ E >
! REGISTER > PURPOSE |e—> COUNTERS =
|
I [X
h |Pnofgé'l\"CMlNG| INSTRUCTION a3 Y INTERRUPT [€
, ﬂ_|_| DECODER L UNIT
1 1
: v
' CONTROL
! LINES
1
1
1
1
1
:
I]
! PN 2K 7
< [TWO-WIRE SERIAL
| USARTO E‘ SPI | | USART1 | ?NTERF,fCE |
1 Ll
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
REGISTERS :
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

o
S A4
8k DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATA REGISTER DATA DIR. DATA DIR.
2% /+ 0 PORTE REG. PORTE PORTB REG. PORTB PORTD REG. PORTD REG. PORTG
Z0o
<=
3 [Bl L
[&]
| PORTE DRIVERS PORTB DRIVERS PORTD DRIVERS |
x A A 1
___________ RN S [| (N | A | N | N P U U P U N | N U
YyYVYY v
PE7 - PEO PB7 - PBO PD7 - PDO PG4 - PGO

AIMEL 3

7522C-AUTO-09/06 I ©

Automotive Quality

Grade

4

ATMEL

The AT90CAN128-15AZ have been developed and manufactured according to the most

stringent requirements of the international standard ISO-TS-16949. This data sheet con-
tains limit values extracted from the results of extensive characterization (Temperature
and Voltage). The quality and reliability of the AT90CAN128-15AZ have been verified
during regular product qualification as per AEC-Q100 grade 1.

As indicated in the ordering information paragraph, the products are available in three
different temperature grades, but with equivalent quality and reliability objectives. Differ-
ent temperature identifiers have been defined as listed in Table 1.

Table 1. Temperature Grade Identification for Automotive Products

Temperature
Temperature Identifier Comments
-40 ; +85 T Similar to Industrial Temperature Grade but with
Automotive Quality
-40 ; +105 T1 Reduced Automotive Temperature Range
-40 ; +125 z Full AutomotiveTemperature Range

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Pin Configurations

Figure 2. Pinout AT90CAN128- TQFP

£ 223 s

FE EE
S5 883885 5 = a
o o o o o o o 0 o o 0
&) L £ £ £ £ £ £ < < < < <
R EEEEEEEEEE
Zl[3][8][=][3][3][8] [5] [8] [8] [3] [8] [&] [&] [3] [2]

NC® [1] 48] PA3 (AD3)

(RXDO / PDI) PEO | 2| 47| PA4 (ADa)
(TXDO /PDO) PE1 [3] INDEX CORNER 146] PAS (ADS)
(XCKO / AINO) PE2 | 4 145] PA6 (ADS)
(OC3A/AIN1) PE3 [5| 44] PA7 (ADY)
(OC3B/INT4) PE4 | 6| 43 PG2 (ALE)
(OC3C /INT5) PE5 [7 | [42] PC7 (A15/CLKO)

(T3/INT6) PE6 E ATQOCAN1 28 E PC6 (A14)

(ICP3/INT7)PE7 | 9 . 40| PC5 (A13)
_ 2] (64-lead TQFP top view) <
(ss)PBO [10] 139] Pca (A12)

(SCK) PB1 [11] 138] PC3 (A11)

(MosI) PB2 [12] 137] Pc2(A10)
(MISO) PB3 [13] 136] PC1(A9)
(0C2A) PB4 [14] 135] PO (A8)
(OC1A) PB5 15 34| PG1(RD)
(OC1B) PB6 16 133] PGO (WR)

= =] (2] []] [=] [&] [&] [=] [&] [&] [&] [&] [&] [8] [5] [#]

5 8 3 82 39 28 853 883 8 8 B

. o a |9 8 % LT £ o o o a o o a a

o « « |4 S %X 538 = s < = s

s N = E FE E E o X ~ FE

5 O O z z z z G O =~ =

°c 2 2 ST 2% = %Xz

= C 83388 z¢

9] e e g o 2

S € E 2 <

NC = Do not connect (May be used in future devices)
@Timer2 Oscillator

AIMEL 5

7522C-AUTO-09/06 I ©

ATMEL

Figure 3. Pinout AT90OCAN128- QFN

6

T o0 =
O = 00
F F F F
SN O < W e~ — =
O 0O 000000 S -«
=l lita Wi Bie Wi lia Sa aaa
&) p << £ <<
OQ Wo«-aomswon~20 o«
S Z2 X Do bW 20 << <<
< O < oo o O>So o o
< MO N - O O O NN © O ¥ MO N - O O
© © © © © 1V LV .’V .’V W’ W ! O|L v v <
NC™ |1 48
(RXDO / PDI) PEO | 2 47
(TXDO/PDO) PE1 | 3 46
INDEX CORNER
(XCKO / AINO) PE2 | 4 45
(OC3A / AIN1) PE3 5] 44
(OC3B/INT4)PE4 | 6 43
(OC3C /INT5) PE5S 7 42
(T3 N0 Pes |8 AT90CAN128 "
(ICP3/INT7) PE7 9 H 40
- (64-lead QFN top view)
(SS)PBO | 10 39
(SCK) PB1 | 11 38
(MOSI) PB2 | 12 37
(MISO) PB3 | 13 36
(OC2A) PB4 | 14 35
(OC1A)PB5 | 15 34
(OC1B) PB6 | 16 B8]
N 0 OO © «— N OO O © N~ 0 O O v«
~ | AN AN AN AN &N &N &N N N AN O oo o™
533E8233858823885
o g E (7] 8 (Zg Efooocaaoadada
S ¥ XX cadsmoecs
- N = EEEEQLXHKEE
0 O O zzzz0O 0O~ —
o w » T T T T =X zZ
-~ O O < = - = <
< £ e O agaoaQn z O
b1 Q0 X X < X
Q ~ < X E O x
o xr = 2 <

'NC = Do not connect (May be used in future devices)

@ Timer2 Oscillator

PA3 (AD3)
PA4 (AD4)
PA5 (AD5)

PAG (ADB)

PA7 (AD7)

PG2 (ALE)

PC7 (A15/ CLKO)
PC6 (A14)

PC5 (A13)
PC4 (A12)
PC3 (A11)
PC2 (A10)
PC1 (A9)
PCO (A8)
PG1 (RD)
PGO (WR)

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Pin Descriptions

VCC
GND

Port A (PA7..PAO)

Port B (PB7..PB0)

Port C (PC7..PCO)

Port D (PD7..PDO)

Port E (PE7..PEO)

Port F (PF7..PFO0)

7522C-AUTO-09/06

Digital supply voltage.
Ground.

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port A pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the AT90CAN128 as
listed on page 70.

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the AT90CAN128 as
listed on page 72.

Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the AT90CAN128 as listed on
page 74.

Port D is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the AT90CAN128 as
listed on page 76.

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the AT90CAN128 as
listed on page 79.
Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional 1/0 port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port F output
buffers have symmetrical drive characteristics with both high sink and source capability.
As inputs, Port F pins that are externally pulled low will source current if the pull-up

AIMEL 7

I)

Port G (PG4..PGO)

RESET

XTAL1
XTAL2

AVCC

AREF

About Code Examples

ATMEL

resistors are activated. The Port F pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Port F also serves the functions of the JTAG interface. If the JTAG interface is enabled,
the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even
if a reset occurs.

Port G is a 5-bit I/0O port with internal pull-up resistors (selected for each bit). The Port G
output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the
pull-up resistors are activated. The Port G pins are tri-stated when a reset condition
becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the AT90CAN128 as
listed on page 84.

Reset input. A low level on this pin for longer than the minimum pulse length will gener-
ate a reset. The minimum pulse length is given in caracteristics. Shorter pulses are not
guaranteed to generate a reset. The I/O ports of the AVR are immediately reset to their
initial state even if the clock is not running. The clock is needed to reset the rest of the
AT90CAN128.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting Oscillator amplifier.

AVCC is the supply voltage pin for the A/D Converter on Port F. It should be externally
connected to V¢, even if the ADC is not used. If the ADC is used, it should be con-
nected to V¢ through a low-pass filter.

This is the analog reference pin for the A/D Converter.

This documentation contains simple code examples that briefly show how to use various
parts of the device. These code examples assume that the part specific header file is
included before compilation. Be aware that not all C compiler vendors include bit defini-
tions in the header files and interrupt handling in C is compiler dependent. Please
confirm with the C compiler documentation for more details.

8 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

AVR CPU Core

Introduction

Architectural Overview

7522C-AUTO-09/06

This section discusses the AVR core architecture in general. The main function of the
CPU core is to ensure correct program execution. The CPU must therefore be able to
access memories, perform calculations, control peripherals, and handle interrupts.

Figure 4. Block Diagram of the AVR Architecture

(Data Bus 8-bit

A\ 4
Program Status
Flash < <«
Program Counter and Control
Memory <
Interrupt
T > 32x8 - Unit
Instruction General P
Register Purpose h SPI
< Registrers <> Unit
A\ 4
Instruction Watchdog
Decoder A A < Timer
> £ N
£ k%)
[9] (%]
l 4 g ALU > Analog
Control Lines 3 2 Comparator
<
- 3]
8] (]
[0 =
= =] o
- £ <« /O Module1
> Data <«le>| 110 Module 2
SRAM
<—»| |/O Module n
EEPROM <
I/O Lines <

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture
— with separate memories and buses for program and data. Instructions in the program
memory are executed with a single level pipelining. While one instruction is being exe-
cuted, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle. The program memory is In-
System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with
a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU)
operation. In a typical ALU operation, two operands are output from the Register File,

AIMEL 0

I)

ALU — Arithmetic Logic
Unit

ATMEL

the operation is executed, and the result is stored back in the Register File — in one
clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing — enabling efficient address calculations. One of the these
address pointers can also be used as an address pointer for look up tables in Flash pro-
gram memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a con-
stant and a register. Single register operations can also be executed in the ALU. After
an arithmetic operation, the Status Register is updated to reflect information about the
result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions,
able to directly address the whole address space. Most AVR instructions have a single
16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and
the Application Program section. Both sections have dedicated Lock bits for write and
read/write protection. The SPM (Store Program Memory) instruction that writes into the
Application Flash memory section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the Stack. The Stack is effectively allocated in the general data SRAM, and
consequently the Stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the Reset routine (before subroutines
or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the 1/0
space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/0 space with an additional
Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt
Vector in the Interrupt Vector table. The interrupts have priority in accordance with their
Interrupt Vector position. The lower the Interrupt Vector address, the higher is the

priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control
Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as
the Data Space locations following those of the Register File, 0x20 - Ox5F. In addition,
the AT90CAN128 has Extended 1/O space from 0x60 - OxFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

The high-performance AVR ALU operates in direct connection with all the 32 general
purpose working registers. Within a single clock cycle, arithmetic operations between
general purpose registers or between a register and an immediate are executed. The
ALU operations are divided into three main categories — arithmetic, logical, and bit-func-
tions. Some implementations of the architecture also provide a powerful multiplier
supporting both signed/unsigned multiplication and fractional format. See the “Instruc-
tion Set” section for a detailed description.

10 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Status Register

7522C-AUTO-09/06

The Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to
perform conditional operations. Note that the Status Register is updated after all ALU
operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and
more compact code.

The Status Register is not automatically stored when entering an interrupt routine and
restored when returning from an interrupt. This must be handled by software.

The AVR Status Register — SREG - is defined as:

Bit 7 6 5 4 3 2 1 0
| [| 7 | H | s | v N z c | srec

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

» Bit 7 —1I: Global Interrupt Enable

The Global Interrupt Enable bit must be set to enabled the interrupts. The individual
interrupt enable control is then performed in separate control registers. If the Global
Interrupt Enable Register is cleared, none of the interrupts are enabled independent of
the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt
has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-
bit can also be set and cleared by the application with the SEI and CLI instructions, as
described in the instruction set reference.

» Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or
destination for the operated bit. A bit from a register in the Register File can be copied
into T by the BST instruction, and a bit in T can be copied into a bit in a register in the
Register File by the BLD instruction.

» Bit 5 - H: Half Carry Flag

The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is
useful in BCD arithmetic. See the “Instruction Set Description” for detailed information.

+ Bit4-S:SignBit, S=N®V

The S-bit is always an exclusive or between the negative flag N and the Two’s Comple-
ment Overflow Flag V. See the “Instruction Set Description” for detailed information.

» Bit 3-V: Two’s Complement Overflow Flag

The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See
the “Instruction Set Description” for detailed information.

» Bit 2 - N: Negative Flag

The Negative Flag N indicates a negative result in an arithmetic or logic operation. See
the “Instruction Set Description” for detailed information.

» Bit1-2Z: Zero Flag

The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

AIMEL 11

I)

General Purpose
Register File

The X-register, Y-register, and
Z-register

ATMEL

* Bit0-C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruc-
tion Set Description” for detailed information.

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to
achieve the required performance and flexibility, the following input/output schemes are
supported by the Register File:

* One 8-bit output operand and one 8-bit result input

» Two 8-bit output operands and one 8-bit result input
* Two 8-bit output operands and one 16-bit result input
* One 16-bit output operand and one 16-bit result input

Figure 5 shows the structure of the 32 general purpose working registers in the CPU.

Figure 5. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 O0x0E
Purpose R15 OXOF
Working R16 0x10
Registers R17 0x11
R26 Ox1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers,
and most of them are single cycle instructions.

As shown in Figure 5, each register is also assigned a data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to
index any register in the file.

The registers R26..R31 have some added functions to their general purpose usage.
These registers are 16-bit address pointers for indirect addressing of the data space.
The three indirect address registers X, Y, and Z are defined as described in Figure 6.

Figure 6. The X-, Y-, and Z-registers

15 XH XL
X-register I 7 0 I 7 0 I
R27 (Ox1B) R26 (OXLA)
12 AT O0C AN 128 /A Ut O 1 —

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

RAM Page Z Select Register —
RAMPZ

Stack Pointer

7522C-AUTO-09/06

15 YH YL
Y-register I 7 0 I 7 0 I
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register I 7 0 I 7 0 I
R31 (0x1F) R30 (0X1E)

In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment, and automatic decrement (see the instruction set
reference for details).

Bit 7 6 5 4 3 2 1 0

| - - - - - - - RAMPZ0 | RAMPZ
Read/Write R R R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..2 — Res: Reserved Bits

These are reserved bits and will always read as zero. When writing to this address loca-
tion, write these bits to zero for compatibility with future devices.

* Bit 1 - RAMPZ0: Extended RAM Page Z-pointer

The RAMPZ Register is normally used to select which 64K RAM Page is accessed by
the Z-pointer. As the AT90CAN128 does not support more than 64K of SRAM memory,
this register is used only to select which page in the program memory is accessed when
the ELPM/SPM instruction is used. The different settings of the RAMPZO0 bit have the
following effects:

RAMPZ0 =0: Program memory address 0x0000 - Ox7FFF (lower 64K bytes) is
accessed by ELPM/SPM

RAMPZ0 =1: Program memory address 0x8000 - OXFFFF (higher 64K bytes) is
accessed by ELPM/SPM

Note that LPM is not affected by the RAMPZ setting.

The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Regis-
ter always points to the top of the Stack. Note that the Stack is implemented as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above OxFF. The Stack Pointer is decremented by one
when data is pushed onto the Stack with the PUSH instruction, and it is decremented by
two when the return address is pushed onto the Stack with subroutine call or interrupt.
The Stack Pointer is incremented by one when data is popped from the Stack with the
POP instruction, and it is incremented by two when data is popped from the Stack with
return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The num-
ber of bits actually used is implementation dependent. Note that the data space in some

AIMEL 18

I)

Instruction Execution
Timing

Reset and Interrupt
Handling

ATMEL

implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.

Bit 15 14 13 12 11 10 9 8
SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/IW R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

This section describes the general access timing concepts for instruction execution. The
AVR CPU is driven by the CPU clock clkcp, directly generated from the selected clock
source for the chip. No internal clock division is used.

Figure 7 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks, and functions per power-unit.

Figure 7. The Parallel Instruction Fetches and Instruction Executions
T1 T2 T3 T4

ok —4 ~— N 1

CPU

1st Instruction Fetch

1

i

1st Instruction Execute :
2nd Instruction Fetch :

1

T

1

1

Vs
2nd Instruction Execute
3rd Instruction Fetch N L

3rd Instruction Execute
4th Instruction Fetch \ . . |

Figure 8 shows the internal timing concept for the Register File. In a single clock cycle
an ALU operation using two register operands is executed, and the result is stored back
to the destination register.

Figure 8. Single Cycle ALU Operation
Tl T2 T3 T4

A A N S N A U A

CPU :
1

1 1

Total Execution Time E’ s E E
Register Operands Fetch E E E E
1 1 1 1

ALU Operation Execute : : : :

1 1 1 1

Result Write Back : . > : I

The AVR provides several different interrupt sources. These interrupts and the separate
Reset Vector each have a separate program vector in the program memory space. All
interrupts are assigned individual enable bits which must be written logic one together

14 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Interrupt Behavior

7522C-AUTO-09/06

with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt.
Depending on the Program Counter value, interrupts may be automatically disabled
when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software
security. See the section “Memory Programming” on page 326 for details.

The lowest addresses in the program memory space are by default defined as the Reset
and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 57.
The list also determines the priority levels of the different interrupts. The lower the
address the higher is the priority level. RESET has the highest priority, and next is INTO
— the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of
the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR).
Refer to “Interrupts” on page 57 for more information. The Reset Vector can also be
moved to the start of the Boot Flash section by programming the BOOTRST Fuse, see
“Boot Loader Support — Read-While-Write Self-Programming” on page 312.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts
are disabled. The user software can write logic one to the I-bit to enable nested inter-
rupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is
automatically set when a Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that
sets the interrupt flag. For these interrupts, the Program Counter is vectored to the
actual Interrupt Vector in order to execute the interrupt handling routine, and hardware
clears the corresponding interrupt flag. Interrupt flags can also be cleared by writing a
logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding interrupt enable bit is cleared, the interrupt flag will be set and remem-
bered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or
more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the cor-
responding interrupt flag(s) will be set and remembered until the Global Interrupt Enable
bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present.
These interrupts do not necessarily have interrupt flags. If the interrupt condition disap-
pears before the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and exe-
cute one more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine, nor restored when returning from an interrupt routine. This must be handled by
software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately
disabled. No interrupt will be executed after the CLI instruction, even if it occurs simulta-
neously with the CLI instruction. The following example shows how this can be used to
avoid interrupts during the timed EEPROM write sequence.

AIMEL 15

I)

Interrupt Response Time

ATMEL

Assembly Code Example

in rl6, SREG ; Store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; sStart EEPROM write

sbi EECR, EEWE
out SREG, rlé ; restore SREG value (I-bit)

C Code Example

char cSREG;
cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI();

EECR |= (1<<EEMWE) ; /* start EEPROM write */

EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be
executed before any pending interrupts, as shown in this example.

Assembly Code Example

sei ; set Global Interrupt Enable
sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt (s)

C Code Example

_SEI(); /* set Global Interrupt Enable */
_SLEEP(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt (s) */

The interrupt execution response for all the enabled AVR interrupts is four clock cycles
minimum. After four clock cycles the program vector address for the actual interrupt
handling routine is executed. During this four clock cycle period, the Program Counter is
pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this
jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle
instruction, this instruction is completed before the interrupt is served. If an interrupt
occurs when the MCU is in sleep mode, the interrupt execution response time is
increased by four clock cycles. This increase comes in addition to the start-up time from
the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four
clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack
Pointer is incremented by two, and the I-bit in SREG is set.

16 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Memories

In-System
Reprogrammable Flash
Program Memory

7522C-AUTO-09/06

This section describes the different memories in the AT90CAN128. The AVR architec-
ture has two main memory spaces, the Data Memory and the Program Memory space.
In addition, the AT90CAN128 features an EEPROM Memory for data storage. All three
memory spaces are linear and regular.

The AT90CAN128 contains 128K bytes On-chip In-System Reprogrammable Flash
memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the
Flash is organized as 64K x 16. For software security, the Flash Program memory
space is divided into two sections, Boot Program section and Application Program
section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
AT90CAN128 Program Counter (PC) is 16 bits wide, thus addressing the 64K program
memory locations. The operation of Boot Program section and associated Boot Lock
bits for software protection are described in detail in “Boot Loader Support — Read-
While-Write Self-Programming” on page 312. “Memory Programming” on page 326 con-
tains a detailed description on Flash data serial downloading using the SPI pins or the
JTAG interface.

Constant tables can be allocated within the entire program memory address space (see
the LPM — Load Program Memory and ELPM — Extended Load Program Memory
instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execu-
tion Timing” on page 14.

Figure 9. Program Memory Map

Program Memory

0x0000
Application Flash Section
Boot Flash Section
OxFFFF

AIMEL 17

I)

SRAM Data Memory

SRAM Data Access

ATMEL

Figure 10 shows how the AT90CAN128 SRAM Memory is organized.

The AT90CAN128 is a complex microcontroller with more peripheral units than can be
supported within the 64 locations reserved in the Opcode for the IN and OUT instruc-
tions. For the Extended 1/O space from 0x60 - OxFF in SRAM, only the ST/STS/STD and
LD/LDS/LDD instructions can be used.

The lower 4,352 data memory locations address both the Register File, the I/O memory,
Extended I/O memory, and the internal data SRAM. The first 32 locations address the
Register File, the next 64 location the standard I1/O memory, then 160 locations of
Extended 1/0 memory, and the next 4096 locations address the internal data SRAM.

An optional external data SRAM can be used with the AT90CAN128. This SRAM will
occupy an area in the remaining address locations in the 64K address space. This area
starts at the address following the internal SRAM. The Register file, 1/O, Extended I/O
and Internal SRAM occupies the lowest 4352 bytes, so when using 64 KB (65,536
bytes) of External Memory, 61,184 bytes of External Memory are available. See “Exter-
nal Memory Interface” on page 25 for details on how to take advantage of the external
memory map.

When the addresses accessing the SRAM memory space exceeds the internal data
memory locations, the external data SRAM is accessed using the same instructions as
for the internal data memory access. When the internal data memories are accessed,
the read and write strobe pins (PGO and PG1) are inactive during the whole access
cycle. External SRAM operation is enabled by setting the SRE bit in the XMCRA
Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access
of the internal SRAM. This means that the commands LD, ST, LDS, STS, LDD, STD,
PUSH, and POP take one additional clock cycle. If the Stack is placed in external
SRAM, interrupts, subroutine calls and returns take three clock cycles extra because the
two-byte program counter is pushed and popped, and external memory access does not
take advantage of the internal pipe-line memory access. When external SRAM interface
is used with wait-state, one-byte external access takes two, three, or four additional
clock cycles for one, two, and three wait-states respectively. Interrupts, subroutine calls
and returns will need five, seven, or nine clock cycles more than specified in the instruc-
tion set manual for one, two, and three wait-states.

The five different addressing modes for the data memory cover: Direct, Indirect with Dis-
placement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In
the Register File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base
address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/0 Registers, 160 Extended I/O Regis-
ters, and the 4,096 bytes of internal data SRAM in the AT90CAN128 are all accessible
through all these addressing modes. The Register File is described in “General Purpose
Register File” on page 12.

18 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 10. Data Memory Map

Data Memory
32 Reqisters 0x0000 - 0x001F
64 1/0 Registers | 0x0020 - Ox005F
160 Ext I/0 Reg. | 0x0060 - OXO0OFF
0x0100
Internal SRAM
(4096 x 8)
Ox10FF
0x1100
External SRAM
(0 - 64K x 8)
I
! I
! 1
L - -
_--=""
il l
| I
| I
| I
S | OXFFFF
SRAM Data Access Times This section describes the general access timing concepts for internal memory access.
The internal data SRAM access is performed in two clksp cycles as described in Figure

11.

Figure 11. On-chip Data SRAM Access Cycles

T1 T2 T3

ok —4 — 14—

CPU X X X
Address ' Compute Address | X Address valid |
1 1 1
Data — ~ D =7
1 1 1 E
WR __ 1 / . 3
1 1 1 e
1 1 / . —_
Data —— — P —
1 1 1 @®©
1 1 1 &)
1 1]
RD T T / I\ —
1 1

Memory Access Instruction Next Instruction

AIMEL 19

7522C-AUTO-09/06 I ©

EEPROM Data Memory

EEPROM Read/Write Access

The EEPROM Address
Registers — EEARH and
EEARL

The EEPROM Data Register —

ATMEL

The AT90CAN128 contains 4-Kbytes of data EEPROM memory. It is organized as a
separate data space, in which single bytes can be read and written. The EEPROM has
an endurance of at least 100,000 write/erase cycles. The access between the EEPROM
and the CPU is described in the following, specifying the EEPROM Address Registers,
the EEPROM Data Register, and the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM,
see “SPI Serial Programming Overview” on page 338, “JTAG Programming Overview”
on page 343, and “Parallel Programming Overview” on page 330 respectively.

The EEPROM Access Registers are accessible in the 1/0O space.

The write access time for the EEPROM is given in Table 2. A self-timing function, how-
ever, lets the user software detect when the next byte can be written. If the user code
contains instructions that write the EEPROM, some precautions must be taken. In
heavily filtered power supplies, V¢ is likely to rise or fall slowly on power-up/down. This
causes the device for some period of time to run at a voltage lower than specified as
minimum for the clock frequency used. See “Preventing EEPROM Corruption” on page
24 for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next
instruction is executed. When the EEPROM is written, the CPU is halted for two clock
cycles before the next instruction is executed.

Bit 15 14 13 12 11 10 9 8
- - - - EEAR11 | EEARI10 EEAR9 EEARS8 EEARH
EEAR7 EEAR6 EEARS EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 X X X X
X X X X X X

* Bits 15..12 — Reserved Bits

These bits are reserved bits in the AT90CAN128 and will always read as zero.

* Bits 11..0 - EEAR11..0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address
in the 4-Kbytes EEPROM space. The EEPROM data bytes are addressed linearly
between 0 and 4,095. The initial value of EEAR is undefined. A proper value must be
written before the EEPROM may be accessed.

EEDR Bit 7 6 5 4 3 2 1 0
I EEDR7 EEDRG6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDRO I EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
20 AT90CAN128 Aut0 m——————————————————————

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

The EEPROM Control
Register — EECR

7522C-AUTO-09/06

* Bits 7..0 - EEDR7.0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to
the EEPROM in the address given by the EEAR Register. For the EEPROM read oper-
ation, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

Bit 7 6 5 4 3 2 1 0
| - - - - EERIE | EEMWE | EEWE EERE | EECR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 X 0

» Bits 7..4 — Reserved Bits

These bits are reserved bits in the AT90CAN128 and will always read as zero.

» Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set.
Writing EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a
constant interrupt when EEWE is cleared.

* Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set, setting EEWE within four clock cycles will write data to the
EEPROM at the selected address If EEMWE is zero, setting EEWE will have no effect.
When EEMWE has been written to one by software, hardware clears the bit to zero after
four clock cycles. See the description of the EEWE bit for an EEPROM write procedure.

e Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be written to one to write the
value into the EEPROM. The EEMWE bit must be written to one before a logical one is
written to EEWE, otherwise no EEPROM write takes place. The following procedure
should be followed when writing the EEPROM (the order of steps 3 and 4 is not
essential):

1. Wait until EEWE becomes zero.

2. Wait until SPMEN (Store Program Memory Enable) in SPMCSR (Store Program
Memory Control and Status Register) becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
Within four clock cycles after setting EEMWE, write a logical one to EEWE.

o ok~ w

The EEPROM can not be programmed during a CPU write to the Flash memory. The
software must check that the Flash programming is completed before initiating a new
EEPROM write. Step 2 is only relevant if the software contains a Boot Loader allowing
the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Boot Loader Support — Read-While-Write Self-Programming” on
page 312 for details about Boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the

AIMEL 2

I)

22

ATMEL

EEPROM is interrupting another EEPROM access, the EEAR or EEDR Register will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEWE bit is cleared by hardware. The
user software can poll this bit and wait for a zero before writing the next byte. When
EEWE has been set, the CPU is halted for two cycles before the next instruction is
executed.

* Bit 0 — EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR Register, the EERE bit must be written to a logic
one to trigger the EEPROM read. The EEPROM read access takes one instruction, and
the requested data is available immediately. When the EEPROM is read, the CPU is
halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress, it is neither possible to read the EEPROM, nor to change the EEAR
Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 2 lists the typical
programming time for EEPROM access from the CPU.

Table 2. EEPROM Programming Time.

Symbol Number of Calibrated RC Oscillator Cycles | Typ Programming Time
EEPROM write
(from CPU) 67 584 8.5 ms

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling inter-
rupts globally) so that no interrupts will occur during execution of these functions. The
examples also assume that no Flash Boot Loader is present in the software. If such
code is present, the EEPROM write function must also wait for any ongoing SPM com-
mand to finish.

Assembly Code Example

EEPROM write:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM write
; Set up address (rl18:rl17) in address register
out EEARH, rls8
out EEARL, rl7
; Write data (rlé6) to data register
out EEDR,rlé6
; Write logical one to EEMWE
sbi EECR, EEMWE
; Start eeprom write by setting EEWE
sbi EECR, EEWE

ret

C Code Example

void EEPROM write (unsigned int uiAddress, unsigned char ucData)
{
/* Wait for completion of previous write */
while (EECR & (1<<EEWE))
/* Set up address and data registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMWE */
EECR |= (1<<EEMWE) ;
/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE);

AIMEL 23

I)

Preventing EEPROM
Corruption

ATMEL

The next code examples show assembly and C functions for reading the EEPROM. The
examples assume that interrupts are controlled so that no interrupts will occur during
execution of these functions.

Assembly Code Example

EEPROM_read:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM_ read
; Set up address (rl18:rl17) in address register
out EEARH, rls8
out EEARL, rl7
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from data register
in rl6,EEDR

ret

C Code Example

unsigned char EEPROM read (unsigned int uiAddress)
{
/* Wait for completion of previous write */

while (EECR & (1<<EEWE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

During periods of low V. the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using EEPROM, and the same design solutions should
be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design
recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
This can be done by enabling the internal Brown-out Detector (BOD). If the detection
level of the internal BOD does not match the needed detection level, an external low
V¢ reset Protection circuit can be used. If a reset occurs while a write operation is in
progress, the write operation will be completed provided that the power supply voltage is
sufficient.

24 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

I/O Memory

External Memory
Interface

Overview

7522C-AUTO-09/06

The /O space definition of the AT90CAN128 is shown in “Register Summary” on page
398.

All ATO90CAN128 1/Os and peripherals are placed in the 1/0 space. All I/O locations may
be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data
between the 32 general purpose working registers and the 1/0O space. 1/O registers
within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI
instructions. In these registers, the value of single bits can be checked by using the
SBIS and SBIC instructions. Refer to the instruction set section for more details. When
using the 1/0O specific commands IN and OUT, the I/O addresses 0x00 - Ox3F must be
used. When addressing I/O registers as data space using LD and ST instructions, 0x20
must be added to these addresses. The AT90CAN128 is a complex microcontroller with
more peripheral units than can be supported within the 64 location reserved in Opcode
for the IN and OUT instructions. For the Extended I/O space from 0x60 - OXFF in SRAM,
only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical one to them. Note that, unlike
most other AVR'’s, the CBI and SBI instructions will only operate on the specified bit, and
can therefore be used on registers containing such status flags. The CBI and SBI
instructions work with registers 0x00 to Ox1F only.

The I/0O and peripherals control registers are explained in later sections.

With all the features the External Memory Interface provides, it is well suited to operate
as an interface to memory devices such as External SRAM and Flash, and peripherals
such as LCD-display, A/D, and D/A. The main features are:

* Four different wait-state settings (including no wait-state).

* Independent wait-state setting for different extErnal Memory sectors (configurable
sector size).

» The number of bits dedicated to address high byte is selectable.
» Bus keepers on data lines to minimize current consumption (optional).

When the eXternal MEMory (XMEM) is enabled, address space outside the internal
SRAM becomes available using the dedicated External Memory pins (see Figure 2 on
page 4, Table 30 on page 70, Table 36 on page 74, and Table 48 on page 84). The
memory configuration is shown in Figure 12.

AIMEL 25

I)

Using the External Memory
Interface

ATMEL

Figure 12. External Memory with Sector Select

0x0000
Internal memory
O0x10FF
A 0x1100
Lower sector
SRWO01
SRWO00
________ SRL[2..0]
External Memory Upper sector
(0-60K x 8)
SRW11
SRW10

The interface consists of:

» AD7:0: Multiplexed low-order address bus and data bus.

» Al5:8: High-order address bus (configurable number of bits).
* ALE: Address latch enable.

« RD: Read strobe.

« WR: Write strobe.

The control bits for the External Memory Interface are located in two registers, the Exter-
nal Memory Control Register A — XMCRA, and the External Memory Control Register B
— XMCRB.

When the XMEM interface is enabled, the XMEM interface will override the setting in the
data direction registers that corresponds to the ports dedicated to the XMEM interface.
For details about the port override, see the alternate functions in section “I/O-Ports” on
page 62. The XMEM interface will auto-detect whether an access is internal or external.
If the access is external, the XMEM interface will output address, data, and the control
signals on the ports according to Figure 14 (this figure shows the wave forms without
wait-states). When ALE goes from high-to-low, there is a valid address on AD7:0. ALE is
low during a data transfer. When the XMEM interface is enabled, also an internal access
will cause activity on address, data and ALE ports, but the RD and WR strobes will not
toggle during internal access. When the External Memory Interface is disabled, the nor-
mal pin and data direction settings are used. Note that when the XMEM interface is
disabled, the address space above the internal SRAM boundary is not mapped into the
internal SRAM. Figure 13 illustrates how to connect an external SRAM to the AVR using
an octal latch (typically “74 x 573" or equivalent) which is transparent when G is high.

26 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Address Latch Requirements

Pull-up and Bus-keeper

Timing

7522C-AUTO-09/06

Due to the high-speed operation of the XRAM interface, the address latch must be
selected with care for system frequencies above 8 MHz @ 4V and 4 MHz @ 2.7V.
When operating at conditions above these frequencies, the typical old style 74HC series
latch becomes inadequate. The External Memory Interface is designed in compliance to
the 74AHC series latch. However, most latches can be used as long they comply with
the main timing parameters. The main parameters for the address latch are:

+ D to Q propagation delay (tpp).

» Data setup time before G low (tg).

+ Data (address) hold time after G low (7).

The External Memory Interface is designed to guaranty minimum address hold time
after G is asserted low of t, = 5 ns. Refer to t sxx o/t axx_st iN “Memory Programming”
Tables 143 through Tables 150. The D-to-Q propagation delay (tpp) must be taken into
consideration when calculating the access time requirement of the external component.

The data setup time before G low (tg) must not exceed address valid to ALE low (tay.
LLc) Minus PCB wiring delay (dependent on the capacitive load).

Figure 13. External SRAM Connected to the AVR

/‘J L\ :> D[7:0]

. TN A

AD7:0 \I_I/ D Q _I/ A[7:0]
ALE > G

AVR SRAM
A15:8 :> Al15:8]
RD > RD
‘WR » WR

The pull-ups on the AD7:0 ports may be activated if the corresponding Port register is
written to one. To reduce power consumption in sleep mode, it is recommended to dis-
able the pull-ups by writing the Port register to zero before entering sleep.

The XMEM interface also provides a bus-keeper on the AD7:0 lines. The bus-keeper
can be disabled and enabled in software as described in “External Memory Control Reg-
ister B— XMCRB” on page 31. When enabled, the bus-keeper will ensure a defined logic
level (zero or one) on the AD7:0 bus when these lines would otherwise be tri-stated by
the XMEM interface.

External Memory devices have different timing requirements. To meet these require-
ments, the AT90CAN128 XMEM interface provides four different wait-states as shown
in Table 4. It is important to consider the timing specification of the External Memory
device before selecting the wait-state. The most important parameters are the access
time for the external memory compared to the set-up requirement of the AT90CAN128.
The access time for the External Memory is defined to be the time from receiving the
chip select/address until the data of this address actually is driven on the bus. The
access time cannot exceed the time from the ALE pulse must be asserted low until data
is stable during a read sequence (See t, | g + trirH - tovrn IN Tables 143 through Tables
150). The different wait-states are set up in software. As an additional feature, it is pos-
sible to divide the external memory space in two sectors with individual wait-state

AIMEL 27

I)

ATMEL

settings. This makes it possible to connect two different memory devices with different
timing requirements to the same XMEM interface. For XMEM interface timing details,
please refer to Tables 143 through Tables 150 and Figure 174 to Figure 177 in the
“External Data Memory Characteristics” on page 366.

Note that the XMEM interface is asynchronous and that the waveforms in the following
figures are related to the internal system clock. The skew between the internal and
external clock (XTALL) is not guarantied (varies between devices temperature, and sup-
ply voltage). Consequently, the XMEM interface is not suited for synchronous operation.

Figure 14. External Data Memory Cycles no Wait-state (SRWn1=0 and SRWn0=0)®

Note:

System Clock (CLKgpy) / \ / \ } \ /__/_

T2 X T3

T T4

X

: —

A15:8 Prdv. addr. ' Address '
| | | | e
DA7:0 Prév.data X Address)@(1 Data X: 2
Ll : AN /ol
DA7:0 (XMBK =0) Prév. data X Address —{l pata |) :

Read

‘RD

DA7:0 (XMBK = 1) Prév. data Address X XXXXX X Data | X XXXXXXXX X:

| |
L L L

[[[1

| | | |

| | | |

| | | |

1. SRWn1l = SRWI11 (upper sector) or SRWO1 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO0O (lower sector). The ALE pulse in period T4 is only present if the
next instruction accesses the RAM (internal or external).

Figure 15. External Data Memory Cycles with SRWn1 = 0 and SRWn0 = 1

A15:8 Prev. addr X ! Address ! X:
j | j | j | 2
DA7:0 Prév.data Y Address)@(1 Data | ! X: =
WR | : N\ : / b
DA7:0 (XMBK =0) Preév. data X Address ¥———{ Data | !)—C
; . X h . i E
DA7:0 (XMBK = 1) Prév. data X Address | X Data | ! X: 8
L ! AN : L/ !

T T2 | T3

R A N | S

Note: 1. SRWnl = SRW11 (upper sector) or SRWO1 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO0O0 (lower sector).
The ALE pulse in period T5 is only present if the next instruction accesses the RAM
(internal or external).
28 AT 90 C A N 128 /A Ui T O 0000000000000

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 16. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 0

T3 : T4

5 ' 0 :
i : |

—

| |
: |

ALE _'_/__\
|
|

' : | :
H T1 H T2 H .
i i i i
System Clock (CLKgp))
S S N A N A N S N S N A N
i i : '
i i : i
i i : i
: | , :
i i i | i
A15:8 Prev. addr. ' ' Address | J '
T 1X 1 ‘ T 1 X:
i i i i | i o
DA7:0 Prév. data X Address ' Data J ' =
‘ X XXX | | ; X
i i i i | i
. . . i : i
WA T T T i :) E——
1 1 1\ 1 y 1 .=
i i i i | i [
. X ' . . !
DA7:0 (XMBK =0) Prév. data X Address Y—+—{{ Data | ! 1)—C
' ' ' | ' | '
L . L L 1 %
DA7:0 (XMBK = 1) Prév. data , Address | Data ! ' o
T : 1 X ‘ : 1 .X: «
i i i i | i |
. . . i : i
o : AN 1 : / |
i i i : T i
| | | \ | . —

Note: 1. SRWn1l = SRW11 (upper sector) or SRWO1 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO0O0 (lower sector).
The ALE pulse in period T6 is only present if the next instruction accesses the RAM
(internal or external).

Figure 17. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 1)

T4 ! 5 ' T6 ‘ 7

System Clock (CLKgpy) _/1(\ Xi \ /j \ /j \ /:(\ /; \ /; \ i/_
e TN L

A15:8 Prdv. addr. X ' Address | i ' . X:
| X | | B i | |]
: £
DA7:0 Prév. data }X Address X)E(X} Data ! ' i X: B
' . ' | | | | :
W s \ 1 s / 1]
DA7:0 (XMBK = 0) Prév. data X Address —+—(L Data) C
| X | . : .
DA7:0 (XMBK = 1) Prév. data ! Address | Data ! i | X: o
ki / : : ' e
' 1 1
R : AN : : /
: : : | ! ' —

Note: 1. SRWnl = SRW11 (upper sector) or SRWO1 (lower sector), SRWn0 = SRW10 (upper
sector) or SRWO0O0 (lower sector).
The ALE pulse in period T7 is only present if the next instruction accesses the RAM
(internal or external).

XMEM Register Description

External Memory Control

Register A — XMCRA Bit 7 6 5 4 3 2 1 0
| sre SRL2 | SRL1 | SRLO | SRWIl | SRW10 | SRWO1 | SRW00 | XMCRA
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 — SRE: External SRAM/XMEM Enable

Writing SRE to one enables the External Memory Interface.The pin functions AD7:0,
A15:8, ALE, WR, and RD are activated as the alternate pin functions. The SRE bit over-

AIMEL 29

7522C-AUTO-09/06 I ©

ATMEL

rides any pin direction settings in the respective data direction registers. Writing SRE to
zero, disables the External Memory Interface and the normal pin and data direction set-
tings are used. Note that when the XMEM interface is disabled, the address space
above the internal SRAM boundary is not mapped into the internal SRAM.

* Bit6..4—-SRL2, SRL1, SRLO: Wait-state Sector Limit

It is possible to configure different wait-states for different External Memory addresses.
The external memory address space can be divided in two sectors that have separate
wait-state bits. The SRL2, SRL1, and SRLO bits select the split of the sectors, see Table
3 and Figure 12. By default, the SRL2, SRL1, and SRLO bits are set to zero and the
entire external memory address space is treated as one sector. When the entire SRAM
address space is configured as one sector, the wait-states are configured by the
SRW11 and SRW10 bits.

Table 3. Sector limits with different settings of SRL2..0

SRL2 SRL1 SRLO Sector Limits
0 0 0 Lower sector = N/A
Upper sector = 0x1100 - OxFFFF
0 0 1 Lower sector = 0x1100 - OX1FFF
Upper sector = 0x2000 - OXFFFF
0 1 0 Lower sector = 0x1100 - Ox3FFF
Upper sector = 0x4000 - OXFFFF
0 1 1 Lower sector = 0x1100 - OX5FFF
Upper sector = 0x6000 - OXFFFF
1 0 0 Lower sector = 0x1100 - OX7FFF
Upper sector = 0x8000 - OXFFFF
1 0 1 Lower sector = 0x1100 - OX9FFF
Upper sector = 0xA000 - OxXFFFF
1 1 0 Lower sector = 0x1100 - OXBFFF
Upper sector = 0xC000 - OXFFFF
1 1 1 Lower sector = 0x1100 - OXDFFF
Upper sector = OXEOO0O - OxXFFFF

» Bit 3..2 - SRW11, SRW10: Wait-state Select Bits for Upper Sector

The SRW11 and SRW10 bits control the number of wait-states for the upper sector of
the external memory address space, see Table 4.

* Bit 1..0 - SRWO01, SRWO00: Wait-state Select Bits for Lower Sector

The SRWO01 and SRWOO bits control the number of wait-states for the lower sector of
the external memory address space, see Table 4.

Table 4. Wait States?
SRWn1 | SRWnO | Wait States

0 0 No wait-states

0 1 Wait one cycle during read/write strobe

1 0 Wait two cycles during read/write strobe

1 1 Wait two cycles during read/write and wait one cycle before driving out

new address

30 A TO0CA N 128 A Uit O

sy A\ TOOCAN128 Auto

External Memory Control
Register B — XMCRB

7522C-AUTO-09/06

Note: 1. n=0 or1 (lower/upper sector).
For further details of the timing and wait-states of the External Memory Interface, see
Figures 14 through Figures 17 for how the setting of the SRW bits affects the timing.

Bit 7 6 5 4 3 2 1 0
| xwmek - - - - XMM2 | xmMM1 | xmmo | xMCRB

Read/Write R/W R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

» Bit 7- XMBK: External Memory Bus-keeper Enable

Writing XMBK to one enables the bus keeper on the AD7:0 lines. When the bus keeper
is enabled, it will ensure a defined logic level (zero or one) on AD7:0 when they would
otherwise be tri-stated. Writing XMBK to zero disables the bus keeper. XMBK is not
gualified with SRE, so even if the XMEM interface is disabled, the bus keepers are still
activated as long as XMBK is one.

* Bit 6..4 — Reserved Bits

These are reserved bits and will always read as zero. When writing to this address loca-
tion, write these bits to zero for compatibility with future devices.

* Bit 2..0 - XMM2, XMM1, XMMO: External Memory High Mask

When the External Memory is enabled, all Port C pins are default used for the high
address byte. If the full 60KB address space is not required to access the External Mem-
ory, some, or all, Port C pins can be released for normal Port Pin function as described
in Table 5. As described in “Using all 64KB Locations of External Memory” on page 32,
it is possible to use the XMMn bits to access all 64KB locations of the External Memory.

Table 5. Port C Pins Released as Normal Port Pins when the External Memory is
Enabled

XMM2 | XMM1 | XMMO | # Bits for External Memory Address Released Port Pins

0 0 0 8 (Full 60 KB space) None

0 0 1 7 PC7

0 1 0 6 PC7 .. PC6

0 1 1 5 PC7 .. PC5

1 0 0 4 PC7 .. PC4

1 0 1 3 PC7 .. PC3

1 1 0 2 PC7 .. PC2

1 1 1 No Address high bits Full Port C

AIMEL 3

I)

Using all Locations of
External Memory Smaller than
64 KB

Using all 64KB Locations of
External Memory

ATMEL

Since the external memory is mapped after the internal memory as shown in Figure 12,
the external memory is not addressed when addressing the first 4,352 bytes of data
space. It may appear that the first 4,352 bytes of the external memory are inaccessible
(external memory addresses 0x0000 to Ox10FF). However, when connecting an exter-
nal memory smaller than 64 KB, for example 32 KB, these locations are easily accessed
simply by addressing from address 0x8000 to 0x90FF. Since the External Memory
Address bit A15 is not connected to the external memory, addresses 0x8000 to OX90FF
will appear as addresses 0x0000 to Ox10FF for the external memory. Addressing above
address 0x90FF is not recommended, since this will address an external memory loca-
tion that is already accessed by another (lower) address. To the Application software,
the external 32 KB memory will appear as one linear 32 KB address space from 0x1100
to OX90FF. This is illustrated in Figure 18.

Figure 18. Address Map with 32 KB External Memory

AVR Memory Map External 32K SRAM
0x0000 0x0000
Internal Memory P
Ox10FF BN Sl] Ox10FF
0x1100 0x1100
>

External Memory

OX7TFFF | _ . ___ OX7FFF
0x8000

O0x90FF
0x9100

(Unused)

OXFFFF

Since the External Memory is mapped after the Internal Memory as shown in Figure 12,
only 60KB of External Memory is available by default (address space 0x0000 to Ox10FF
is reserved for internal memory). However, it is possible to take advantage of the entire
External Memory by masking the higher address bits to zero. This can be done by using
the XMMn bits and control by software the most significant bits of the address. By set-
ting Port C to output 0x00, and releasing the most significant bits for normal Port Pin
operation, the Memory Interface will address 0x0000 - Ox1FFF. See the following code
examples.

32 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

Assembly Code Example®

; OFFSET is defined to 0x2000 to ensure

; external memory access

; Configure Port C (address high byte) to
; output 0x00 when the pins are released
; for normal Port Pin operation

1di rl6, OXFF

out DDRC, rle6

1di rlé, 0x00

out PORTC, rileé6

; release PC7:5

1di rl6, (1<<XMM1) | (1<<XMMO)

sts XMCRB, rlé

; write OxXAA to address 0x0001 of external
; memory

1di rl6, Oxaa

sts 0x0001+OFFSET, rleé

; re-enable PC7:5 for external memory
1di rl6, (0<<XMM1) | (0<<XMMO)

sts XMCRB, rleé

; store 0x55 to address (OFFSET + 1) of
; external memory

1di rl6é, 0x55

sts 0x0001+OFFSET, rlé

C Code Example®

#define OFFSET 0x2000
void XRAM example (void)
{

unsigned char *p = (unsigned char *) (OFFSET + 1);

DDRC = OXFF;

PORTC = 0x00;
XMCRB = (1<<XMM1) | (1<<XMMO) ;
*p = Oxaa;

XMCRB = 0x00;

*p = 0x55;

}

Note: 1. The example code assumes that the part specific header file is included.

Care must be exercised using this option as most of the memory is masked away.

AIMEL

I)

33

General Purpose 1/0
Registers

General Purpose I/0O Register

ATMEL

The AT90CAN128 contains three General Purpose 1/0O Registers. These registers can
be used for storing any information, and they are particularly useful for storing global
variables and status flags.

The General Purpose I/0O Register 0, within the address range 0x00 - Ox1F, is directly
bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

2 — GPIOR2 Bit 7 6 5 4 3 2 1 0
| GP1oRO7 | GPIORO6 | GPIOROS | GPIOR04 | GPIOR03 | GPIORO2 | GPIOR01 | GPIOR00] GPIOR2
Read/Write RIW RIW RIW RIW RIW RIW R/W RIW
Initial Value 0 0 0 0 0 0 0 0
General Purpose I/0O Register
1 - GPIOR1 Bit 7 6 5 4 3 2 1 0
| GPIOR17 | GPIOR16 | GPIOR15 | GPIOR14 | GPIOR13 | GPIOR12 | GPIOR11 | GPIOR10] GPIOR1
Read/Write RIW RIW RIW RIW RIW RIW R/W RIW
Initial Value 0 0 0 0 0 0 0 0
General Purpose I/0O Register
0 — GPIORO Bit 7 6 5 4 3 2 1 0
| GP1oR27 | GPIOR26 | GPIOR25 | GPIOR24 | GPIOR23 | GPIOR22 | GPIOR21 | GPIOR20] GPIORO
Read/Write RIW RIW RIW RIW RIW RIW R/W RIW
Initial Value 0 0 0 0 0 0 0 0
34 AT O0C AN 128 /A Ut O 15—

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

System Clock

Clock Systems and
their Distribution

CPU Clock — clkepy

I/0 Clock — clk;o

Flash Clock — clkg ash

Asynchronous Timer Clock —
Clkasy

7522C-AUTO-09/06

Figure 19 presents the principal clock systems in the AVR and their distribution. All of
the clocks need not be active at a given time. In order to reduce power consumption, the
clocks to unused modules can be halted by using different sleep modes, as described in
“Power Management and Sleep Modes” on page 44. The clock systems are detailed
below.

Figure 19. Clock Distribution

Asynchronous CAN General /0 Flash and
Timer/Counter2 Controller Modules ADC CPU Core RAM EEPROM
A A A A y A A A A

clk,poe

clkyo AVR Clock Clkepy
Control Unit
CLKO CIkASV CIkFLASH
J A
CKOUT Fuse
Reset Logic Watchdog Timer
1 :
Source clock Watchdog clock

Prescaler
Watchdog
Clock Oscillator

Multiplexer Multiplexer

A A A +

Timer/Counter2 Timer/Counter2 External Clock Crystal Low-frequency Calibrated RC
External Clock Oscillator Oscillator Crystal Oscillator Oscillator

! ! % | 3
2 < 4

TOSC1 TOSC2 XTAL1 XTAL2

The CPU clock is routed to parts of the system concerned with operation of the AVR
core. Examples of such modules are the General Purpose Register File, the Status Reg-
ister and the data memory holding the Stack Pointer. Halting the CPU clock inhibits the
core from performing general operations and calculations.

The 1/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, CAN,
USART. The I/O clock is also used by the External Interrupt module, but note that some
external interrupts are detected by asynchronous logic, allowing such interrupts to be
detected even if the I/O clock is halted. Also note that address recognition in the TWI
module is carried out asynchronously when clk,q is halted, enabling TWI address recep-
tion in all sleep modes.

The Flash clock controls operation of the Flash interface. The Flash clock is usually
active simultaneously with the CPU clock.

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked
directly from an external clock or an external 32 kHz clock crystal. The dedicated clock

AIMEL 3

I)

ADC Clock — clkapc

Clock Sources

Default Clock Source

ATMEL

domain allows using this Timer/Counter as a real-time counter even when the device is
in sleep mode.

The ADC is provided with a dedicated clock domain. This allows halting the CPU and
I/0 clocks in order to reduce noise generated by digital circuitry. This gives more accu-
rate ADC conversion results.

The device has the following clock source options, selectable by Flash Fuse bits as
shown below. The clock from the selected source is input to the AVR clock generator,
and routed to the appropriate modules.

Table 6. Device Clocking Options Select®

Device Clocking Option CKSEL3..0
External Crystal/Ceramic Resonator 1111 - 1000
External Low-frequency Crystal 0111 - 0100
Calibrated Internal RC Oscillator 0010
External Clock 0000
Reserved 0011, 0001

Note: 1. Forall fuses “1” means unprogrammed while “0” means programmed.

The various choices for each clocking option is given in the following sections. When the
CPU wakes up from Power-down or Power-save, the selected clock source is used to
time the start-up, ensuring stable Oscillator operation before instruction execution starts.
When the CPU starts from reset, there is an additional delay allowing the power to reach
a stable level before starting normal operation. The Watchdog Oscillator is used for tim-
ing this real-time part of the start-up time. The number of WDT Oscillator cycles used for
each time-out is shown in Table 7. The frequency of the Watchdog Oscillator is voltage
dependent as shown in “AT90CAN128 Typical Characteristics” on page 375.

Table 7. Number of Watchdog Oscillator Cycles

Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
4.1 ms 4.3 ms 4K (4,096)
65 ms 69 ms 64K (65,536)

The device is shipped with CKSEL = “0010", SUT = “10”, and CKDIV8 programmed.
The default clock source setting is the Internal RC Oscillator with longest start-up time
and an initial system clock prescaling of 8. This default setting ensures that all users can
make their desired clock source setting using an In-System or Parallel programmer.

36 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip Oscillator, as shown in Figure 20. Either a quartz
crystal or a ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value
of the capacitors depends on the crystal or resonator in use, the amount of stray capac-
itance, and the electromagnetic noise of the environment. Some initial guidelines for
choosing capacitors for use with crystals are given in Table 8. For ceramic resonators,
the capacitor values given by the manufacturer should be used. For more information on
how to choose capacitors and other details on Oscillator operation, refer to the Multi-
purpose Oscillator Application Note.

Figure 20. Crystal Oscillator Connections

C2

] XTAL2
0
SET 1 xtaa

GND

The Oscillator can operate in three different modes, each optimized for a specific fre-
guency range. The operating mode is selected by the fuses CKSEL3..1 as shown in
Table 8.

Table 8. Crystal Oscillator Operating Modes

Recommended Range for Capacitors C1
CKSEL3..1 Frequency Range (MHz) and C2 for Use with Crystals (pF)
100W 0.4-0.9 12-22
101 0.9-3.0 12-22
110 3.0-8.0 12-22
111 8.0-16.0 12-22

Notes: 1. This option should not be used with crystals, only with ceramic resonators.

The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown
in Table 9.

AIMEL 3

7522C-AUTO-09/06 I ©

Low-frequency
Crystal Oscillator

ATMEL

Table 9. Start-up Times for the Oscillator Clock Selection

Start-up Time from Additional Delay
Power-down and from Reset
CKSELO | SUT1..0 Power-save (Ve =5.0V) Recommended Usage

0 00 258 CK® 14CK + 4.1 ms Ceramic resonator, fast
rising power

0 01 258 CK® 14CK + 65 ms Ceramic resonator,
slowly rising power

0 10 1K CK®@ 14CK Ceramic resonator,
BOD enabled

0 11 1K CK®@ 14CK + 4.1 ms Ceramic resonator, fast
rising power

1 00 1K CK®@ 14CK + 65 ms Ceramic resonator,
slowly rising power

1 01 16K CK 14CK Crystal Oscillator, BOD
enabled

1 10 16K CK 14CK + 4.1 ms Crystal Oscillator, fast
rising power

1 11 16K CK 14CK + 65 ms Crystal Oscillator,
slowly rising power

Notes: 1. These options should only be used when not operating close to the maximum fre-
guency of the device, and only if frequency stability at start-up is not important for the
application. These options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure fre-
guency stability at start-up. They can also be used with crystals when not operating
close to the maximum frequency of the device, and if frequency stability at start-up is
not important for the application.

To use a 32.768 kHz watch crystal as the clock source for the device, the low-frequency
crystal Oscillator must be selected by setting the CKSEL Fuses to “0100”, “0101",
“01107, or “0111". The crystal should be connected as shown in Figure 21.

Figure 21. Low-frequency Crystal Oscillator Connections

12 - 22 pF
XTAL2
32.768 KHz []
1»—)|—T7 XTAL1
12 - 22 pF
GND

12-22 pF capacitors may be necessary if the parasitic impedance (pads, wires & PCB)
is very low.

38 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Calibrated Internal
RC Oscillator

7522C-AUTO-09/06

When this Oscillator is selected, start-up times are determined by the SUT1..0 fuses as
shown in Table 10 and CKSEL1..0 fuses as shown in Table 11.

Table 10. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUTL1..0 Additional Delay from Reset (Vcc =5.0V) | Recommended Usage
00 14CK Fast rising power or BOD enabled
01 14CK + 4.1 ms Slowly rising power
10 14CK + 65 ms Stable frequency at start-up
11 Reserved

Table 11. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

Start-up Time from
CKSEL3..0 Power-down and Power-save Recommended Usage
0100® 1K CK
0101 32K CK Stable frequency at start-up
0110 1K CK
0111 32K CK Stable frequency at start-up

Note: 1. These options should only be used if frequency stability at start-up is not important for
the application

The calibrated internal RC Oscillator provides a fixed 8.0 MHz clock. The frequency is
nominal value at 3V and 25°C. If 8 MHz frequency exceeds the specification of the
device (depends on V¢), the CKDIV8 Fuse must be programmed in order to divide the
internal frequency by 8 during start-up. The device is shipped with the CKDIV8 Fuse
programmed. See “System Clock Prescaler” on page 42 for more details. This clock
may be selected as the system clock by programming the CKSEL Fuses as shown in
Table 12. If selected, it will operate with no external components. During reset, hard-
ware loads the calibration byte into the OSCCAL Register and thereby automatically
calibrates the RC Oscillator. At 5V and 25°C, this calibration gives a frequency within +
10% of the nominal frequency. Using calibration methods as described in application
notes available at www.atmel.com/avr it is possible to achieve + 2% accuracy at any
given Vcc and temperature. When this Oscillator is used as the chip clock, the Watch-
dog Oscillator will still be used for the Watchdog Timer and for the Reset Time-out. For
more information on the pre-programmed calibration value, see the section “Calibration
Byte” on page 329.

Table 12. Internal Calibrated RC Oscillator Operating Modes®
CKSEL3..0 Nominal Frequency
0010 8.0 MHz

Note: 1. The device is shipped with this option selected.

AIMEL 39

I)

Oscillator Calibration Register
— OSCCAL

External Clock

ATMEL

When this Oscillator is selected, start-up times are determined by the SUT Fuses as
shown in Table 13.

Table 13. Start-up times for the internal calibrated RC Oscillator clock selection

Start-up Time from Power- | Additional Delay from
SUTL1..0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage
00 6 CK 14CK BOD enabled
01 6 CK 14CK + 4.1 ms Fast rising power
10 6 CK 14CK + 65 ms Slowly rising power
11 Reserved

Note: 1. The device is shipped with this option selected.

Bit 7 6 5 4 3 2 1 0

| - CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CALO | osccaL
Read/Write R R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 Semomn —oeee- Device Specific Calibration Value =~ ------ ----- >

* Bit 7 — Reserved Bit

This bit is reserved for future use.

* Bits 6..0 — CALG..0: Oscillator Calibration Value

Writing the calibration byte to this address will trim the internal Oscillator to remove pro-
cess variations from the Oscillator frequency. This is done automatically during Chip
Reset. When OSCCAL is zero, the lowest available frequency is chosen. Writing non-
zero values to this register will increase the frequency of the internal Oscillator. Writing
Ox7F to the register gives the highest available frequency. The calibrated Oscillator is
used to time EEPROM and Flash access. If EEPROM or Flash is written, do not cali-
brate to more than 10% above the nominal frequency. Otherwise, the EEPROM or Flash
write may fail. Note that the Oscillator is intended for calibration to 8.0 MHz. Tuning to
other values is not guaranteed, as indicated in Table 14.

Table 14. Internal RC Oscillator Frequency Range.

Min Frequency in Percentage of Max Frequency in Percentage of
OSCCAL Value Nominal Frequency Nominal Frequency
0x00 50% 100%
Ox3F 75% 150%
Ox7F 100% 200%

To drive the device from an external clock source, XTAL1 should be driven as shown in
Figure 22. To run the device on an external clock, the CKSEL Fuses must be pro-
grammed to “0000".

40 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Clock Output Buffer

Timer/Counter2
Oscillator

7522C-AUTO-09/06

Figure 22. External Clock Drive Configuration

NC XTAL2
External
Clock XTAL1
Signal
GND

Ml

Table 15. External Clock Frequency

CKSEL3..0

Frequency Range

0000

0-16 MHz

When this clock source is selected, start-up times are determined by the SUT Fuses as
shown in Table 16.

Table 16. Start-up Times for the External Clock Selection

Start-up Time from Power- | Additional Delay from
SUTL1..0 down and Power-save Reset (V¢ = 5.0V) Recommended Usage
00 6 CK 14CK BOD enabled
01 6 CK 14CK + 4.1 ms Fast rising power
10 6 CK 14CK + 65 ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied
clock frequency to ensure stable operation of the MCU. A variation in frequency of more
than 2% from one clock cycle to the next can lead to unpredictable behavior. It is
required to ensure that the MCU is kept in Reset during such changes in the clock
frequency.

Note that the System Clock Prescaler can be used to implement run-time changes of
the internal clock frequency while still ensuring stable operation. Refer to “System Clock
Prescaler” on page 42 for details.

When the CKOUT Fuse is programmed, the system Clock will be output on CLKO. This
mode is suitable when chip clock is used to drive other circuits on the system. The clock
will be output also during reset and the normal operation of I/O pin will be overridden
when the fuse is programmed. Any clock source, including internal RC Oscillator, can be
selected when CLKO serves as clock output. If the System Clock Prescaler is used, it is
the divided system clock that is output (CKOUT Fuse programmed).

For AVR microcontrollers with Timer/Counter2 Oscillator pins (TOSC1 and TOSC2), the
crystal is connected directly between the pins. The Oscillator is optimized for use with a
32.768 kHz watch crystal. 12-22 pF capacitors may be necessary if the parasitic imped-
ance (pads, wires & PCB) is very low.

AIMEL 4

I)

System Clock Prescaler

Clock Prescaler Register —
CLKPR

ATMEL

AT90CAN128 share the Timer/Counter2 Oscillator Pins (TOSC1 and TOSC2) with PG4
and PG3. This means that both PG4 and PG3 can only be used when the
Timer/Counter2 Oscillator is not enable.

Applying an external clock source to TOSC1 can be done in asynchronous operation if
EXTCLK in the ASSR Register is written to logic one. See “Asynchronous operation of
the Timer/Counter2” on page 155 for further description on selecting external clock as
input instead of a 32 kHz crystal. In this configuration, PG4 cannot be used but PG3 is
available.

The AT90CAN128 system clock can be divided by setting the Clock Prescaler Register
— CLKPR. This feature can be used to decrease power consumption when the require-
ment for processing power is low. This can be used with all clock source options, and it
will affect the clock frequency of the CPU and all synchronous peripherals. clk;,q, clkapc,
Clkepy, and clkg 4sy are divided by a factor as shown in Table 17.

Bit 7 6 5 4 3 2 1 0
J cLkpce - - - CLKPS3 | CLKPS2 | CLKPS1 | CLKPSO | CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

» Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The
CLKPCE bit is only updated when the other bits in CLKPR are simultaneously written to
zero. CLKPCE is cleared by hardware four cycles after it is written or when CLKPS bits
are written. Rewriting the CLKPCE bit within this time-out period does neither extend the
time-out period, nor clear the CLKPCE bit.

* Bit 6..0 — Reserved Bits

These bits are reserved for future use.

* Bits 3..0 — CLKPS3..0: Clock Prescaler Select Bits 3-0

These bits define the division factor between the selected clock source and the internal
system clock. These bits can be written run-time to vary the clock frequency to suit the
application requirements. As the divider divides the master clock input to the MCU, the
speed of all synchronous peripherals is reduced when a division factor is used. The divi-
sion factors are given in Table 17.

To avoid unintentional changes of clock frequency, a special write procedure must be
followed to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits
in CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to
CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write pro-
cedure is not interrupted.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unpro-
grammed, the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits
are reset to “0011", giving a division factor of 8 at start up. This feature should be used if
the selected clock source has a higher frequency than the maximum frequency of the
device at the present operating conditions. Note that any value can be written to the

42 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

CLKPS bits regardless of the CKDIV8 Fuse setting. The Application software must
ensure that a sufficient division factor is chosen if the selected clock source has a higher
frequency than the maximum frequency of the device at the present operating condi-
tions. The device is shipped with the CKDIV8 Fuse programmed.

Table 17. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPSO Clock Division Factor
1
2
4
8
16
32
64
128
256

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Flr|RP|lRP|P|P|rP|rP|lOjlO|Oo|o|lo|o|o|oO
P |lr|P|lkr|lojlo|lo|o|r|r|r|rP|lo|jo|o|o
|k |lolo|r|r|lo|lo|lr|r|lo|lo|r |+ |o]|o
r|lo|lr|lo|lr|O|Fr|Oo|lr|Oo|r|Oo|lr|Oo|r|O

Reserved

Note: When the system clock is divided, Timer/Counter2 can be used with Asynchronous clock
only. The frequency of the asynchronous clock must be lower than 1/4th of the frequency
of the scaled down Source clock. Otherwise, interrupts may be lost, and accessing the
Timer/Counter2 registers may fail.

AIMEL 43

7522C-AUTO-09/06 I ©

ATMEL

Power Management and Sleep Modes

Sleep Mode Control Register —
SMCR

Sleep modes enable the application to shut down unused modules in the MCU, thereby
saving power. The AVR provides various sleep modes allowing the user to tailor the
power consumption to the application’s requirements.

To enter any of the five sleep modes, the SE bit in SMCR must be written to logic one
and a SLEEP instruction must be executed. The SM2, SM1, and SMO bits in the SMCR
Register select which sleep mode (ldle, ADC Noise Reduction, Power-down,
Power-save, or Standby) will be activated by the SLEEP instruction. See Table 18 for a
summary. If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU
wakes up. The MCU is then halted for four cycles in addition to the start-up time, exe-
cutes the interrupt routine, and resumes execution from the instruction following SLEEP.
The contents of the register file and SRAM are unaltered when the device wakes up
from sleep. If a reset occurs during sleep mode, the MCU wakes up and executes from
the Reset Vector.

Figure 19 on page 35 presents the different clock systems in the AT90CAN128, and
their distribution. The figure is helpful in selecting an appropriate sleep mode.

The Sleep Mode Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0

|l - | - | - | - | sv2 | smi | smo | SE] swmcR
Read/Write R R R R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7..4 — Reserved Bits

These bits are reserved for future use.
» Bits 3..1 — SM2..0: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 18.

Table 18. Sleep Mode Select
SM2 SM1

(9]
<
o

Sleep Mode
Idle

ADC Noise Reduction

Power-down

Power-save

Reserved

Reserved

Standby®

P | P | P || O] O|0O0|Oo
P |k O | O|F, | |O]|O
| O | | O|Fr | O|Fr | O

Reserved

Note: 1. Standby mode is only recommended for use with external crystals or resonators.

» Bit 1 - SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is
the programmer’s purpose, it is recommended to write the Sleep Enable (SE) bit to one

44 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

just before the execution of the SLEEP instruction and to clear it immediately after wak-
ing up.

Idle Mode When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter
Idle mode, stopping the CPU but allowing SPI, CAN, USART, Analog Comparator, ADC,
Two-wire Serial Interface, Timer/Counters, Watchdog, and the interrupt system to con-
tinue operating. This sleep mode basically halts clkepy and clkg asy, While allowing the
other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as
internal ones like the Timer Overflow and USART Transmit Complete interrupts. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ACD bit in the Analog Comparator Control and Sta-
tus Register — ACSR. This will reduce power consumption in Idle mode. If the ADC is
enabled, a conversion starts automatically when this mode is entered.

ADC Noise Reduction When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter

Mode ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the External
Interrupts, the Two-wire Serial Interface address watch, Timer/Counter2, CAN and the
Watchdog to continue operating (if enabled). This sleep mode basically halts clk;,q,
Clkepy, and clkg asn, While allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measure-
ments. If the ADC is enabled, a conversion starts automatically when this mode is
entered. Apart from the ADC Conversion Complete interrupt, only an External Reset, a
Watchdog Reset, a Brown-out Reset, a Two-wire Serial Interface address match inter-
rupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an External Level
Interrupt on INT7:4, or an External Interrupt on INT3:0 can wake up the MCU from ADC
Noise Reduction mode.

Power-down Mode When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter
Power-down mode. In this mode, the External Oscillator is stopped, while the External
Interrupts, the Two-wire Serial Interface address watch, and the Watchdog continue
operating (if enabled). Only an External Reset, a Watchdog Reset, a Brown-out Reset, a
Two-wire Serial Interface address match interrupt, an External Level Interrupt on
INT7:4, or an External Interrupt on INT3:0 can wake up the MCU. This sleep mode basi-
cally halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. Refer to “External Inter-
rupts” on page 89 for details.

When waking up from Power-down mode, there is a delay from the wake-up condition
occurs until the wake-up becomes effective. This allows the clock to restart and become
stable after having been stopped. The wake-up period is defined by the same CKSEL
fuses that define the Reset Time-out period, as described in “Clock Sources” on page
36.

Power-save Mode When the SM2..0 bits are written to 011, the SLEEP instruction makes the MCU enter
Power-save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is clocked asynchronously, i.e., the AS2 bit in ASSR is set,
Timer/Counter2 will run during sleep. The device can wake up from either Timer Over-
flow or Output Compare event from Timer/Counter2 if the corresponding

AIMEL 4

7522C-AUTO-09/06 I ©

Standby Mode

ATMEL

Timer/Counter2 interrupt enable bits are set in TIMSK2, and the global interrupt enable
bit in SREG is set.

If the Asynchronous Timer is NOT clocked asynchronously, Power-down mode is rec-
ommended instead of Power-save mode because the contents of the registers in the
asynchronous timer should be considered undefined after wake-up in Power-save mode
if AS2 is 0.

This sleep mode basically halts all clocks except clk,sy, allowing operation only of asyn-
chronous modules, including Timer/Counter?2 if clocked asynchronously.

When the SM2..0 bits are 110 and an External Crystal/Resonator clock option is
selected, the SLEEP instruction makes the MCU enter Standby mode. This mode is
identical to Power-down with the exception that the Oscillator is kept running. From
Standby mode, the device wakes up in 6 clock cycles.

Table 19. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources
Main Clock TWI SPM/
Source Timer Osc Address EEPROM Other
Sleep Mode | clkcpy | ClKp sy clkapc | clkasy | Enabled Enabled | INT7:0 Match Timer2 | Ready | ADC | 1/O
Idle X X X x@ X X X X X X
ADC Noise
Reduction X X X Xx@ X® X X@ X X
Power-down X® X
Power-save X®@ X®@ X® X X®@
Standby® X X X

Notes: 1. Only recommended with external crystal or resonator selected as clock source.

2. If AS2 bitin ASSR is set.

3. Only INT3:0 or level interrupt INT7:4.

Minimizing Power

Consumption

Analog to Digital Converter

Analog Comparator

There are several issues to consider when trying to minimize the power consumption in
an AVR controlled system. In general, sleep modes should be used as much as possi-
ble, and the sleep mode should be selected so that as few as possible of the device’s
functions are operating. All functions not needed should be disabled. In particular, the
following modules may need special consideration when trying to achieve the lowest
possible power consumption.

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should
be disabled before entering any sleep mode. When the ADC is turned off and on again,
the next conversion will be an extended conversion. Refer to “Analog to Digital Con-
verter - ADC” on page 266 for details on ADC operation.

When entering Idle mode, the Analog Comparator should be disabled if not used. When
entering ADC Noise Reduction mode, the Analog Comparator should be disabled. In
other sleep modes, the Analog Comparator is automatically disabled. However, if the
Analog Comparator is set up to use the Internal Voltage Reference as input, the Analog
Comparator should be disabled in all sleep modes. Otherwise, the Internal Voltage Ref-
erence will be enabled, independent of sleep mode. Refer to “Analog Comparator” on
page 263 for details on how to configure the Analog Comparator.

46 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Brown-out Detector

Internal Voltage Reference

Watchdog Timer

Port Pins

JTAG Interface and
On-chip Debug System

7522C-AUTO-09/06

If the Brown-out Detector is not needed by the application, this module should be turned
off. If the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in
all sleep modes, and hence, always consume power. In the deeper sleep modes, this
will contribute significantly to the total current consumption. Refer to “Brown-out Detec-
tion” on page 51 for details on how to configure the Brown-out Detector.

The Internal Voltage Reference will be enabled when needed by the Brown-out Detec-
tion, the Analog Comparator or the ADC. If these modules are disabled as described in
the sections above, the internal voltage reference will be disabled and it will not be con-
suming power. When turned on again, the user must allow the reference to start up
before the output is used. If the reference is kept on in sleep mode, the output can be
used immediately. Refer to “Internal Voltage Reference” on page 53 for details on the
start-up time.

If the Watchdog Timer is not needed in the application, the module should be turned off.
If the Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence,
always consume power. In the deeper sleep modes, this will contribute significantly to
the total current consumption. Refer to “Watchdog Timer” on page 54 for details on how
to configure the Watchdog Timer.

When entering a sleep mode, all port pins should be configured to use minimum power.
The most important is then to ensure that no pins drive resistive loads. In sleep modes
where both the I/O clock (clk;,o) and the ADC clock (clkapc) are stopped, the input buff-
ers of the device will be disabled. This ensures that no power is consumed by the input
logic when not needed. In some cases, the input logic is needed for detecting wake-up
conditions, and it will then be enabled. Refer to the section “Digital Input Enable and
Sleep Modes” on page 66 for details on which pins are enabled. If the input buffer is
enabled and the input signal is left floating or have an analog signal level close to Vq/2,
the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog
signal level close to Vc/2 on an input pin can cause significant current even in active
mode. Digital input buffers can be disabled by writing to the Digital Input Disable Regis-
ters (DIDR1 and DIDRO). Refer to “Digital Input Disable Register 1 — DIDR1” on page
265 and “Digital Input Disable Register 0 — DIDRO” on page 284 for details.

If the On-chip debug system is enabled by OCDEN Fuse and the chip enter sleep mode,
the main clock source is enabled, and hence, always consumes power. In the deeper
sleep modes, this will contribute significantly to the total current consumption. There are
three alternative ways to avoid this:

» Disable OCDEN Fuse.
» Disable JTAGEN Fuse.
* Write one to the JTD bit in MCUCR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP
controller is not shifting data. If the hardware connected to the TDO pin does not pull up
the logic level, power consumption will increase. Note that the TDI pin for the next
device in the scan chain contains a pull-up that avoids this problem. Writing the JTD bit
in the MCUCR register to one or leaving the JTAG fuse unprogrammed disables the
JTAG interface.

AIMEL 47

I)

ATMEL

System Control and Reset

Resetting the AVR

Reset Sources

During reset, all I/O Registers are set to their initial values, and the program starts exe-
cution from the Reset Vector. The instruction placed at the Reset Vector must be a JMP
— Absolute Jump — instruction to the reset handling routine. If the program never
enables an interrupt source, the Interrupt Vectors are not used, and regular program
code can be placed at these locations. This is also the case if the Reset Vector is in the
Application section while the Interrupt Vectors are in the Boot section or vice versa. The
circuit diagram in Figure 23 shows the reset logic. Table 20 defines the electrical param-
eters of the reset circuitry.

The I/0O ports of the AVR are immediately reset to their initial state when a reset source
goes active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the
internal reset. This allows the power to reach a stable level before normal operation
starts. The time-out period of the delay counter is defined by the user through the SUT
and CKSEL Fuses. The different selections for the delay period are presented in “Clock
Sources” on page 36.

The AT90CAN128 has five sources of reset:

» Power-on Reset. The MCU is reset when the supply voltage is below the Power-on
Reset threshold (Vpg1).

» External Reset. The MCU is reset when a low level is present on the RESET pin for
longer than the minimum pulse length.

* Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and
the Watchdog is enabled.

* Brown-out Reset. The MCU is reset when the supply voltage V. is below the
Brown-out Reset threshold (Vgo7) and the Brown-out Detector is enabled.

 JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset
Register, one of the scan chains of the JTAG system. Refer to the section
“Boundary-scan IEEE 1149.1 (JTAG)” on page 291 for details.

48 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 23. Reset Logic

DATA BUS
A
MCU Status
Register (MCUSR)
(TR TRpTR RN TS
[aslan Nam s o'l
O| Ol | Ol
vee Power-on Reset e
Circuit
Brown-out
BODLEVEL [2..0] »| Reset Circuit
[H Pull-up Resistor
RESET Spike »| Reset Circuit) \ s ql| INTERNAL
iiter ._:Z / RESET
o —>» R
’ 2
JTAG Reset Watchdog 4
Register Timer i
=
T z
2
[e]
Watchdog ©
Oscillator v
>
Clock CK | Delay Counters —
Generator g TIMEOUT
A A A
CKSEL[3:0]
SUT[1:0]
Table 20. Reset Characteristics
Symbol |Parameter Condition Min. Typ. Max. |Units
Power-on Reset Threshold Voltage (rising) 1.4 2.3 \%
V
POT ;
Power-on Reset Threshold Voltage (falling)® 1.3 2.3 \%
VRrsT RESET Pin Threshold Voltage 0.2 Ve 0.85Vee| V
trst | Minimum pulse width on RESET Pin Vcec =5V, temperature = 25 °C 400 ns

Notes: 1. The Power-on Reset will not work unless the supply voltage has been below Vpqr
(falling)

7522C-AUTO-09/06

AIMEL

I)

49

Power-on Reset

External Reset

ATMEL

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detec-
tion level is defined in Table 20. The POR is activated whenever V. is below the
detection level. The POR circuit can be used to trigger the start-up Reset, as well as to
detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reach-
ing the Power-on Reset threshold voltage invokes the delay counter, which determines
how long the device is kept in RESET after V. rise. The RESET signal is activated
again, without any delay, when V. decreases below the detection level.

Figure 24. MCU Start-up, RESET Tied to V¢

-~ Veor
e
ANV
RESET J RST
< tour _’I

TIME-OUT

INTERNAL
RESET

Figure 25. MCU Start-up, RESET Extended Externally

1
-~ Veor
Vee X
1
| I
1
- M. v
RESET X /:/ RST
I |
1 1
1 1
1 «— t —>
TIME-OUT ' ' TouT
: I
1 1
1 1
1 1
1 1
INTERNAL |
RESET

An External Reset is generated by a low level on the RESET pin. Reset pulses longer
than the minimum pulse width (see Table 20) will generate a reset, even if the clock is
not running. Shorter pulses are not guaranteed to generate a reset. When the applied
signal reaches the Reset Threshold Voltage — Vggt — On its positive edge, the delay
counter starts the MCU after the Time-out period — t;qr— has expired.

50 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Brown-out Detection

7522C-AUTO-09/06

Figure 26. External Reset During Operation

Vee
RESET \ |
1 1
1 1
1 1
1 1
1 1
' <— trout _’|
TIME-OUT : -
1
1
1
|
INTERNAL |
RESET

AT90CAN128 has an On-chip Brown-out Detection (BOD) circuit for monitoring the V¢
level during operation by comparing it to a fixed trigger level. The trigger level for the
BOD can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to
ensure spike free Brown-out Detection. The hysteresis on the detection level should be
interpreted as Vgor, = Vot + Vayst/2 and Vgor. = Vgor - Vayst/2.

Table 21. BODLEVEL Fuse Coding®

BODLEVEL 2..0 Fuses Min Vgor Typ Vgor Max Vgor Units

111 BOD Disabled

110 4.1 \%
101 4.0 \%
100 3.9 \%
011 3.8 \%
010 2.7 \%
001 2.6 \%
000 2.5 \%

Notes: 1. Vgor may be below nominal minimum operating voltage for some devices. For
devices where this is the case, the device is tested down to V¢ = Vgo7 during the
production test. This guarantees that a Brown-Out Reset will occur before V. drops
to a voltage where correct operation of the microcontroller is no longer guaranteed.
The test is performed using BODLEVEL =010 for Low Operating Voltage and
BODLEVEL = 101 for High Operating Voltage .

Table 22. Brown-out Characteristics

Symbol Parameter Min. Typ. Max. Units
Vivst Brown-out Detector Hysteresis 70 mV
tsop Min Pulse Width on Brown-out Reset 2 us

When the BOD is enabled, and V. decreases to a value below the trigger level (Vgor.
in Figure 27), the Brown-out Reset is immediately activated. When V¢ increases above
the trigger level (Vgor, in Figure 27), the delay counter starts the MCU after the Time-

out period tyoyt has expired.

AIMEL

I)

51

ATMEL

The BOD circuit will only detect a drop in V¢ if the voltage stays below the trigger level
for longer than tzgp given in Table 20.

Figure 27. Brown-out Reset During Operation

<
@
[e]
I
I
|
|
I
I
I
I
I
I
+

1 1
1 1
1 1
1 1
RESET ! !
1 1
1 1
1 1
1 1
1 1
TIME-OUT ! < trour]
| |
1 1
1 1
INTERNAL i :
RESET i |
Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of one CK cycle dura-

tion. On the falling edge of this pulse, the delay timer starts counting the Time-out period
trouT- Refer to page 54 for details on operation of the Watchdog Timer.

Figure 28. Watchdog Reset During Operation

VCC
RESET
WD —>, j«— 1 CKCycle
TIME-OUT H
'
i
[
— t
RESET : Tout
TIME-OUT |
1
INTERNAL |
RESET
MCU Status Register — The MCU Status Register provides information on which reset source caused an MCU
MCUSR reset.
Bit 7 6 5 4 3 2 1 0
e | - | - | JTRF | WDRF | BORF | EXTRF | PORF | MCUSR
Read/Write R R/W R/W R/W R/W R/IW
Initial Value 0 0 See Bit Description

* Bit 7..5 - Reserved Bits

These bits are reserved for future use.

52 A TO0CA N 128 A Uit O

sy A\ TOOCAN128 Auto

Internal Voltage
Reference

Voltage Reference Enable
Signals and Start-up Time

7522C-AUTO-09/06

* Bit4-JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

» Bit 3 - WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

» Bit 2 - BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

» Bit 1 - EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

» Bit 0 — PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to
the flag.

To make use of the Reset flags to identify a reset condition, the user should read and
then reset the MCUSR as early as possible in the program. If the register is cleared
before another reset occurs, the source of the reset can be found by examining the reset
flags.

AT90CAN128 features an internal bandgap reference. This reference is used for Brown-
out Detection, and it can be used as an input to the Analog Comparator or the ADC.

The voltage reference has a start-up time that may influence the way it should be used.
The start-up time is given in Table 23. To save power, the reference is not always turned
on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2..0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting
the ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the
user must always allow the reference to start up before the output from the Analog Com-
parator or ADC is used. To reduce power consumption in Power-down mode, the user
can avoid the three conditions above to ensure that the reference is turned off before
entering Power-down mode.

AIMEL 53

I)

ATMEL

Voltage Reference

Characteristics
Table 23. Internal Voltage Reference Characteristics

Symbol | Parameter Condition Min. Typ. Max. Units
Vie Bandgap reference voltage 1.0 1.1 1.2 \%
tag Bandgap reference start-up time 40 70 us
I Bandgap _reference current 15 LA
consumption
Watchdog Timer The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at

1 MHz. This is the typical value at V¢ = 5V. See characterization data for typical values
at other V. levels. By controlling the Watchdog Timer prescaler, the Watchdog Reset
interval can be adjusted as shown in Table 25 on page 55. The WDR — Watchdog Reset
— instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is
disabled and when a Chip Reset occurs. Eight different clock cycle periods can be
selected to determine the reset period. If the reset period expires without another
Watchdog Reset, the AT90CAN128 resets and executes from the Reset Vector. For tim-
ing details on the Watchdog Reset, refer to Table 25 on page 55.

To prevent unintentional disabling of the Watchdog or unintentional change of time-out
period, two different safety levels are selected by the fuse WDTON as shown in Table
24. Refer to “Timed Sequences for Changing the Configuration of the Watchdog Timer”
on page 56 for details.

Table 24. WDT Configuration as a Function of the Fuse Settings of WDTON

Safety WDT Initial How to Disable the | How to Change
WDTON Level State WDT Time-out
Unprogrammed 1 Disabled Timed sequence Timed sequence
Programmed 2 Enabled Always enabled Timed sequence

Figure 29. Watchdog Timer

OSCILLATOR > PRESCALER
~1 MHz I N N NENMENMENE N
RN E RN E
glalglslol 3|
WATCHDOG 813|38|g|2|3]13]|3
RESET 38
\A \ A \ A /
WDPO 9&
WDP1 o\
WDP2
WDE

MCU RESET

54 AT90CAN128 Auto

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Watchdog Timer Control
Register - WDTCR

7522C-AUTO-09/06

Bit 7 6 5 4 3 2 1 0
| - - - WDCE WDE WDP2 | WDP1 wDP0 | WDTCR
Read/Write R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bits 7..5 - Reserved Bits

These bits are reserved bits for future use.

» Bit4 - WDCE: Watchdog Change Enable

This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog
will not be disabled. Once written to one, hardware will clear this bit after four clock
cycles. Refer to the description of the WDE bit for a Watchdog disable procedure. This
bit must also be set when changing the prescaler bits. See “Timed Sequences for
Changing the Configuration of the Watchdog Timer” on page 56

» Bit 3—- WDE: Watchdog Enable

When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is
written to logic zero, the Watchdog Timer function is disabled. WDE can only be cleared
if the WDCE bit has logic level one. To disable an enabled Watchdog Timer, the follow-
ing procedure must be followed:

1. Inthe same operation, write a logic one to WDCE and WDE. A logic one must be
written to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logic 0 to WDE. This disables the
Watchdog.

In safety level 2, it is not possible to disable the Watchdog Timer, even with the algo-
rithm described above. See “Timed Sequences for Changing the Configuration of the
Watchdog Timer” on page 56

» Bits 2..0-WDP2, WDP1, WDPO: Watchdog Timer Prescaler 2, 1, and 0

The WDP2, WDP1, and WDPO bits determine the Watchdog Timer prescaling when the
Watchdog Timer is enabled. The different prescaling values and their corresponding
Timeout Periods are shown in Table 25.

Table 25. Watchdog Timer Prescale Select

Number of WDT Typical Time-out Typical Time-out
WDP2 | WDP1 | WDPO Oscillator Cycles at Vec = 3.0V at Vg = 5.0V
0 0 0 16K cycles 17.1 ms 16.3 ms
0 0 1 32K cycles 34.3 ms 32.5ms
0 1 0 64K cycles 68.5 ms 65 ms
0 1 1 128K cycles 0.14 s 0.13 s
1 0 0 256K cycles 0.27 s 0.26 s
1 0 1 512K cycles 0.55s 0.52s
1 1 0 1,024K cycles 1.1s 10s
1 1 1 2,048K cycles 22s 21s

AIMEL 55

I)

Timed Sequences for
Changing the
Configuration of the
Watchdog Timer

Safety Level 1

Safety Level 2

ATMEL

The following code example shows one assembly and one C function for turning off the
WDT. The example assumes that interrupts are controlled (e.g. by disabling interrupts
globally) so that no interrupts will occur during execution of these functions.

Assembly Code Example®

WDT off:
; Write logical one to WDCE and WDE
1di rl6, (1<<WDCE) | (1<<WDE)
sts WDTCR, rlé
; Turn off WDT
1di r16, (0<<WDE)
sts WDTCR, rlé

ret

C Code Example®

void WDT off (void)
{
/* Write logical one to WDCE and WDE */
WDTCR = (1<<WDCE) | (1<<WDE);
/* Turn off WDT */
WDTCR = 0x00;

Note: 1. The example code assumes that the part specific header file is included.

The sequence for changing configuration differs slightly between the two safety levels.
Separate procedures are described for each level.

In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the
WDE bit to 1 without any restriction. A timed sequence is needed when changing the
Watchdog Time-out period or disabling an enabled Watchdog Timer. To disable an
enabled Watchdog Timer, and/or changing the Watchdog Time-out, the following proce-
dure must be followed:

1. Inthe same operation, write a logic one to WDCE and WDE. A logic one must be
written to WDE regardless of the previous value of the WDE bit.

2. Within the next four clock cycles, in the same operation, write the WDE and
WDP bits as desired, but with the WDCE bit cleared.

In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read
as one. A timed sequence is needed when changing the Watchdog Time-out period. To
change the Watchdog Time-out, the following procedure must be followed:

1. Inthe same operation, write a logical one to WDCE and WDE. Even though the
WDE always is set, the WDE must be written to one to start the timed sequence.

2. Within the next four clock cycles, in the same operation, write the WDP bits as
desired, but with the WDCE bit cleared. The value written to the WDE bit is
irrelevant.

56 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Interrupts

Interrupt Vectors in
AT90CAN128

7522C-AUTO-09/06

This section describes the specifics of the interrupt handling as performed in
AT90CAN128. For a general explanation of the AVR interrupt handling, refer to “Reset
and Interrupt Handling” on page 14.

Table 26. Reset and Interrupt Vectors

Vilc;f)r AF:jrS?er:Sn(]z) Source Interrupt Definition
1| ox0000% | RESET Watehdog Reset and JTAG AVR Reset
2 0x0002 INTO External Interrupt Request 0
3 0x0004 INT1 External Interrupt Request 1
4 0x0006 INT2 External Interrupt Request 2
5 0x0008 INT3 External Interrupt Request 3
6 0Ox000A INT4 External Interrupt Request 4
7 0x000C INTS5 External Interrupt Request 5
8 0x000E INT6 External Interrupt Request 6
9 0x0010 INT7 External Interrupt Request 7
10 0x0012 TIMER2 COMP Timer/Counter2 Compare Match
11 0x0014 TIMER2 OVF Timer/Counter2 Overflow
12 0x0016 TIMER1 CAPT Timer/Counterl Capture Event
13 0x0018 TIMER1 COMPA | Timer/Counterl Compare Match A
14 0x001A TIMER1 COMPB | Timer/Counterl Compare Match B
15 0x001C TIMER1 COMPC | Timer/Counterl Compare Match C
16 0x001E TIMER1 OVF Timer/Counterl Overflow
17 0x0020 TIMERO COMP Timer/CounterO Compare Match
18 0x0022 TIMERO OVF Timer/Counter0 Overflow
19 0x0024 CANIT CAN Transfer Complete or Error
20 0x0026 OVRIT CAN Timer Overrun
21 0x0028 SPI, STC SPI Serial Transfer Complete
22 0x002A USARTO, RX USARTO, Rx Complete
23 0x002C USARTO, UDRE USARTO Data Register Empty
24 0x002E USARTO, TX USARTO, Tx Complete
25 0x0030 ANALOG COMP | Analog Comparator
26 0x0032 ADC ADC Conversion Complete
27 0x0034 EE READY EEPROM Ready
28 0x0036 TIMER3 CAPT Timer/Counter3 Capture Event
29 0x0038 TIMER3 COMPA | Timer/Counter3 Compare Match A

AIMEL

I)

57

ATMEL

Table 26. Reset and Interrupt Vectors (Continued)

Vilc;f)r AF:jrS?er:Sn(]z) Source Interrupt Definition

30 0x003A TIMER3 COMPB | Timer/Counter3 Compare Match B
31 0x003C TIMER3 COMPC | Timer/Counter3 Compare Match C
32 0x003E TIMER3 OVF Timer/Counter3 Overflow
33 0x0040 USART1, RX USART1, Rx Complete
34 0x0042 USART1, UDRE USART1 Data Register Empty
35 0x0044 USART1, TX USART1, Tx Complete
36 0x0046 TWI Two-wire Serial Interface
37 0x0048 SPM READY Store Program Memory Ready

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader

address at reset, see “Boot Loader Support — Read-While-Write Self-Programming”
on page 312.
When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of
the Boot Flash Section. The address of each Interrupt Vector will then be the address
in this table added to the start address of the Boot Flash Section.

Table 27 shows reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these loca-
tions. This is also the case if the Reset Vector is in the Application section while the
Interrupt Vectors are in the Boot section or vice versa.

Table 27. Reset and Interrupt Vectors Placement°t)
BOOTRST IVSEL Reset Address Interrupt Vectors Start Address
1 0 0x0000 0x0002
1 1 0x0000 Boot Reset Address + 0x0002
0 0 Boot Reset Address 0x0002
0 1 Boot Reset Address Boot Reset Address + 0x0002

Note: The Boot Reset Address is shown in Table 120 on page 324. For the BOOTRST Fuse
“1" means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector
Addresses in ATO0CAN128 is:

;AddressLabels Code

Comments

0x0000 jmp RESET ; Reset Handler
0x0002 jmp EXT_ INTO ; IRQO Handler
0x0004 jmp EXT_ INT1 ; IRQ1 Handler
0x0006 jmp EXT INT2 ; IRQ2 Handler
0x0008 jmp EXT_ INT3 ; IRQ3 Handler
0x000A jmp EXT INT4 ; IRQ4 Handler
0x000C jmp EXT_ INT5 ; IRQ5 Handler
0x000E jmp EXT_ INT6 ; IRQ6 Handler
0x0010 jmp EXT_ INT7 ; IRQ7 Handler
0x0012 jmp TIM2_COMP ; Timer2 Compare Handler
0x0014 jmp TIM2_OVF ; Timer2 Overflow Handler
58 ATO90CAN128 AUt m———————————

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

0x0016
0x0018
0x001A
0x001C
0x001E
0x0020
0x0022
0x0024
0x0026
0x0028
0x002A
0x002C
0x002E
0x0030
0x0032
0x0034
0x0036
0x0038
0x003A
0x003C
0x003E
0x0040
0x0042
0x0044
0x0046
0x0048
0x0049
0x004A
0x004B

0x004C
0x004D

0x004E

jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

RESET: 1di

out
1di

out
sei

TIM1 CAPT
TIM1 COMPA
TIM1 COMPB
TIML1 OVF
TIM1 OVF
TIMO COMP
TIMO OVF
CAN IT
CTIM OVF
SPI_STC
USARTO_RXC
USARTO_DRE
USARTO_TXC
ANA COMP
ADC

EE_RDY
TIM3 CAPT
TIM3 COMPA
TIM3 COMPB
TIM3 COMPC
TIM3 OVF
USART1_RXC
USART1 DRE
USART1_TXC
TWI
SPM_RDY

7

Timerl
Timerl
Timerl
Timerl
Timerl
Timer0

Timer0

Capture Handler
CompareA Handler
CompareB Handler
CompareC Handler
Overflow Handler
Compare Handler

Overflow Handler

CAN Handler

CAN Timer Overflow Handler

SPI Transfer Complete Handler

USARTO

USARTO,

USARTO
Analog

RX Complete Handler
UDR Empty Handler
TX Complete Handler

Comparator Handler

ADC Conversion Complete Handler

EEPROM
Timer3
Timer3
Timer3
Timer3
Timer3

USART1

USART1,

USART1

Ready Handler
Capture Handler
CompareA Handler
CompareB Handler
CompareC Handler
Overflow Handler

RX Complete Handler
UDR Empty Handler
TX Complete Handler

TWI Interrupt Handler

SPM Ready Handler

rl6, high(RAMEND) ; Main program start

SPH, rl6

;Set Stack Pointer to top of RAM

rl6, low(RAMEND)

SPL, rl6

<instr> xxx

;Address Labels Code

0x0000
0x0001
0x0002

0x0003
0x0004

0x0005
.org 0xF002
0xF002
0xF004

7522C-AUTO-09/06

RESET: 1di

out
1di

out
sei

SPH, rl6

7

Enable interrupts

Comments

rl6,high (RAMEND) ;

7

rl6, low (RAMEND)

SPL,rl6

<instr> xxx

jmp
jmp

EXT INTO
PCINTO

ATMEL

I)

7

7

7

Main program start

Set Stack Pointer to top of RAM

Enable interrupts

IRQO0 Handler
PCINTO Handler

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 8K bytes and
the IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

59

Moving Interrupts

0xFO00C

ATMEL

jmp SPM_RDY

7

7

Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 8K bytes, the
most typical and general program setup for the Reset and Interrupt Vector Addresses is:

Comments

;Address Labels Code

.org 0x0002

0x0002 jmp EXT_ INTO ;
0x0004 jmp PCINTO ;
0x002C jmp SPM_RDY ;
.org 0xF000

0xF000 RESET: 1di rl6,high (RAMEND) ;
0xF001 out SPH,rl6 ;
0xF002 1di rl6, low (RAMEND)
0xF003 out SPL,rl6

0xF004 sei ;
0xF005 <instr> =xxx

IRQO0 Handler
PCINTO Handler

Store Program Memory Ready Handler

Main program start

Set Stack Pointer to top of RAM

Enable interrupts

When the BOOTRST Fuse is programmed, the Boot section size set to 8K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typ-
ical and general program setup for the Reset and Interrupt Vector Addresses is:

;Address Labels Code

7

Comments

.org 0xF000

0xF000 jmp RESET i
0xF002 jmp EXT_ INTO ;
0xF004 jmp PCINTO ;
0xF044 jmp SPM_RDY ;
0xF046 RESET: 1di rl6,high (RAMEND) ;
0xF047 out SPH,rl6 ;
0xF048 1di rl6, low (RAMEND)
0xF049 out SPL,rl6

0xF04A sei ;
0xF04B <instr> xxx

Reset handler
IRQO0 Handler

PCINTO Handler

Store Program Memory Ready Handler

Main program start

Set Stack Pointer to top of RAM

Enable interrupts

The General Interrupt Control Register controls the placement of the Interrupt Vector

Between Application and table.
Boot Space
MCU Control Register —
MCUCR Bit 7 6 5 4 3 2 1 0
JTD - - PUD - - IVSEL IVCE I MCUCR
Read/Write R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
60 /A T 90 C /A N 128 /A Uit O 00—

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

e Bit1-IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the
Flash memory. When this bit is set (one), the Interrupt Vectors are moved to the begin-
ning of the Boot Loader section of the Flash. The actual address of the start of the Boot
Flash Section is determined by the BOOTSZ Fuses. Refer to the section “Boot Loader
Support — Read-While-Write Self-Programming” on page 312 for details. To avoid unin-
tentional changes of Interrupt Vector tables, a special write procedure must be followed
to change the IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are
disabled in the cycle IVCE is set, and they remain disabled until after the instruction fol-
lowing the write to IVSEL. If IVSEL is not written, interrupts remain disabled for four
cycles. The I-bit in the Status Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLBO2 is pro-
grammed, interrupts are disabled while executing from the Application section. If
Interrupt Vectors are placed in the Application section and Boot Lock bit BLB12 is pro-
gramed, interrupts are disabled while executing from the Boot Loader section. Refer to
the section “Boot Loader Support — Read-While-Write Self-Programming” on page 312
for details on Boot Lock bits.

» Bit 0 - IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is
cleared by hardware four cycles after it is written or when IVSEL is written. Setting the
IVCE bit will disable interrupts, as explained in the IVSEL description above. See Code
Example below.

Assembly Code Example

Move_ interrupts:
; Get MCUCR
in rl6, MCUCR
mov rl1l7, rlé
; Enable change of Interrupt Vectors
ori rlé, (1<<IVCE)
out MCUCR, rlé6
; Move interrupts to Boot Flash section
ori rl7, (1<<IVSEL)
out MCUCR, rl7

ret

C Code Example

void Move_ interrupts (void)
{
uchar temp;
/* Get MCUCR*/
temp = MCUCR;
/* Enable change of Interrupt Vectors */

MCUCR = temp | (1<<IVCE);
/* Move interrupts to Boot Flash section */
MCUCR = temp | (1<<IVSEL);

}

AIMEL 61

I)

I/O-Ports

Introduction

ATMEL

All AVR ports have true Read-Modify-Write functionality when used as general digital
I/0 ports. This means that the direction of one port pin can be changed without uninten-
tionally changing the direction of any other pin with the SBI and CBI instructions. The
same applies when changing drive value (if configured as output) or enabling/disabling
of pull-up resistors (if configured as input). Each output buffer has symmetrical drive
characteristics with both high sink and source capability. All port pins have individually
selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have
protection diodes to both V. and Ground as indicated in Figure 30. Refer to “Electrical
Characteristics(1)” on page 355 for a complete list of parameters.

Figure 30. 1/0O Pin Equivalent Schematic

pu

Pxn .

!

= = L

Logic

See Figure
"General Digital I/O" for
Details

All registers and bit references in this section are written in general form. A lower case
“X" represents the numbering letter for the port, and a lower case “n” represents the bit
number. However, when using the register or bit defines in a program, the precise form
must be used. For example, PORTBS3 for bit no. 3 in Port B, here documented generally
as PORTxn. The physical I/O Registers and bit locations are listed in “Register Descrip-
tion for 1/0-Ports”.

Three 1/O memory address locations are allocated for each port, one each for the Data
Register — PORTX, Data Direction Register — DDRX, and the Port Input Pins — PINX. The
Port Input Pins I/O location is read only, while the Data Register and the Data Direction
Register are read/write. However, writing a logic one to a bit in the PINx Register, will
result in a toggle in the corresponding bit in the Data Register. In addition, the Pull-up
Disable — PUD bit in MCUCR disables the pull-up function for all pins in all ports when
set.

Using the 1/0O port as General Digital I/O is described in “Ports as General Digital 1/0”.
Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in “Alternate
Port Functions” on page 68. Refer to the individual module sections for a full description
of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use
of the other pins in the port as general digital I/O.

62 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

Ports as General Digital
1/O

Configuring the Pin

7522C-AUTO-09/06

AT90CAN128 Auto

The ports are bi-directional I/O ports with optional internal pull-ups. Figure 31 shows a
functional description of one 1/O-port pin, here generically called Pxn.

Figure 31. General Digital I/0%)

b PUD
|° °<I‘]
Q D <
DDxn
T,
[_l—WDx
RESET
RDx
>
2 _IQ >
N wn
L)
N m
P, Q D
xn ~ PORTxn 1 S
3.3 <
I wex | O
RESET ‘
WRx
SLEEP ; RRx
SYNCHRONIZER
| ______ RPx
e el
> | PINXn |
| FL q "> Q |
|_ _____ I clkyo
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WRx: WRITE PORTX
clkyo: /0 CLOCK RRx: READ PORTx REGISTER

RPx: READ PORTx PIN
WPx: WRITE PINx REGISTER

Note: 1. WRX, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port.
clk,o, SLEEP, and PUD are common to all ports.

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in
“Register Description for I/O-Ports” on page 86, the DDxn bits are accessed at the
DDRx I/O address, the PORTxn bits at the PORTx I/O address, and the PINxn bits at
the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written
logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is config-
ured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up
resistor is activated. To switch the pull-up resistor off, PORTxn has to be written logic
zero or the pin has to be configured as an output pin

The port pins are tri-stated when reset condition becomes active, even if no clocks are
running.

AIMEL 63

I)

Toggling the Pin

Switching Between Input and
Output

Reading the Pin Value

ATMEL

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is
driven high (one). If PORTxn is written logic zero when the pin is configured as an out-
put pin, the port pin is driven low (zero).

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of
DDRxn. Note that the SBI instruction can be used to toggle one single bit in a port.

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn,
PORTxn} = 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} =
0b01) or output low ({DDxn, PORTxn} = 0b10) occurs. Normally, the pull-up enabled
state is fully acceptable, as a high-impedant environment will not notice the difference
between a strong high driver and a pull-up. If this is not the case, the PUD bit in the
MCUCR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The
user must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state
({DDxn, PORTxn} = 0b11) as an intermediate step.

Table 28 summarizes the control signals for the pin value.
Table 28. Port Pin Configurations

PUD
DDxn | PORTxn | (in MCUCR) 11O Pull-up | Comment

Default configuration after Reset.

0 0 X Input No . .
Tri-state (Hi-2)

0 1 0 Input Yes Pxn will source current if ext. pulled
low.

0 1 1 Input No Tri-state (Hi-2)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

Independent of the setting of Data Direction bit DDxn, the port pin can be read through
the PINxn Register bit. As shown in Figure 31, the PINxn Register bit and the preceding
latch constitute a synchronizer. This is needed to avoid metastability if the physical pin
changes value near the edge of the internal clock, but it also introduces a delay. Figure
32 shows a timing diagram of the synchronization when reading an externally applied
pin value. The maximum and minimum propagation delays are denoted t,q nax and tyg min
respectively.

64 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

Figure 32. Synchronization when Reading an Externally Applied Pin value

SYSTEM CLK ; | g ; |]
INSTRUCTIONS X x X xix X _ninemn X

SYNC LATCH v
PINXn 5 5
r17 0x00§ X oxFF
: tpd, max . =
. tpd, min
e o

Consider the clock period starting shortly after the first falling edge of the system clock.
The latch is closed when the clock is low, and goes transparent when the clock is high,
as indicated by the shaded region of the “SYNC LATCH” signal. The signal value is
latched when the system clock goes low. It is clocked into the PINxn Register at the suc-
ceeding positive clock edge. As indicated by the two arrows ty .., and tog ip, @ single
signal transition on the pin will be delayed between % and 1% system clock period
depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as
indicated in Figure 33. The out instruction sets the “SYNC LATCH?” signal at the positive
edge of the clock. In this case, the delay t,4 through the synchronizer is 1 system clock
period.

Figure 33. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK |
ri6 OXFF_
INSTRUCTIONS ~_ X outPORTX, 16)(nop)(inri7, Pinx
SYNC LATCH |
PINXn :
ri7 0x00 X oxFF

pd

AIMEL 65

I)

Digital Input Enable and Sleep
Modes

ATMEL

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and
define the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The
resulting pin values are read back again, but as previously discussed, a nop instruction
is included to be able to read back the value recently assigned to some of the pins.

Assembly Code Example®

; Define pull-ups and set outputs high

; Define directions for port pins

1di rl6, (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PB0)

1di rl7, (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO)
out PORTB, rlé6

out DDRB, rl7

; Insert nop for synchronization

nop

; Read port pins

in rl6, PINB

C Code Example

unsigned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO) ;
/* Insert nop for synchronization*/

_NOP() ;

/* Read port pins */

i = PINB;

Note: 1. For the assembly program, two temporary registers are used to minimize the time
from pull-ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set,
defining bit 2 and 3 as low and redefining bits 0 and 1 as strong high drivers.

As shown in Figure 31, the digital input signal can be clamped to ground at the input of
the schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep
Controller in Power-down mode, Power-save mode, and Standby mode to avoid high
power consumption if some input signals are left floating, or have an analog signal level
close to V¢/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external inter-
rupt request is not enabled, SLEEP is active also for these pins. SLEEP is also
overridden by various other alternate functions as described in “Alternate Port Func-
tions” on page 68.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin config-
ured as “Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the
external interrupt is not enabled, the corresponding External Interrupt Flag will be set
when resuming from the above mentioned sleep modes, as the clamping in these sleep
modes produces the requested logic change.

66 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Unconnected Pins

7522C-AUTO-09/06

If some pins are unused, it is recommended to ensure that these pins have a defined
level. Even though most of the digital inputs are disabled in the deep sleep modes as
described above, floating inputs should be avoided to reduce current consumption in all
other modes where the digital inputs are enabled (Reset, Active mode and Idle mode).
The simplest method to ensure a defined level of an unused pin, is to enable the internal
pull-up. In this case, the pull-up will be disabled during reset. If low power consumption
during reset is important, it is recommended to use an external pull-up or pull-down.
Connecting unused pins directly to Vcc or GND is not recommended, since this may
cause excessive currents if the pin is accidentally configured as an output.

AIMEL 67

I)

Alternate Port Functions

ATMEL

Most port pins have alternate functions in addition to being general digital 1/0Os. Figure
34 shows how the port pin control signals from the simplified Figure 31 can be overrid-
den by alternate functions. The overriding signals may not be present in all port pins, but
the figure serves as a generic description applicable to all port pins in the AVR micro-
controller family.

Figure 34. Alternate Port Functions®

PUOEXxn A

PUOVxn

PUD

DDOExn

DDOVxn

A
\

A
\4

PVOExn
PVOVxn
[0}
-]
Pxn o
<
%
DIEOEXN PTOExn 3
WPXx
DIEOVxn
1
of SLEEP
>
1Z>
clk o
= » Dixn
@ AlOXn
PUOExn: Pxn PULL-UP OVERRIDE ENABLE PUD: PULLUP DISABLE v
PUOVxn: Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RRx: READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WRx: WRITE PORTX
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTXx PIN
DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE WPx: WRITE PINX
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE clk,o: /0 CLOCK
SLEEP: SLEEP CONTROL Dixn: DIGITAL INPUT PIN n ON PORTx
PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

Note: 1. WRX, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port.
clk,o, SLEEP, and PUD are common to all ports. All other signals are unique for each

pin.

Table 29 summarizes the function of the overriding signals. The pin and port indexes
from Figure 34 are not shown in the succeeding tables. The overriding signals are gen-
erated internally in the modules having the alternate function.

68 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

MCU Control Register —
MCUCR

7522C-AUTO-09/06

Table 29. Generic Description of Overriding Signals for Alternate Functions

Signal Name

Full Name

Description

PUOE

Pull-up Override
Enable

If this signal is set, the pull-up enable is controlled by the
PUOV signal. If this signal is cleared, the pull-up is
enabled when {DDxn, PORTxn, PUD} = 0b010.

PUOV Pull-up Override If PUOE is set, the pull-up is enabled/disabled when
Value PUOV is set/cleared, regardless of the setting of the
DDxn, PORTxn, and PUD Register bits.
DDOE Data Direction If this signal is set, the Output Driver Enable is controlled
Override Enable by the DDOV signal. If this signal is cleared, the Output
driver is enabled by the DDxn Register bit.

DDOV Data Direction If DDOE is set, the Output Driver is enabled/disabled

Override Value when DDOV is set/cleared, regardless of the setting of
the DDxn Register bit.

PVOE Port Value If this signal is set and the Output Driver is enabled, the

Override Enable port value is controlled by the PVOV signal. If PVOE is
cleared, and the Output Driver is enabled, the port Value
is controlled by the PORTxn Register bit.

PVOV Port Value If PVOE is set, the port value is set to PVOV, regardless

Override Value of the setting of the PORTxn Register bit.
PTOE Port Toggle If PTOE is set, the PORTxn Register bit is inverted.
Override Enable
DIEOE Digital Input If this bit is set, the Digital Input Enable is controlled by
Enable Override the DIEOV signal. If this signal is cleared, the Digital Input
Enable Enable is determined by MCU state (Normal mode, sleep
mode).

DIEQV Digital Input If DIEOE is set, the Digital Input is enabled/disabled when

Enable Override DIEOV is set/cleared, regardless of the MCU state
Value (Normal mode, sleep mode).

DI Digital Input This is the Digital Input to alternate functions. In the
figure, the signal is connected to the output of the schmitt
trigger but before the synchronizer. Unless the Digital
Input is used as a clock source, the module with the
alternate function will use its own synchronizer.

AlO Analog This is the Analog Input/output to/from alternate

Input/Output functions. The signal is connected directly to the pad, and

can be used bi-directionally.

The following subsections shortly describe the alternate functions for each port, and
relate the overriding signals to the alternate function. Refer to the alternate function
description for further details.

Bit 6 4 3 2 1 0

| .o = PUD = = IVSEL IVCE | MCuCR
Read/Write R/W R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0

AIMEL

I)

69

Alternate Functions of Port A

ATMEL

* Bit4 - PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn
and PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01).

See “Configuring the Pin” for more details about this feature.

The Port A has an alternate function as the address low byte and data lines for the

External Memory Interface.

The Port A pins with alternate functions are shown in Table 30.

Table 30. Port A Pins Alternate Functions

Port Pin Alternate Function
PA7 AD7 (External memory interface address and data bit 7)
PAG6 ADG6 (External memory interface address and data bit 6)
PA5 ADS5 (External memory interface address and data bit 5)
PA4 AD4 (External memory interface address and data bit 4)
PA3 AD3 (External memory interface address and data bit 3)
PA2 AD2 (External memory interface address and data bit 2)
PA1 AD1 (External memory interface address and data bit 1)
PAO ADO (External memory interface address and data bit 0)

The alternate pin configuration is as follows:

* AD7 —Port A, Bit7

AD7, External memory interface address 7 and Data 7.

* ADG6 — Port A, Bit 6

ADG6, External memory interface address 6 and Data 6.

* AD5 - Port A, Bit5

AD5, External memory interface address 5 and Data 5.

* AD4 - Port A, Bit 4

AD4, External memory interface address 4 and Data 4.

 AD3 - Port A, Bit 3

AD3, External memory interface address 3 and Data 3.

 AD2 - Port A, Bit 2

AD2, External memory interface address 2 and Data 2.

 AD1-Port A, Bitl

AD1, External memory interface address 1 and Data 1.

* ADO - Port A, Bit0

ADO, External memory interface address 0 and Data 0.

70 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

7522C-AUTO-09/06

Table 31 and Table 32 relates the alternate functions of Port A to the overriding signals

shown in Figure 34 on page 68.

Table 31. Overriding Signals for Alternate Functions in PA7..PA4

Signal Name PA7/AD7 PAG6/AD6 PA5/AD5 PA4/AD4

PUOE SREs SRE« SRE« SRE«
(ADA + WR) (ADA + WR) (ADA + WR) (ADA + WR)

PUOV 0 0 0 0

DDOE SRE SRE SRE SRE

DDOV WR + ADA WR + ADA WR + ADA WR + ADA

PVOE SRE SRE SRE SRE

PVOV A7« ADA + D7 A6 » ADA + D6 A5« ADA + D5 A4+ ADA + D4
OUTPUT « WR OUTPUT « WR OUTPUT « WR OUTPUT « WR

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI D7 INPUT D6 INPUT D5 INPUT D4 INPUT

AlO - - - -

Note: 1. ADA is short for ADdress Active and represents the time when address is output. See

“External Memory Interface” on page 25 for details.

Table 32. Overriding Signals for Alternate Functions in PA3..PAO

Signal Name PA3/AD3 PA2/AD2 PA1/AD1 PAO/ADO

PUOE SRE+ SRE+ SRE+ SRE+
(ADA + WR) (ADA + WR) (ADA + WR) (ADA + WR)

PUOV 0 0 0 0

DDOE SRE SRE SRE SRE

DDOV WR + ADA WR + ADA WR + ADA WR + ADA

PVOE SRE SRE SRE SRE

PVOV A3+ ADA + D3 A2+ ADA + D2 Al-+ADA + D1 A0 ADA + DO
OUTPUT »« WR OUTPUT »« WR OUTPUT »« WR OUTPUT »« WR

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI D3 INPUT D2 INPUT D1 INPUT DO INPUT

AlO - - - -

Note: 1. ADA is short for ADdress Active and represents the time when address is output. See

“External Memory Interface” on page 25 for details.

AIMEL

I)

71

Alternate Functions of Port B

ATMEL

The Port B pins with alternate functions are shown in Table 33.

Table 33. Port B Pins Alternate Functions

Port Pin | Alternate Functions

OCOA/OC1C (Output Compare and PWM Output A for Timer/Counter0 or Output
Compare and PWM Output C for Timer/Counterl)

PB7

PB6 OC1B (Output Compare and PWM Output B for Timer/Counterl)

PB5 OC1A (Output Compare and PWM Output A for Timer/Counterl)

PB4 OC2A (Output Compare and PWM Output A for Timer/Counter2)

PB3 MISO (SPI Bus Master Input/Slave Output)

PB2 MOSI (SPI Bus Master Output/Slave Input)

PB1 SCK (SPI Bus Serial Clock)

PBO sSs (SPI Slave Select input)

The alternate pin configuration is as follows:

+ OCOA/OCI1C, Bit 7

OCOA, Output Compare Match A output. The PB7 pin can serve as an external output
for the Timer/Counter0 Output Compare A. The pin has to be configured as an output
(DDBY set “one”) to serve this function. The OCOA pin is also the output pin for the PWM
mode timer function.

OC1C, Output Compare Match C output. The PB7 pin can serve as an external output
for the Timer/Counterl Output Compare C. The pin has to be configured as an output
(DDB7 set “one”) to serve this function. The OC1C pin is also the output pin for the
PWM mode timer function.

+ OC1B, Bit6

OC1B, Output Compare Match B output. The PB6 pin can serve as an external output
for the Timer/Counterl Output Compare B. The pin has to be configured as an output
(DDB6 set “one”) to serve this function. The OC1B pin is also the output pin for the PWM
mode timer function.

*+ OCI1A, Bit5

OC1A, Output Compare Match A output. The PB5 pin can serve as an external output
for the Timer/Counterl Output Compare A. The pin has to be configured as an output
(DDBS set “one”) to serve this function. The OC1A pin is also the output pin for the PWM
mode timer function.

*+ OC2A, Bit4

OC2A, Output Compare Match A output. The PB4 pin can serve as an external output
for the Timer/Counter2 Output Compare A. The pin has to be configured as an output
(DDBA4 set “one”) to serve this function. The OC2A pin is also the output pin for the PWM
mode timer function.

* MISO - Port B, Bit 3

MISO, Master Data input, Slave Data output pin for SPI channel. When the SPI is
enabled as a master, this pin is configured as an input regardless of the setting of
DDB3. When the SPI is enabled as a slave, the data direction of this pin is controlled by

72 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

DDB3. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB3 bit.

* MOSI - Port B, Bit 2

MOSI, SPI Master Data output, Slave Data input for SPI channel. When the SPI is
enabled as a slave, this pin is configured as an input regardless of the setting of DDB2.
When the SPI is enabled as a master, the data direction of this pin is controlled by
DDB2. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB?2 bit.

+ SCK-PortB, Bit1l

SCK, Master Clock output, Slave Clock input pin for SPI channel. When the SPI is
enabled as a slave, this pin is configured as an input regardless of the setting of DDB1.
When the SPI is enabled as a master, the data direction of this pin is controlled by
DDB1. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTBL1 bit.

« SS—PortB, Bit0

SS, Slave Port Select input. When the SPI is enabled as a slave, this pin is configured
as an input regardless of the setting of DDBO. As a slave, the SPI is activated when this
pin is driven low. When the SPI is enabled as a master, the data direction of this pin is
controlled by DDBO. When the pin is forced to be an input, the pull-up can still be con-
trolled by the PORTBO bit.

Table 34 and Table 35 relate the alternate functions of Port B to the overriding signals
shown in Figure 34 on page 68. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute
the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE
INPUT.

Table 34 and Table 35 relates the alternate functions of Port B to the overriding signals
shown in Figure 34 on page 68.

Table 34. Overriding Signals for Alternate Functions in PB7..PB4

7522C-AUTO-09/06

Signal Name PB7/0COA/OC1C PB6/0OC1B PB5/OC1A PB4/0OC2A
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE OCOA/OC1C OC1B ENABLE | OC1A ENABLE | OC2A ENABLE
ENABLE®W
PVOV ocoa/ocic® OC1B OC1A OC2A
PTOE 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI - - - -
AlO - - - -
Note: 1. See “Output Compare Modulator - OCM” on page 161 for details.

ATMEL

I)

73

Alternate Functions of Port C

ATMEL

Table 35. Overriding Signals for Alternate Functions in PB3..PB0O

Signal Name | PB3/MISO PB2/MOSI PB1/SCK PBO/SS
PUOE SPE « MSTR SPE « MSTR SPE « MSTR SPE « MSTR
PUOV PORTB3+PUD | PORTB2+PUD | PORTB1+PUD | PORTBO+PUD
DDOE SPE « MSTR SPE « MSTR SPE « MSTR SPE « MSTR
DDOV 0 0 0 0
PVOE SPE « MSTR SPE « MSTR SPE « MSTR 0
PVOV SPI SLAVE SPI MASTER SCK OUTPUT | 0
OUTPUT OUTPUT
PTOE 0 0 0 0
DIEOE 0 0 0 0
DIEOV 0 0 0 0
DI SPI MASTER SPI SLAVE SCK INPUT SPI SS
INPUT INPUT « RESET
AIO - - - -

The Port C has an alternate function as the address high byte for the External Memory

Interface.

The Port C pins with alternate functions are shown in Table 36.

Table 36. Port C Pins Alternate Functions

Port Pin Alternate Function
PC7 A15/CLKO (External memory interface address 15 or Divided
System Clock)

PC6 Al4 (External memory interface address 14)

PC5 A13 (External memory interface address 13)

PC4 A12 (External memory interface address 12)

PC3 All (External memory interface address 11)

PC2 A10 (External memory interface address 10)

PC1 A9 (External memory interface address 9)

PCO A8 (External memory interface address 8)

The alternate pin configuration is as follows:

* Al15/CLKO - Port C, Bit 7

A1l5, External memory interface address 15.

CLKO, Divided System Clock: The divided system clock can be output on the PC7 pin.
The divided system clock will be output if the CKOUT Fuse is programmed, regardless

of the PORTC7 and DDCY7 settings. It will also be output during reset.

74 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

* Al4-PortC,Bit6

Al4, External memory interface address 14.

* Al13-PortC,Bit5h

A13, External memory interface address 13.

* Al2-PortC, Bit4

Al12, External memory interface address 12.

* All - Port C, Bit 3

All, External memory interface address 11.

*+ A10-Port C, Bit 2

A10, External memory interface address 10.

* A9-PortC,Bit1l

A9, External memory interface address 9.

* A8-PortC,Bit0

A8, External memory interface address 8.

Table 37 and Table 38 relate the alternate functions of Port C to the overriding signals
shown in Figure 34 on page 68.

Table 37. Overriding Signals for Alternate Functions in PC7..PC4

Signal Name | PC7/A15 PC6/A14 PC5/A13 PC4/A12

PUOE SRE « (XMM<1) SRE « (XMM<2) | SRE * (XMM<3) | SRE * (XMM<4)

PUOV 0 0 0 0

DDOE CKOUT® + SRE « (XMM<2) | SRE * (XMM<3) | SRE * (XMM<4)
(SRE * (XMM<1))

DDOV 1 1 1 1

PVOE CKOUT® + SRE « (XMM<2) | SRE * (XMM<3) | SRE * (XMM<4)
(SRE * (XMM<1))

PVOV (A15+ CKOUT®) + | Al14 A13 Al12
(CLKO » CKOUT®)

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI - - - -

AIO - - _ _

Note: 1. CKOUT is one if the CKOUT Fuse is programmed

ATMEL

I)

75

ATMEL

Table 38. Overriding Signals for Alternate Functions in PC3..PCO

Signal Name | PC3/A11 PC2/A10 PC1/A9 PCO/A8

PUOE SRE « (XMM<5) | SRE s+ (XMM<6) | SRE s (XMM<7) | SRE « (XMM<7)
PUOV 0 0 0 0

DDOE SRE « (XMM<5) | SRE s+ (XMM<6) | SRE s (XMM<7) | SRE « (XMM<7)
DDOV 1 1 1 1

PVOE SRE « (XMM<5) | SRE s+ (XMM<6) | SRE s (XMM<7) | SRE « (XMM<7)
PVOV All A10 A9 A8

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI - - - -

AIO - - - -

Alternate Functions of Port D The Port D pins with alternate functions are shown in Table 39.

Table 39. Port D Pins Alternate Functions

Port Pin

Alternate Function

PD7

TO (Timer/Counter0 Clock Input)

PD6

RXCAN/T1 (CAN Receive Pin or Timer/Counterl Clock Input)

PD5

TXCAN/XCK1 (CAN Transmit Pin or USART1 External Clock Input/Output)

PD4

ICP1 (Timer/Counterl Input Capture Trigger)

PD3

INT3/TXD1 (External Interrupt3 Input or UART1 Transmit Pin)

PD2

INT2/RXD1 (External Interrupt2 Input or UART1 Receive Pin)

PD1

INT1/SDA (External Interruptl Input or TWI Serial DAta)

PDO

INTO/SCL (External InterruptO Input or TWI Serial CLock)

The alternate pin configuration is as follows:

* TO/CLKO - Port D, Bit 7

TO, Timer/CounterO counter source.

* RXCAN/T1 - Port D, Bit 6

RXCAN, CAN Receive Data (Data input pin for the CAN). When the CAN controller is
enabled this pin is configured as an input regardless of the value of DDD6. When the
CAN forces this pin to be an input, the pull-up can still be controlled by the PORTD6 bit.

T1, Timer/Counterl counter source.

76 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

* TXCAN/XCK1 - Port D, Bit 5

TXCAN, CAN Transmit Data (Data output pin for the CAN). When the CAN is enabled,
this pin is configured as an output regardless of the value of DDD5.

XCK1, USARTL1 External clock. The Data Direction Register (DDD5) controls whether
the clock is output (DDD5 set) or input (DDD45 cleared). The XCK1 pin is active only
when the USARTL1 operates in Synchronous mode.

* ICP1-PortD, Bit4

ICP1, Input Capture Pinl. The PD4 pin can act as an input capture pin for
Timer/Counterl.

* INT3/TXD1 — Port D, Bit 3

INT3, External Interrupt source 3. The PD3 pin can serve as an external interrupt source
to the MCU.

TXD1, Transmit Data (Data output pin for the USART1). When the USART1 Transmitter
is enabled, this pin is configured as an output regardless of the value of DDD3.

* INT2/RXD1 - Port D, Bit 2

INT2, External Interrupt source 2. The PD2 pin can serve as an External Interrupt
source to the MCU.

RXD1, Receive Data (Data input pin for the USART1). When the USART1 receiver is
enabled this pin is configured as an input regardless of the value of DDD2. When the
USART forces this pin to be an input, the pull-up can still be controlled by the PORTD2
bit.

* INT1/SDA - Port D, Bit 1

INT1, External Interrupt source 1. The PD1 pin can serve as an external interrupt source
to the MCU.

SDA, Two-wire Serial Interface Data. When the TWEN bit in TWCR is set (one) to
enable the Two-wire Serial Interface, pin PD1 is disconnected from the port and
becomes the Serial Data I/O pin for the Two-wire Serial Interface. In this mode, there is
a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal, and the
pin is driven by an open drain driver with slew-rate limitation.

* INTO/SCL - Port D, Bit 0

INTO, External Interrupt source 0. The PDO pin can serve as an external interrupt source
to the MCU.

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to
enable the Two-wire Serial Interface, pin PDO is disconnected from the port and
becomes the Serial Clock I/O pin for the Two-wire Serial Interface. In this mode, there is
a spike filter on the pin to suppress spikes shorter than 50 ns on the input signal, and the
pin is driven by an open drain driver with slew-rate limitation.

AIMEL i

I)

78

ATMEL

Table 40 and Table 41 relates the alternate functions of Port D to the overriding signals
shown in Figure 34 on page 68.

Table 40. Overriding Signals for Alternate Functions PD7..PD4

Signal Name | PD7/TO PD6/T1/RXCAN PD5/XCK1/TXCAN PD4/ICP1

PUOE 0 RXCANEN TXCANEN + 0

PUOV 0 PORTD6 * PUD 0 0

DDOE 0 RXCANEN TXCANEN 0

DDOV 0 0 1 0

PVOE 0 0 TXCANEN + UMSEL1 | 0

PVOV 0 0 (XCK1 OUTPUT » 0
UMSEL1 « TXCANEN)
+ (TXCAN « TXCANEN)

PTOE 0 0 0 0

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI TOINPUT | T1INPUT/RXCAN | XCK1 INPUT ICP1 INPUT

AIO - - - -

Table 41. Overriding Signals for Alternate Functions in PD3..PDO®

Signal Name | PD3/INT3/TXD1 | PD2/INT2/RXD1 PD1/INT1/SDA PDO/INTO/SCL

PUOE TXEN1 RXEN1 TWEN TWEN

PUOV 0 PORTD2 « PUD PORTD1+ PUD | PORTDO * PUD

DDOE TXEN1 RXEN1 0 0

DDOV 1 0 0 0

PVOE TXEN1 0 TWEN TWEN

PVOV TXD1 0 SDA_OUT SCL_OUT

PTOE 0 0 0 0

DIEOE INT3 ENABLE INT2 ENABLE INT1 ENABLE INTO ENABLE

DIEOV INT3 ENABLE INT2 ENABLE INT1 ENABLE INTO ENABLE

DI INT3 INPUT INT2 INPUT/RXD1 INT1 INPUT INTO INPUT

AIO - - SDA INPUT SCL INPUT
Note: 1. When enabled, the Two-wire Serial Interface enables Slew-Rate controls on the out-

put pins PDO and PD1. This is not shown in this table. In addition, spike filters are
connected between the AlO outputs shown in the port figure and the digital logic of
the TWI module.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Alternate Functions of Port E The Port E pins with alternate functions are shown in Table 42.

Table 42. Port E Pins Alternate Functions

Port Pin | Alternate Function

PE7 INT7/ICP3 (External Interrupt 7 Input or Timer/Counter3 Input Capture Trigger)

PE6 INT6/ T3 (External Interrupt 6 Input or Timer/Counter3 Clock Input)

INT5/0OC3C (External Interrupt 5 Input or Output Compare and PWM Output C for

PES Timer/Counter3)
INT4/0C3B (External Interrupt4 Input or Output Compare and PWM Output B for
PE4 .
Timer/Counter3)
PE3 AIN1/OC3A (Analog Comparator Negative Input or Output Compare and PWM
Output A for Timer/Counter3)
PE2 AINO/XCKO (Analog Comparator Positive Input or USARTO external clock

input/output)
PE1 PDO/TXDO0 (Programming Data Output or UARTO Transmit Pin)
PEO PDI/RXDO (Programming Data Input or UARTO Receive Pin)

The alternate pin configuration is as follows:

* PCINT7/ICP3 — Port E, Bit 7

INT7, External Interrupt source 7. The PE7 pin can serve as an external interrupt
source.

ICP3, Input Capture Pin3: The PE7 pin can act as an input capture pin for
Timer/Counter3.
* INT6/T3 - Port E, Bit 6

INT6, External Interrupt source 6. The PE6 pin can serve as an external interrupt
source.

T3, Timer/Counter3 counter source.

* INT5/0C3C - Port E, Bit 5

INT5, External Interrupt source 5. The PE5 pin can serve as an External Interrupt
source.

OC3C, Output Compare Match C output. The PE5 pin can serve as an External output
for the Timer/Counter3 Output Compare C. The pin has to be configured as an output
(DDES set “one”) to serve this function. The OC3C pin is also the output pin for the
PWM mode timer function.

* INT4/0OC3B - Port E, Bit 4

INT4, External Interrupt source 4. The PE4 pin can serve as an External Interrupt
source.

OC3B, Output Compare Match B output. The PE4 pin can serve as an External output
for the Timer/Counter3 Output Compare B. The pin has to be configured as an output
(DDEA4 set (one)) to serve this function. The OC3B pin is also the output pin for the PWM
mode timer function.

AIMEL &

7522C-AUTO-09/06 I ©

80

ATMEL

* AIN1/OC3A - Port E, Bit 3

AIN1 — Analog Comparator Negative input. This pin is directly connected to the negative
input of the Analog Comparator.

OC3A, Output Compare Match A output. The PE3 pin can serve as an External output
for the Timer/Counter3 Output Compare A. The pin has to be configured as an output
(DDE3 set “one”) to serve this function. The OC3A pin is also the output pin for the PWM
mode timer function.

* AINO/XCKO - Port E, Bit 2

AINO — Analog Comparator Positive input. This pin is directly connected to the positive
input of the Analog Comparator.

XCKO, USARTO External clock. The Data Direction Register (DDE2) controls whether
the clock is output (DDE2 set) or input (DDE2 cleared). The XCKO pin is active only
when the USARTO operates in Synchronous mode.

+ PDO/TXDO — Port E, Bit 1

PDO, SPI Serial Programming Data Output. During Serial Program Downloading, this
pin is used as data output line for the AT90CAN128.

TXDO0, UARTO Transmit pin.

* PDI/RXDO — Port E, Bit 0

PDI, SPI Serial Programming Data Input. During Serial Program Downloading, this pin
is used as data input line for the AT90CAN128.

RXDO0, USARTO Receive Pin. Receive Data (Data input pin for the USARTO0). When the
USARTO receiver is enabled this pin is configured as an input regardless of the value of
DDREO. When the USARTO forces this pin to be an input, a logical one in PORTEO will
turn on the internal pull-up.

Table 43 and Table 44 relates the alternate functions of Port E to the overriding signals
shown in Figure 34 on page 68.

Table 43. Overriding Signals for Alternate Functions PE7..PE4

Signal Name PE7/INT7/ICP3 PE6/INT6/T3 PES/INT5/0C3C | PE4/INT4/0C3B

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 OC3C ENABLE | OC3B ENABLE

PVOV 0 0 0OC3C OC3B

PTOE 0 0 0 0

DIEOCE INT7 ENABLE INT6 ENABLE INTS ENABLE INT4 ENABLE

DIEQV INT7 ENABLE INT6 ENABLE INTS ENABLE INT4 ENABLE

DI INT7 INPUT INT6 INPUT INTS INPUT INT4 INPUT
/ICP3 INPUT /T3 INPUT

AIO - - - -

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

Alternate Functions of Port F

7522C-AUTO-09/06

Table 44. Overriding Signals for Alternate Functions in PE3..PEO

Signal Name PE3/AIN1/OC3A | PE2/AINO/XCKO |PE1/PDO/TXD0 |PEO/PDI/RXDO
PUOE 0 0 TXENO RXENO

PUOV 0 0 0 PORTEO » PUD
DDOE 0 0 TXENO RXENO

DDOV 0 0 1 0

PVOE OC3A ENABLE UMSELO TXENO 0

PVOV OC3A XCKO OUTPUT TXDO 0

PTOE 0 0 0 0

DIEOE AIN1D® AINOD® 0 0

DIEOV 0 0 0 0

DI 0 XCKO INPUT - RXDO

AIO AIN1 INPUT AINO INPUT - -

Note: 1. AINOD and AIN1D is described in “Digital Input Disable Register 1 — DIDR1"” on page

265.

The Port F has an alternate function as analog input for the ADC as shown in Table 45.
If some Port F pins are configured as outputs, it is essential that these do not switch
when a conversion is in progress. This might corrupt the result of the conversion. If the
JTAG interface is enabled, the pull-up resistors on pins PF7 (TDI), PF5 (TMS) and PF4
(TCK) will be activated even if a reset occurs.

Table 45. Port F Pins Alternate Functions

Port Pin Alternate Function
PF7 ADC7/TDI (ADC input channel 7 or JTAG Data Input)
PF6 ADC6/TDO (ADC input channel 6 or JTAG Data Output)
PF5 ADC5/TMS (ADC input channel 5 or JTAG mode Select)
PF4 ADC4/TCK (ADC input channel 4 or JTAG ClocK)
PF3 ADC3 (ADC input channel 3)
PF2 ADC2 (ADC input channel 2)
PF1 ADC1 (ADC input channel 1)
PFO ADCO (ADC input channel 0)

The alternate pin configuration is as follows:

» TDI, ADC7 — Port F, Bit 7

ADCY7, Analog to Digital Converter, input channel 7.

AIMEL

I)

81

82

ATMEL

TDI, JTAG Test Data In. Serial input data to be shifted in to the Instruction Register or
Data Register (scan chains). When the JTAG interface is enabled, this pin can not be
used as an I/O pin.

» TCK, ADC6 - Port F, Bit 6

ADCSG6, Analog to Digital Converter, input channel 6.

TDO, JTAG Test Data Out. Serial output data from Instruction Register or Data Register.
When the JTAG interface is enabled, this pin can not be used as an 1/O pin.

»+ TMS, ADC5 - Port F, Bit 5

ADCS5, Analog to Digital Converter, input channel 5.

TMS, JTAG Test mode Select. This pin is used for navigating through the TAP-controller
state machine. When the JTAG interface is enabled, this pin can not be used as an I/O

pin.

» TDO, ADC4 - Port F, Bit 4
ADCA4, Analog to Digital Converter, input channel 4.

TCK, JTAG Test Clock. JTAG operation is synchronous to TCK. When the JTAG inter-
face is enabled, this pin can not be used as an 1/O pin.

+ ADC3 - Port F, Bit 3
ADC3, Analog to Digital Converter, input channel 3.

+ ADC2 - Port F, Bit 2
ADC2, Analog to Digital Converter, input channel 2.

+ ADC1l-Port F,Bit1l
ADC1, Analog to Digital Converter, input channel 1.

+ ADCO-Port F, Bit0
ADCO, Analog to Digital Converter, input channel 0.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Table 46 and Table 47 relates the alternate functions of Port F to the overriding signals

shown in Figure 34 on page 68.

Table 46. Overriding Signals for Alternate Functions in PF7..PF4

Signal Name PF7/ADC7/TDI PF6/ADC6/TDO | PF5/ADCS5/TMS | PF4/ADC4/TCK
PUOE JTAGEN JTAGEN JTAGEN JTAGEN
PUOV JTAGEN JTAGEN JTAGEN JTAGEN
DDOE JTAGEN JTAGEN JTAGEN JTAGEN
DDOV 0 SHIFT_IR + 0 0
SHIFT_DR

PVOE JTAGEN JTAGEN JTAGEN JTAGEN
PVOV 0 TDO 0 0
PTOE 0 0 0 0
DIEOE JTAGEN + JTAGEN + JTAGEN + JTAGEN +

ADC7D ADC6D ADC5D ADC4D
DIEOV JTAGEN 0 JTAGEN JTAGEN
DI TDI - T™MS TCK
AIO ADC7 INPUT ADCG6 INPUT ADCS INPUT ADC4 INPUT

Table 47. Overriding Signals for Alternate Functions in PF3..PFO

Signal Name PF3/ADC3 PF2/ADC2 PF1/ADC1 PFO/ADCO
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
PTOE 0 0 0 0
DIEOE ADC3D ADC2D ADC1D ADCOD
DIEOV 0 0 0 0
DI - - - -
AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADCO INPUT

AIMEL 83

I)

ATMEL

Alternate Functions of Port G The alternate pin configuration is as follows:

Table 48. Port G Pins Alternate Functions

Port Pin Alternate Function
PG4 TOSC1 (RTC Oscillator Timer/Counter2)
PG3 TOSC2 (RTC Oscillator Timer/Counter2)
PG2 ALE (Address Latch Enable to external memory)
PG1 RD (Read strobe to external memory)
PGO WR (Write strobe to external memory)

The alternate pin configuration is as follows:

* TOSC1 - Port G, Bit 4

TOSC2, Timer/Counter2 Oscillator pin 1. When the AS2 bit in ASSR is set (one) to
enable asynchronous clocking of Timer/Counter2, pin PG4 is disconnected from the
port, and becomes the input of the inverting Oscillator amplifier. In this mode, a Crystal
Oscillator is connected to this pin, and the pin can not be used as an 1/O pin.

+ TOSC2 - Port G, Bit 3

TOSC2, Timer/Counter2 Oscillator pin 2. When the AS2 bit in ASSR is set (one) to
enable asynchronous clocking of Timer/Counter2, pin PG3 is disconnected from the
port, and becomes the inverting output of the Oscillator amplifier. In this mode, a Crystal
Oscillator is connected to this pin, and the pin can not be used as an 1/O pin.

* ALE - Port G, Bit 2

ALE is the external data memory Address Latch Enable signal.

« RD - Port G, Bit 1

RD is the external data memory read control strobe.

« WR - Port G, Bit 0

WR is the external data memory write control strobe.

84 A TO0CA N 128 A Uit O

sy A\ TOOCAN128 Auto

Table 48 and Table 49 relates the alternate functions of Port G to the overriding signals
shown in Figure 34 on page 68.

Table 49. Overriding Signals for Alternate Function in PG4

Signal Name - - - PG4/TOSC1
PUOE AS2

PUOV 0

DDOE AS2

DDOV 0

PVOE 0

PVOV 0

PTOE 0

DIEOE AS2

DIEOV EXCLK

DI -

AIO T/C2 OSC INPUT

Table 50. Overriding Signals for Alternate Functions in PG3:0

7522C-AUTO-09/06

Signal Name | PG3/TOSC2 PG2/ALE PG1/RD PGO/WR
PUOE AS2 « EXCLK SRE SRE SRE
PUOV 0 0 0 0
DDOE AS2 « EXCLK SRE SRE SRE
DDOV 0 1 1 1
PVOE 0 SRE SRE SRE
PVOV 0 ALE RD WR
PTOE 0 0 0 0
DIEOE AS2 0 0 0
DIEOV 0 0 0 0

DI - - - -
AIO T/C2 OSC OUTPUT | - - -

AIMEL

I)

85

Register Description for
I/O-Ports

Port A Data Register — PORTA

ATMEL

Bit 7 6 5 4 3 2 1 0
| PORTA7 | PORTAG | PORTAS | PORTA4 | PORTA3 | PORTA2 | PORTAL | PORTAO | PORTA
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
Port A Data Direction Register
— DDRA Bit 7 6 5 4 3 2 1 0
| ppaz DDAG DDA5 DDA4 DDA3 DDA2 DDA1 DDAO | DDRA
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
Port A Input Pins Address —
PINA Bit 7 6 5 4 3 2 1 0
| Pna7 | PiNA6 | PINAS | PINA4 | PINA3 | PINA2 | PINAL [PINAO | PINA
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
Port B Data Register —- PORTB
Bit 7 6 5 4 3 2 1 0
| PORTB7 | PORTB6 | PORTB5 | PORTB4 | PORTB3 | PORTB2 | PORTB1 | PORTBO | PORTB
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
Port B Data Direction Register
— DDRB Bit 7 6 5 4 3 2 1 0
| pos7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO | DDRB
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
Port B Input Pins Address —
PINB Bit 7 6 5 4 3 2 1 0
| PnB7 | PiNB6 | PINBS | PINB4 | PINB3 | PINB2 | PINBL | PINBO | PINB
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
Port C Data Register — PORTC
Bit 7 6 5 4 3 2 1 0
| PORTC7 | PORTCE | PORTCS | PORTC4 | PORTC3 | PORTC2 | PORTCL | PORTCO | PORTC
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
Port C Data Direction Register
— DDRC Bit 7 6 5 4 3 2 1 0
| ooc? DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 pDCO | DDRC
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0
86 AT O0C AN 128 /A Ut O 15—

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Port C Input Pins Address —
PINC

Port D Data Register — PORTD

Port D Data Direction Register
— DDRD

Port D Input Pins Address —
PIND

Port E Data Register - PORTE

Port E Data Direction Register
— DDRE

Port E Input Pins Address —
PINE

Port F Data Register — PORTF

Port F Data Direction Register
— DDRF

7522C-AUTO-09/06

Bit

Read/Write
Initial Value

Bit

Read/Write
Initial Value

Bit

Read/Write
Initial Value

Bit

Read/Write
Initial Value

Bit

Read/Write
Initial Value

Bit

Read/Write
Initial Value

Bit

Read/Write
Initial Value

Bit

Read/Write
Initial Value

Bit

Read/Write
Initial Value

7 6 5 4 3 2 1 0
I PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO I PINC
R/W R/W R/W R/W R/W R/W R/W R/W
N/A N/A N/A N/A N/A N/A N/A N/A
7 6 5 4 3 2 1 0
IPORTD7 PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 PORTDOI PORTD
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO I DDRD
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO I PIND
R/W R/W R/W R/W R/W R/W R/W R/W
N/A N/A N/A N/A N/A N/A N/A N/A
7 6 5 4 3 2 1 0
I PORTE7 | PORTE6 | PORTE5 | PORTE4 | PORTE3 | PORTE2 | PORTEL PORTEOI PORTE
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I DDE7 DDEG6 DDE5 DDE4 DDE3 DDE2 DDE1 DDEO I DDRE
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I PINE7 PINE6 PINES PINE4 PINE3 PINE2 PINE1 PINEO I PINE
R/W R/W R/W R/W R/W R/W R/W R/W
N/A N/A N/A N/A N/A N/A N/A N/A
7 6 5 4 3 2 1 0
I PORTF7 | PORTF6 | PORTF5 | PORTF4 | PORTF3 | PORTF2 | PORTF1 PORTFOI PORTF
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
I DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDFO I DDRF
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

AIMEL 7

I)

Port F Input Pins Address —

ATMEL

PINF Bit 7 6 5 4 3 2 1 0
| PinF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINFO | PINF
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
Port G Data Register - PORTG
Bit 7 6 5 4 3 2 1 0
| - - - PORTG4 | PORTG3 | PORTG2 | PORTG1 | PORTGO | PORTG
Read/Write R/W R/W R/IW R/W R/IW
Initial Value 0 0 0 0 0
Port G Data Direction Register
— DDRG Bit 7 6 5 4 3 2 1 0
| DDG4 DDG3 DDG2 DDG1 pbGo | DDRG
Read/Write R R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Port G Input Pins Address —
PING Bit 7 6 5 4 3 2 1 0
| - - - PING4 PING3 PING2 PING1 PINGO | PING
Read/Write R/IW R/W R/W R/W R/IW
Initial Value 0 0 0 N/A N/A N/A N/A N/A
88 AT O0C AN 128 /A Ut O 15—

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

External Interrupts

External Interrupt Control
Register A — EICRA

7522C-AUTO-09/06

The External Interrupts are triggered by the INT7:0 pins. Observe that, if enabled, the
interrupts will trigger even if the INT7:0 pins are configured as outputs. This feature pro-
vides a way of generating a software interrupt. The External Interrupts can be triggered
by a falling or rising edge or a low level. This is set up as indicated in the specification for
the External Interrupt Control Registers — EICRA (INT3:0) and EICRB (INT7:4). When
the external interrupt is enabled and is configured as level triggered, the interrupt will
trigger as long as the pin is held low. Note that recognition of falling or rising edge inter-
rupts on INT7:4 requires the presence of an I/O clock, described in “Clock Systems and
their Distribution” on page 35. Low level interrupts and the edge interrupt on INT3:0 are
detected asynchronously. This implies that these interrupts can be used for waking the
part also from sleep modes other than Idle mode. The I/O clock is halted in all sleep
modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the
changed level must be held for some time to wake up the MCU. This makes the MCU
less sensitive to noise. The changed level is sampled twice by the Watchdog Oscillator
clock. The period of the Watchdog Oscillator is 1 us (nominal) at 5.0V and 25°C. The
frequency of the Watchdog Oscillator is voltage dependent as shown in the “Electrical
Characteristics(1)” on page 355. The MCU will wake up if the input has the required
level during this sampling or if it is held until the end of the start-up time. The start-up
time is defined by the SUT fuses as described in “System Clock” on page 35. If the level
is sampled twice by the Watchdog Oscillator clock but disappears before the end of the
start-up time, the MCU will still wake up, but no interrupt will be generated. The required
level must be held long enough for the MCU to complete the wake up to trigger the level
interrupt.

Bit 7 6 5 4 3 2 1 0

I ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 | EICRA
Read/Write R/IW R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0-ISC31, ISC30 - ISC01, ISC00: External Interrupt 3 - 0 Sense Control
Bits

The External Interrupts 3 - 0 are activated by the external pins INT3:0 if the SREG I-flag
and the corresponding interrupt mask in the EIMSK is set. The level and edges on the
external pins that activate the interrupts are defined in Table 51. Edges on INT3..INTO
are registered asynchronously. Pulses on INT3:0 pins wider than the minimum pulse
width given in Table 52 will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. If low level interrupt is selected, the low level must be held until
the completion of the currently executing instruction to generate an interrupt. If enabled,
a level triggered interrupt will generate an interrupt request as long as the pin is held
low. When changing the ISCn bit, an interrupt can occur. Therefore, it is recommended
to first disable INTn by clearing its Interrupt Enable bit in the EIMSK Register. Then, the
ISCn bit can be changed. Finally, the INTn interrupt flag should be cleared by writing a
logical one to its Interrupt Flag bit (INTFn) in the EIFR Register before the interrupt is re-
enabled.

AIMEL 89

I)

External Interrupt Control
Register B — EICRB

ATMEL

Table 51. Interrupt Sense Control®

ISCnl | ISCn0O | Description
0 0 The low level of INTn generates an interrupt request.
0 1 Reserved
1 0 The falling edge of INTn generates asynchronously an interrupt request.
1 1 The rising edge of INTn generates asynchronously an interrupt request.

Note: 1. n=3,2,1or0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its
Interrupt Enable bit in the EIMSK Register. Otherwise an interrupt can occur when
the bits are changed.

Table 52. Asynchronous External Interrupt Characteristics

Symbol | Parameter Condition | Min | Typ | Max | Units
Minimum pulse width for
tUNT - 50 ns

asynchronous external interrupt

Bit 7 6 5 4 3 2 1 0
| isca ISC70 ISC61 ISC60 ISC51 ISC50 ISC41 Isc40 | EICRB

Read/Write R/W R/W RIW R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 7..0—-ISC71, ISC70 - ISC41, ISC40: External Interrupt 7 - 4 Sense Control
Bits

The External Interrupts 7 - 4 are activated by the external pins INT7:4 if the SREG I-flag
and the corresponding interrupt mask in the EIMSK is set. The level and edges on the
external pins that activate the interrupts are defined in Table 53. The value on the
INT7:4 pins are sampled before detecting edges. If edge or toggle interrupt is selected,
pulses that last longer than one clock period will generate an interrupt. Shorter pulses
are not guaranteed to generate an interrupt. Observe that CPU clock frequency can be
lower than the XTAL frequency if the XTAL divider is enabled. If low level interrupt is
selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt. If enabled, a level triggered interrupt will generate an
interrupt request as long as the pin is held low.

Table 53. Interrupt Sense Control®

ISCnl | ISCn0O | Description

0 0 The low level of INTn generates an interrupt request.

0 1 Any logical change on INTh generates an interrupt request

The falling edge between two samples of INTnh generates an interrupt

1 0
request.

The rising edge between two samples of INTn generates an interrupt

request.

Note: 1. n=7,6,50r4.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its
Interrupt Enable bit in the EIMSK Register. Otherwise an interrupt can occur when
the bits are changed.

1 1

90 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

External Interrupt Mask
Register — EIMSK

External Interrupt Flag
Register — EIFR

7522C-AUTO-09/06

Bit 7 6 5 4 3 2 1 0

I INT7 INT6 INTS INT4 INT3 INT2 INT1 IINTO I EIMSK
Read/Write R/IW R/W R/W R/W R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7..0— INT7 — INTO: External Interrupt Request 7 - 0 Enable

When an INT7 — INTO bit is written to one and the I-bit in the Status Register (SREG) is
set (one), the corresponding external pin interrupt is enabled. The Interrupt Sense Con-
trol bits in the External Interrupt Control Registers — EICRA and EICRB - defines
whether the external interrupt is activated on rising or falling edge or level sensed. Activ-
ity on any of these pins will trigger an interrupt request even if the pin is enabled as an
output. This provides a way of generating a software interrupt.

Bit 7 6 5 4 3 2 1 0

I INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 IINTFO I EIFR
Read/Write R/IW R/W R/W R/W R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7..0— INTF7 - INTFO: External Interrupt Flags 7 -0

When an edge or logic change on the INT7:0 pin triggers an interrupt request, INTF7:0
becomes set (one). If the I-bit in SREG and the corresponding interrupt enable bit,
INT7:0 in EIMSK, are set (one), the MCU will jump to the interrupt vector. The flag is
cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by
writing a logical one to it. These flags are always cleared when INT7:0 are configured as
level interrupt. Note that when entering sleep mode with the INT3:0 interrupts disabled,
the input buffers on these pins will be disabled. This may cause a logic change in inter-
nal signals which will set the INTF3:0 flags. See “Digital Input Enable and Sleep Modes”
on page 66 for more information.

AIMEL o

I)

ATMEL

Timer/Counter3/1/0 Prescalers

Overview

Internal Clock Source

Prescaler Reset

External Clock Source

Timer/Counter3, Timer/Counterl and Timer/CounterO share the same prescaler mod-
ule, but the Timer/Counters can have different prescaler settings. The description below
applies to both Timer/Counter3, Timer/Counterl and Timer/CounterQ.

Most bit references in this section are written in general form. A lower case “n” replaces
the Timer/Counter number.

The Timer/Counter can be clocked directly by the system clock (by setting the
CSn2:0 = 1). This provides the fastest operation, with a maximum Timer/Counter clock
frequency equal to system clock frequency (fc o). Alternatively, one of four taps from
the prescaler can be used as a clock source. The prescaled clock has a frequency of
either e « 110/8, foLk 10764, Telk 16/256, or Tk 10/1024.

The prescaler is free running, i.e., operates independently of the Clock Select logic of
the Timer/Counter, and it is shared by Timer/Counter3, Timer/Counterl and
Timer/Counter0. Since the prescaler is not affected by the Timer/Counter’s clock select,
the state of the prescaler will have implications for situations where a prescaled clock is
used. One example of prescaling artifacts occurs when the timer is enabled and clocked
by the prescaler (6 > CSn2:0 > 1). The number of system clock cycles from when the
timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles,
where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program
execution. However, care must be taken if the other Timer/Counter that shares the
same prescaler also uses prescaling. A prescaler reset will affect the prescaler period
for all Timer/Counters it is connected to.

An external clock source applied to the T3/T1/TO pin can be used as Timer/Counter
clock (clkrg/clkyq/clkyg). The T3/T1/TO pin is sampled once every system clock cycle by
the pin synchronization logic. The synchronized (sampled) signal is then passed through
the edge detector. Figure 35 shows a functional equivalent block diagram of the
T3/T1/TO synchronization and edge detector logic. The registers are clocked at the pos-
itive edge of the internal system clock (clk,p). The latch is transparent in the high period
of the internal system clock.

The edge detector generates one clkys/clkq/clkrg pulse for each positive (CSn2:0 = 7)
or negative (CSn2:0 = 6) edge it detects.

Figure 35. T3/T1/TO Pin Sampling

A
™ D Q D Q
—[! i

Synchronization

Tn_sync
—m (To Clock
Select Logic)

110

Edge Detector

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system
clock cycles from an edge has been applied to the T3/T1/TO pin to the counter is
updated.

92 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Timer/Counter0/1/3
Prescalers
Register Description

General Timer/Counter
Control Register — GTCCR

7522C-AUTO-09/06

Enabling and disabling of the clock input must be done when T3/T1/TO has been stable
for at least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock
pulse is generated.

Each half period of the external clock applied must be longer than one system clock
cycle to ensure correct sampling. The external clock must be guaranteed to have less
than half the system clock frequency (feyicik < fak 110/2) given a 50/50 % duty cycle.
Since the edge detector uses sampling, the maximum frequency of an external clock it
can detect is half the sampling frequency (Nyquist sampling theorem). However, due to
variation of the system clock frequency and duty cycle caused by Oscillator source
(crystal, resonator, and capacitors) tolerances, it is recommended that maximum fre-
quency of an external clock source is less than fy, ,0/2.5.

An external clock source can not be prescaled.

Figure 36. Prescaler for Timer/Counter3, Timer/Counterl and Timer/Counter0®

CK —q}—»b c 10-BIT T/C PRESCALER |

lear

CK/8
CK/64

CK/256
CK/1024

PSR310

o
le
le—o
le
le— o
l<

CS00 Cs10 CS30
Cso1 csi1 Cs3t
Cs02 Cs12 Cs32
TIMER/COUNTERO CLOCK SOURCE TIMER/COUNTER1 CLOCK SOURCE TIMER/COUNTER3 CLOCK SOURCE

clkyy clkp, clkpy

Note: 1. The synchronization logic on the input pins (TO/T1/T3) is shown in Figure 35.

Bit 7 6 5 4 3 2 1 0

| 7tsw = = = = = PSR2 | Psr310 | GTCeRr
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - TSM: Timer/Counter Synchronization Mode

Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this
mode, the value that is written to the PSR2 and PSR310 bits is kept, hence keeping the
corresponding prescaler reset signals asserted. This ensures that the corresponding
Timer/Counters are halted and can be configured to the same value without the risk of
one of them advancing during configuration. When the TSM bit is written to zero, the
PSR2 and PSR310 bits are cleared by hardware, and the Timer/Counters start counting

simultaneously.
AIMEL 93

I)

ATMEL

e Bit 0 — PSR310: Prescaler Reset Timer/Counter3, Timer/Counterl and
Timer/Counter0O

When this bit is one, Timer/Counter3, Timer/Counterl and Timer/Counter0 prescaler will
be Reset. This bit is normally cleared immediately by hardware, except if the TSM bit is
set. Note that Timer/Counter3, Timer/Counterl and Timer/CounterQ share the same
prescaler and a reset of this prescaler will affect these three timers.

94 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

8-bit Timer/CounterO with PWM

Timer/Counter0 is a general purpose, single channel, 8-bit Timer/Counter module. The
main features are:

Features * Single Channel Counter
e Clear Timer on Compare Match (Auto Reload)
* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Frequency Generator
* External Event Counter
* 10-bit Clock Prescaler
* Overflow and Compare Match Interrupt Sources (TOVO and OCFO0A)

Overview Many register and bit references in this section are written in general form.

* Alower case “n” replaces the Timer/Counter number, in this case 0. However, when
using the register or bit defines in a program, the precise form must be used, i.e.,
TCNTO for accessing Timer/CounterQ counter value and so on.

» Alower case “X” replaces the Output Compare unit channel, in this case A.
However, when using the register or bit defines in a program, the precise form must
be used, i.e., OCROA for accessing Timer/CounterO output compare channel A
value and so on.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 37. For the
actual placement of 1/0O pins, refer to “Pinout AT90OCAN128- TQFP” on page 4. CPU
accessible 1/0 Registers, including I/O bits and I/O pins, are shown in bold. The device-
specific I/0 Register and bit locations are listed in the “8-bit Timer/Counter Register
Description” on page 105.

Figure 37. 8-bit Timer/Counter Block Diagram

< - TCCRn |
\ /
count __ TOVn
clear Control Logi " (IntReq.)
direction onirorogie clkrp, Clock Select
Edge P
A A Detector ™
BOTTOM TOP ~| |
%) Yvy _x (From Prescaler)
) Timer/Counter A
] TCNT
< " | oo e
<D(1 f o (Int.Req.)
A 4
— | Waveform .
:__l Generation | OCnx
< OCRnx |
Y
Registers The Timer/Counter (TCNTO0) and Output Compare Register (OCRO0OA) are 8-bit registers.

Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer

AIMEL %

7522C-AUTO-09/06 I ©

Definitions

Timer/Counter Clock
Sources

Counter Unit

ATMEL

Interrupt Flag Register (TIFRO). All interrupts are individually masked with the Timer
Interrupt Mask Register (TIMSKO). TIFRO and TIMSKO are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock
source on the TO pin. The Clock Select logic block controls which clock source and edge
the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is
inactive when no clock source is selected. The output from the Clock Select logic is
referred to as the timer clock (clkyg).

The double buffered Output Compare Register (OCROA) is compared with the
Timer/Counter value at all times. The result of the compare can be used by the Wave-
form Generator to generate a PWM or variable frequency output on the Output Compare
pin (OCOA). See “Output Compare Unit” on page 97 for details. The compare match
event will also set the Compare Flag (OCFOA) which can be used to generate an Output
Compare interrupt request.

The definitions in Table 54 are also used extensively throughout the document.

Table 54. Definitions
BOTTOM | The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value OXFF (MAX) or the value stored in the OCROA Register. The
assignment is dependent on the mode of operation.

The Timer/Counter can be clocked by an internal or an external clock source. The clock
source is selected by the Clock Select logic which is controlled by the Clock Select
(CS02:0) bits located in the Timer/Counter Control Register (TCCROA). For details on
clock sources and prescaler, see “Timer/Counter3/1/0 Prescalers” on page 92.

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit.
Figure 38 shows a block diagram of the counter and its surroundings.

Figure 38. Counter Unit Block Diagram

TOVn

(Int.Req.)
DATA BUS >

-
Clock Select

count Edge -
- clear clk; M -
TCNTn - Control Logic [«¢—
direction
-

(From Prescaler)
bottom T Ttop

Signal description (internal signals):
count Increment or decrement TCNTO by 1.
direction Select between increment and decrement.

clear Clear TCNTO (set all bits to zero).

96 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Output Compare Unit

7522C-AUTO-09/06

clky, Timer/Counter clock, referred to as clkyg in the following.
top Signalize that TCNTO has reached maximum value.

bottom Signalize that TCNTO has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or dec-
remented at each timer clock (clkyg). clky, can be generated from an external or internal
clock source, selected by the Clock Select bits (CS02:0). When no clock source is
selected (CS02:0 = 0) the timer is stopped. However, the TCNTO value can be accessed
by the CPU, regardless of whether clk; is present or not. A CPU write overrides (has
priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits
located in the Timer/Counter Control Register (TCCROA). There are close connections
between how the counter behaves (counts) and how waveforms are generated on the
Output Compare output OCOA. For more details about advanced counting sequences
and waveform generation, see “Modes of Operation” on page 100.

The Timer/Counter Overflow Flag (TOVO0) is set according to the mode of operation
selected by the WGMO01:0 bits. TOVO can be used for generating a CPU interrupt.

The 8-bit comparator continuously compares TCNTO with the Output Compare Register
(OCROA). Whenever TCNTO equals OCROA, the comparator signals a match. A match
will set the Output Compare Flag (OCFOA) at the next timer clock cycle. If enabled
(OCIEOA = 1 and Global Interrupt Flag in SREG is set), the Output Compare Flag gen-
erates an Output Compare interrupt. The OCFOA flag is automatically cleared when the
interrupt is executed. Alternatively, the OCFOA flag can be cleared by software by writ-
ing a logical one to its I/O bit location. The Waveform Generator uses the match signal
to generate an output according to operating mode set by the WGMO01:0 bits and Com-
pare Output mode (COMOAL:0) bits. The max and bottom signals are used by the
Waveform Generator for handling the special cases of the extreme values in some
modes of operation (See “Modes of Operation” on page 100).

Figure 39 shows a block diagram of the Output Compare unit.

Figure 39. Output Compare Unit, Block Diagram

DATA BUS

1 !

OCRnNXx TCNTn

4L iy

| = (8-bit Comparator) |

OCFnx (Int.Req.)

top »

bottom] Waveform Generator

P

WGMn1:0 COMnX1:0

AIMEL o7

I)

P OCnx

FOCn >

Force Output Compare

Compare Match Blocking by
TCNTO Write

Using the Output Compare
Unit

ATMEL

The OCROA Register is double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation,
the double buffering is disabled. The double buffering synchronizes the update of the
OCROA Compare Register to either top or bottom of the counting sequence. The syn-
chronization prevents the occurrence of odd-length, non-symmetrical PWM pulses,
thereby making the output glitch-free.

The OCROA Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCROA Buffer Register, and if double
buffering is disabled the CPU will access the OCROA directly.

In non-PWM waveform generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOCOA) bit. Forcing compare
match will not set the OCFOA flag or reload/clear the timer, but the OCOA pin will be
updated as if a real compare match had occurred (the COMOAL:0 bits settings define
whether the OCOA pin is set, cleared or toggled).

All CPU write operations to the TCNTO Register will block any compare match that
occur in the next timer clock cycle, even when the timer is stopped. This feature allows
OCROA to be initialized to the same value as TCNTO without triggering an interrupt
when the Timer/Counter clock is enabled.

Since writing TCNTO in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNTO when using the Output
Compare channel, independently of whether the Timer/Counter is running or not. If the
value written to TCNTO equals the OCROA value, the compare match will be missed,
resulting in incorrect waveform generation. Similarly, do not write the TCNTO value
equal to BOTTOM when the counter is downcounting.

The setup of the OCOA should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OCOA value is to use the Force
Output Compare (FOCOA) strobe bits in Normal mode. The OCOA Register keeps its
value even when changing between Waveform Generation modes.

Be aware that the COMOAL:0 bits are not double buffered together with the compare
value. Changing the COMOAL:0 bits will take effect immediately.

98 A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Compare Match Output
Unit

Compare Output Function

Compare Output Mode and
Waveform Generation

7522C-AUTO-09/06

The Compare Output mode (COMOAL:0) bits have two functions. The Waveform Gener-
ator uses the COMOAZ1.:0 bits for defining the Output Compare (OCOA) state at the next
compare match. Also, the COMOAL1:0 bits control the OCOA pin output source. Figure 40
shows a simplified schematic of the logic affected by the COMOAL:0 bit setting. The I/O
Registers, 1/O bits, and I/O pins in the figure are shown in bold. Only the parts of the
general 1/0O port control registers (DDR and PORT) that are affected by the COMOAL:0
bits are shown. When referring to the OCOA state, the reference is for the internal OCOA
Register, not the OCOA pin. If a system reset occur, the OCOA Register is reset to “0".

Figure 40. Compare Match Output Unit, Schematic

—

COMnx1
COMnx0 Waveform D O
Focnx | Generator
— 1
OCnx
OCnx Pin
0
A
» D Q
2
m PORT
<
g
\ DDR
clk,o

The general I/O port function is overridden by the Output Compare (OCOA) from the
Waveform Generator if either of the COMOAL:0 bits are set. However, the OCOA pin
direction (input or output) is still controlled by the Data Direction Register (DDR) for the
port pin. The Data Direction Register bit for the OCOA pin (DDR_OCO0A) must be set as
output before the OCOA value is visible on the pin. The port override function is indepen-
dent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OCOA state
before the output is enabled. Note that some COMOAL:0 bit settings are reserved for
certain modes of operation. See “8-bit Timer/Counter Register Description” on page 105

The Waveform Generator uses the COMOAZ1:0 bits differently in Normal, CTC, and
PWM modes. For all modes, setting the COMOA1:0 = 0 tells the Waveform Generator
that no action on the OCOA Register is to be performed on the next compare match. For
compare output actions in the non-PWM modes refer to Table 56 on page 106. For fast
PWM mode, refer to Table 57 on page 106, and for phase correct PWM refer to Table
58 on page 107.

A change of the COMOA1.:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOCOA strobe bits.

AIMEL %

I)

Modes of Operation

Normal Mode

Clear Timer on Compare
Match (CTC) Mode

ATMEL

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGMO01:0) and
Compare Output mode (COMOAL:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM0AL1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COMOAL:0 bits control whether the out-
put should be set, cleared, or toggled at a compare match (See “Compare Match Output
Unit” on page 99).

For detailed timing information refer to Figure 44, Figure 45, Figure 46 and Figure 47 in
“Timer/Counter Timing Diagrams” on page 103.

The simplest mode of operation is the Normal mode (WGMO01:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8-bit value (TOP = OxFF) and then
restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag
(TOVO) will be set in the same timer clock cycle as the TCNTO becomes zero. The
TOVO flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOVO
flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.

In Clear Timer on Compare or CTC mode (WGMO01:0 = 2), the OCROA Register is used
to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNTO) matches the OCROA. The OCROA defines the top value for
the counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 41. The counter value
(TCNTO) increases until a compare match occurs between TCNTO and OCROA, and
then counter (TCNTO) is cleared.

Figure 41. CTC Mode, Timing Diagram

OCnx Interrupt Flag Set

o

/ / / o

OCnx —
(Toggle) — L1 L

(COMNx1:0 = 1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated each time the counter value reaches the TOP value by
using the OCFOA flag. If the interrupt is enabled, the interrupt handler routine can be
used for updating the TOP value. However, changing TOP to a value close to BOTTOM
when the counter is running with none or a low prescaler value must be done with care
since the CTC mode does not have the double buffering feature. If the new value written

100 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Fast PWM Mode

7522C-AUTO-09/06

to OCROA is lower than the current value of TCNTO, the counter will miss the compare
match. The counter will then have to count to its maximum value (OxFF) and wrap
around starting at 0x00 before the compare match can occur.

For generating a waveform output in CTC mode, the OCOA output can be set to toggle
its logical level on each compare match by setting the Compare Output mode bits to tog-
gle mode (COMOAL:0 = 1). The OCOA value will not be visible on the port pin unless the
data direction for the pin is set to output. The waveform generated will have a maximum
frequency of focon = fa 110/2 when OCROA is set to zero (0x00). The waveform fre-
quency is defined by the following equation:

p _ Jelk 1o
OCnx 2N .(1+OCRnx)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO flag is set in the same timer clock cycle
that the counter counts from MAX to 0x00.

The fast Pulse Width Modulation or fast PWM mode (WGMO01:0 = 3) provides a high fre-
guency PWM waveform generation option. The fast PWM differs from the other PWM
option by its single-slope operation. The counter counts from BOTTOM to MAX then
restarts from BOTTOM. In non-inverting Compare Output mode, the Output Compare
(OCO0A) is cleared on the compare match between TCNTO and OCROA, and set at BOT-
TOM. In inverting Compare Output mode, the output is set on compare match and
cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the
fast PWM mode can be twice as high as the phase correct PWM mode that use dual-
slope operation. This high frequency makes the fast PWM mode well suited for power
regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX
value. The counter is then cleared at the following timer clock cycle. The timing diagram
for the fast PWM mode is shown in Figure 42. The TCNTO value is in the timing diagram
shown as a histogram for illustrating the single-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTO
slopes represent compare matches between OCROA and TCNTO.

Figure 42. Fast PWM Mode, Timing Diagram

OCRnX Interrupt Flag Set

OCRnx Update and
TOVnN Interrupt Flag Set

Y Y
TCNTn / / / / // /
OCnx (COMNx1:0 = 2)
OCnx |_| (COMNx1:0 = 3)
Period |<—1 I 2 I 3 I 4 I 5 I 6 I 7_,I

AIMEL 101

Phase Correct PWM Mode

ATMEL

The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches MAX. If
the interrupt is enabled, the interrupt handler routine can be used for updating the com-
pare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the
OCOA pin. Setting the COMOA1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COMOAL:0 to three (See Table 57
on page 106). The actual OCOA value will only be visible on the port pin if the data direc-
tion for the port pin is set as output. The PWM waveform is generated by setting (or
clearing) the OCOA Register at the compare match between OCROA and TCNTO, and
clearing (or setting) the OCOA Register at the timer clock cycle the counter is cleared
(changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ Jak o
Jocnpwar = ¥ 288

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represents special cases when generating
a PWM waveform output in the fast PWM mode. If the OCROA is set equal to BOTTOM,
the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCROA
equal to MAX will result in a constantly high or low output (depending on the polarity of
the output set by the COMOAL:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OCOA to toggle its logical level on each compare match (COMOA1:0 =1). The
waveform generated will have a maximum frequency of focoa = fak 10/2 Wwhen OCROA is
set to zero. This feature is similar to the OCOA toggle in CTC mode, except the double
buffer feature of the Output Compare unit is enabled in the fast PWM mode.

The phase correct PWM mode (WGMO01:0 = 1) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-
slope operation. The counter counts repeatedly from BOTTOM to MAX and then from
MAX to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCO0A)
is cleared on the compare match between TCNTO and OCROA while upcounting, and
set on the compare match while downcounting. In inverting Output Compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency
than single slope operation. However, due to the symmetric feature of the dual-slope
PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase
correct PWM mode the counter is incremented until the counter value matches MAX.
When the counter reaches MAX, it changes the count direction. The TCNTO value will
be equal to MAX for one timer clock cycle. The timing diagram for the phase correct
PWM mode is shown on Figure 43. The TCNTO value is in the timing diagram shown as
a histogram for illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNTO slopes repre-
sent compare matches between OCROA and TCNTO.

102 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Timer/Counter Timing
Diagrams

7522C-AUTO-09/06

Figure 43. Phase Correct PWM Mode, Timing Diagram

OCnx Interrupt Flag Set

OCRnx Update

TOVn Interrupt Flag Set

w /IN NN

OCnx I_I |_
OCnx |_| |—| |— (COMnNx1:0 = 3)

Period I 1 ‘I 2 ‘I 3 ‘I

(COMNx1:0 = 2)

The Timer/Counter Overflow Flag (TOVO0) is set each time the counter reaches BOT-
TOM. The interrupt flag can be used to generate an interrupt each time the counter
reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on
the OCOA pin. Setting the COMOAL:0 bits to two will produce a non-inverted PWM. An
inverted PWM output can be generated by setting the COMOAL:0 to three (See Table 58
on page 107). The actual OCOA value will only be visible on the port pin if the data direc-
tion for the port pin is set as output. The PWM waveform is generated by clearing (or
setting) the OCOA Register at the compare match between OCROA and TCNTO when
the counter increments, and setting (or clearing) the OCOA Register at compare match
between OCROA and TCNTO when the counter decrements. The PWM frequency for
the output when using phase correct PWM can be calculated by the following equation:

_ Jew o
Jocmpcrn = 810

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCROA is set equal to
BOTTOM, the output will be continuously low and if set equal to MAX the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.

The Timer/Counter is a synchronous design and the timer clock (clk) is therefore
shown as a clock enable signal in the following figures. The figures include information
on when interrupt flags are set. Figure 44 contains timing data for basic Timer/Counter
operation. The figure shows the count sequence close to the MAX value in all modes
other than phase correct PWM mode.

Alm L 103

I)

104

ATMEL

Figure 44. Timer/Counter Timing Diagram, no Prescaling

clkyo

clk,,

(clk,o/1)

TCNTn

TOVn

N

L

I N

MAX -1

MAX

BOTTOM

BOTTOM + 1

Figure 45 shows the same timing data, but with the prescaler enabled.

Figure 45. Timer/Counter Timing Diagram, with Prescaler (fy ,0/8)

clkq

clk,
(clk,,/8)

TCNTn

TOVn

|1

LUUuuuuL
:

i

-

LUuuuuuuuuuuuu

-

MAX -1

MAX

BOTTOM

BOTTOM + 1

Figure 46 shows the setting of OCFOA in all modes except CTC mode.

Figure 46. Timer/Counter Timing Diagram, Setting of OCFOA, with Prescaler (f ,0/8)

clk

clk,
(clk,o/8)

TCNTn

OCRnx

OCFnx

|1

-

Luuuuuunuuuuuuuy

-

LUuuuuunuuuuuu

-

OCRnx - 1

OCRnx

OCRnx + 1

OCRnx + 2

OCRnNx Value

ATOOC AN 128 /A U T O

7522C-AUTO-09/06

8-bit Timer/Counter
Register Description

Timer/Counter0 Control
Register A — TCCROA

7522C-AUTO-09/06

AT90CAN128 Auto

Figure 47 shows the setting of OCFOA and the clearing of TCNTO in CTC mode.

Figure 47. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with
Prescaler (fo 10/8)

w AT
(cﬂﬁ/"s) F r r r

TCNTn

(CTC) TOP - 1 TOP BOTTOM BOTTOM + 1
OCRnx TOP
OCFnx
Bit 7 6 5 4 3 2 1 0

| FOCOA | WGMO0O | COMOA1l | COMOAO | WGMO1 CS02 CS01 CS00 | TCCROA
Read/Write W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - FOCOA: Force Output Compare A

The FOCOA bit is only active when the WGMOO bit specifies a non-PWM mode. How-
ever, for ensuring compatibility with future devices, this bit must be set to zero when
TCCROA is written when operating in PWM mode. When writing a logical one to the
FOCOA bit, an immediate compare match is forced on the Waveform Generation unit.
The OCOA output is changed according to its COMOAL:0 bits setting. Note that the
FOCOA bit is implemented as a strobe. Therefore it is the value present in the
COMOAL.:0 bits that determines the effect of the forced compare.

A FOCOA strobe will not generate any interrupt, nor will it clear the timer in CTC mode
using OCROA as TOP.

The FOCOA bit is always read as zero.

* Bit 6, 3—WGMO01:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum
(TOP) counter value, and what type of waveform generation to be used. Modes of oper-
ation supported by the Timer/Counter unit are: Normal mode, Clear Timer on Compare
match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes. See Table
55 and “Modes of Operation” on page 100.

AIMEL 105

I)

ATMEL

Table 55. Waveform Generation Mode Bit Description®

WGMO01 | WGMOO0 | Timer/Counter Update of | TOVO Flag
Mode | (CTCO) | (PWMO) | Mode of Operation TOP OCROA at | Seton
0 0 0 Normal OxFF Immediate | MAX
1 0 1 PWM, Phase Correct | OXFF TOP BOTTOM
2 1 0 CTC OCROA | Immediate | MAX
3 1 1 Fast PWM OxFF TOP MAX

Note: 1. The CTCO and PWMO bit definition names are now obsolete. Use the WGMO01:0 def-
initions. However, the functionality and location of these bits are compatible with
previous versions of the timer.

* Bit 5:4 — COMO01:0: Compare Match Output Mode

These bits control the Output Compare pin (OCOA) behavior. If one or both of the
COMOAZ1:0 bits are set, the OCOA output overrides the normal port functionality of the
I/0 pin it is connected to. However, note that the Data Direction Register (DDR) bit cor-
responding to the OCOA pin must be set in order to enable the output driver.

When OCOA is connected to the pin, the function of the COMOA1:0 bits depends on the
WGMO01:0 bit setting. Table 56 shows the COMOAL:0 bit functionality when the
WGMO01:0 bits are set to a normal or CTC mode (non-PWM).

Table 56. Compare Output Mode, non-PWM Mode

COMOAL1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 Toggle OCOA on compare match
1 0 Clear OCOA on compare match
1 1 Set OCOA on compare match

Table 57 shows the COMOAL:0 bit functionality when the WGMO0L1:0 bits are set to fast
PWM mode.

Table 57. Compare Output Mode, Fast PWM Mode™
COMOAL1 COMOAO Description

0 0 Normal port operation, OCOA disconnected.
0 1 Reserved
1 0 Clear OCOA on compare match.

Set OCOA at TOP

1 1 Set OCOA on compare match.
Clear OCOA at TOP

Note: 1. A special case occurs when OCROA equals TOP and COMOAL is set. In this case,
the compare match is ignored, but the set or clear is done at TOP. See “Fast PWM
Mode” on page 101 for more details.

106 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Timer/Counter0 Register —
TCNTO

7522C-AUTO-09/06

Table 58 shows the COMOAL:0 bit functionality when the WGMO01:0 bits are set to
phase correct PWM mode.

Table 58. Compare Output Mode, Phase Correct PWM Mode®
COMOAL1 COMOAO Description

0 0 Normal port operation, OCOA disconnected.
0 1 Reserved
1 0 Clear OCOA on compare match when up-counting.

Set OCOA on compare match when downcounting.

1 1 Set OCOA on compare match when up-counting.
Clear OCOA on compare match when downcounting.

Note: 1. A special case occurs when OCROA equals TOP and COMOAL is set. In this case,
the compare match is ignored, but the set or clear is done at TOP. See “Phase Cor-
rect PWM Mode” on page 102 for more details.

* Bit 2:0 — CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 59. Clock Select Bit Description

CS02 | CS01 | CS00 | Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clk;,o/(No prescaling)
0 1 0 clk,,o/8 (From prescaler)
0 1 1 clk,,o/64 (From prescaler)
1 0 0 clk;,0/256 (From prescaler)
1 0 1 clk,,o/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will
clock the counter even if the pin is configured as an output. This feature allows software
control of the counting.

Bit 7 6 5 4 3 2 1 0

| TCNTO[7:0] | Tcnto
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to
the Timer/Counter unit 8-bit counter. Writing to the TCNTO Register blocks (removes)
the compare match on the following timer clock. Modifying the counter (TCNTO) while
the counter is running, introduces a risk of missing a compare match between TCNTO
and the OCROA Register.

AIMEL 107

I)

Output Compare Register A —
OCROA

Timer/Counter0 Interrupt
Mask Register — TIMSKO

Timer/CounterO Interrupt Flag
Register — TIFRO

ATMEL

Bit 7 6 5 4 3 2 1 0

| OCROA[7:0] | ocro
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared
with the counter value (TCNTO). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OCOA pin.

Bit 7 6 5 4 3 2 1 0
| - - - - - - OCIEOA | TOIEO | TIMSKO

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7..2 — Reserved Bits

These are reserved bits for future use.

» Bit 1 - OCIEOA: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIEOA bit is written to one, and the I-bit in the Status Register is set (one),
the Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt
is executed if a compare match in Timer/CounterQ occurs, i.e., when the OCFOA bit is
set in the Timer/Counter O Interrupt Flag Register — TIFRO.

» Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the Status Register is set (one), the
Timer/CounterO Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter0 occurs, i.e., when the TOVO bit is set in the
Timer/Counter O Interrupt Flag Register — TIFRO.

Bit 7 6 5 4 3 2 1 0

| - - - - - - OCFOA | TOVO | TIFRO
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 1 - OCFOA: Output Compare Flag 0 A

The OCFOA hit is set (one) when a compare match occurs between the Timer/Counter0
and the data in OCROA — Output Compare Register0. OCFOA is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCFOA is
cleared by writing a logic one to the flag. When the I-bit in SREG, OCIEOQOA
(Timer/Counter0 Compare match Interrupt Enable), and OCFOA are set (one), the
Timer/Counter0 Compare match Interrupt is executed.

* Bit 0 — TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set (one) when an overflow occurs in Timer/Counter0. TOVO is cleared
by hardware when executing the corresponding interrupt handling vector. Alternatively,
TOVO is cleared by writing a logic one to the flag. When the SREG I-bit, TOIEO
(Timer/Counter0 Overflow Interrupt Enable), and TOVO are set (one), the
Timer/Counter0 Overflow interrupt is executed. In phase correct PWM mode, this bit is
set when Timer/CounterO changes counting direction at 0x00.

108 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

16-bit Timer/Counter (Timer/Counterl and Timer/Counter3)

Features

Overview

7522C-AUTO-09/06

The 16-bit Timer/Counter unit allows accurate program execution timing (event man-
agement), wave generation, and signal timing measurement. The main features are:

True 16-bit Design (i.e., Allows 16-bit PWM)

Three independent Output Compare Units

Double Buffered Output Compare Registers

One Input Capture Unit

Input Capture Noise Canceler

Clear Timer on Compare Match (Auto Reload)
Glitch-free, Phase Correct Pulse Width Modulator (PWM)
Variable PWM Period

Frequency Generator

External Event Counter

Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1 for Timer/Counterl
- TOV3, OCF3A, OCF3B, and ICF3 for Timer/Counter3)

Many register and bit references in this section are written in general form.

A lower case “n” replaces the Timer/Counter number, in this case 1 or 3. However,
when using the register or bit defines in a program, the precise form must be used,
i.e., TCNT1 for accessing Timer/Counterl counter value and so on.

A lower case “X” replaces the Output Compare unit channel, in this case A, B or C.
However, when using the register or bit defines in a program, the precise form must
be used, i.e., OCRnA for accessing Timer/Countern output compare channel A
value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 48. For the
actual placement of 1/0 pins, refer to “Pinout AT90OCAN128- TQFP” on page 4. CPU
accessible 1/0 Registers, including I/O bits and I/O pins, are shown in bold. The device-
specific I/O Register and bit locations are listed in the “16-bit Timer/Counter Register
Description” on page 132.

AIMEL 109

I)

Registers

110

ATMEL

Figure 48. 16-bit Timer/Counter Block Diagram®

Count TOVn
—
Clear (Int.Req.)
— Control Logic
Direction clks, Clock Select
-t
Edge

Detector

TOP | BOTTOM

AR N\

Timer/Counter
TCNTn

(From Prescaler)

OCFnA

r(lnt.Req.)
Waveform OCnA

"| Generation

eeeeeeeeeeeeeeeeeeeeeeeeee o

a [Fixed OCFnB
- TOP (Int.Req.)
a | Values
= o | Waveform »|ocnB
- Generation
n
()] L]
B e OCRNB - []
m []
|<£ = OCFnC
u Int.Req.
< - (Int.Req.)
e : Waveform ocnC
- Generation o
[]
n
"""""""""""""" - (From Analog
: Comparator Ouput)
- ICFn (Int.Req.)
n
- Edge Noise
IC-Rn . Detector [Canceler
n ICPn
SEERRRRRERER L
TCCRnA | | TCCRnB | | TCCRnC

Note: 1. Refer to Figure 2 on page 4, Table 33 on page 72, and Table 42 on page 79 for
Timer/Counterl and 3 pin placement and description.

The Timer/Counter (TCNTn), Output Compare Registers (OCRnNx), and Input Capture
Register (ICRn) are all 16-bit registers. Special procedures must be followed when
accessing the 16-bit registers. These procedures are described in the section “Access-
ing 16-bit Registers” on page 112. The Timer/Counter Control Registers (TCCRnx) are
8-bit registers and have no CPU access restrictions. Interrupt requests (abbreviated to
Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFRn).
All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSKn).
TIFRn and TIMSKn are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock
source on the Tn pin. The Clock Select logic block controls which clock source and edge
the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Definitions

Compatibility

7522C-AUTO-09/06

inactive when no clock source is selected. The output from the Clock Select logic is
referred to as the timer clock (clky,).

The double buffered Output Compare Registers (OCRnNx) are compared with the
Timer/Counter value at all time. The result of the compare can be used by the Waveform
Generator to generate a PWM or variable frequency output on the Output Compare pin
(OCnx). See “Output Compare Units” on page 119 . The compare match event will also
set the Compare Match Flag (OCFnx) which can be used to generate an Output Com-
pare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external
(edge triggered) event on either the Input Capture pin (ICPn) or on the Analog Compar-
ator pins (See “Analog Comparator” on page 263) The Input Capture unit includes a
digital filtering unit (Noise Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be
defined by either the OCRNA Register, the ICRn Register, or by a set of fixed values.
When using OCRNA as TOP value in a PWM mode, the OCRNnA Register can not be
used for generating a PWM output. However, the TOP value will in this case be double
buffered allowing the TOP value to be changed in run time. If a fixed TOP value is
required, the ICRn Register can be used as an alternative, freeing the OCRNA to be
used as PWM output.

The following definitions are used extensively throughout the section:

Table 60. Definitions
BOTTOM | The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes OxFFFF (decimal 65,535).

The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be one of the fixed values:
Ox00FF, OXxO1FF, or 0x03FF, or to the value stored in the OCRNA or ICRN Regis-
ter. The assignment is dependent of the mode of operation.

TOP

The 16-bit Timer/Counter has been updated and improved from previous versions of the
16-bit AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier
version regarding:

« All 16-bit Timer/Counter related 1/0O Register address locations, including Timer
Interrupt Registers.

« Bitlocations inside all 16-bit Timer/Counter Registers, including Timer Interrupt
Registers.

e Interrupt Vectors.

The following control bits have changed name, but have same functionality and register
location:

« PWMnNO is changed to WGMnO.

« PWMn1lis changed to WGMnL1.

« CTCnis changed to WGMnN2.

The following registers are added to the 16-bit Timer/Counter:
» Timer/Counter Control Register C (TCCRnNC).
e Output Compare Register C, OCRnCH and OCRNCL, combined OCRNC.

Alm L 111

I)

Accessing 16-bit
Registers

ATMEL

The 16-bit Timer/Counter has improvements that will affect the compatibility in some
special cases.

The following bits are added to the 16-bit Timer/Counter Control Registers:
* COMNC1:0 are added to TCCRnA.

« FOCnhA, FOCnB and FOCNnC are added to TCCRnNC.

* WGMn3 is added to TCCRnB.

Interrupt flag and mask bits for output compare unit C are added.

The 16-bit Timer/Counter has improvements that will affect the compatibility in some
special cases.

The TCNTn, OCRnx, and ICRn are 16-bit registers that can be accessed by the AVR
CPU via the 8-bit data bus. The 16-bit register must be byte accessed using two read or
write operations. Each 16-bit timer has a single 8-bit register for temporary storing of the
high byte of the 16-bit access. The same temporary register is shared between all 16-bit
registers within each 16-bit timer. Accessing the low byte triggers the 16-bit read or write
operation. When the low byte of a 16-bit register is written by the CPU, the high byte
stored in the temporary register, and the low byte written are both copied into the 16-bit
register in the same clock cycle. When the low byte of a 16-bit register is read by the
CPU, the high byte of the 16-bit register is copied into the temporary register in the
same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the
OCRnNx 16-bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read,
the low byte must be read before the high byte.

112 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Code Examples

7522C-AUTO-09/06

The following code examples show how to access the 16-bit timer registers assuming
that no interrupts updates the temporary register. The same principle can be used
directly for accessing the OCRnx and ICRn Registers. Note that when using “C”, the
compiler handles the 16-bit access.

Assembly Code Examples®

; Set TCNTn to 0x01FF
1di r17,0x01

1di r16, OXFF

sts TCNTnH,r1l7

sts TCNTnL, rlé6

; Read TCNTn into rl7:rlé
lds r16, TCNTnL

lds r17, TCNTnH

C Code Examples®

unsigned int i;

/* Set TCNTn to O0xO01FF */
TCNTn = Ox1FF;

/* Read TCNTn into i */

i = TCNTn;

Note: 1. The example code assumes that the part specific header file is included.
The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an inter-
rupt occurs between the two instructions accessing the 16-bit register, and the interrupt
code updates the temporary register by accessing the same or any other of the 16-bit
timer registers, then the result of the access outside the interrupt will be corrupted.
Therefore, when both the main code and the interrupt code update the temporary regis-
ter, the main code must disable the interrupts during the 16-bit access.

AIMEL 13

I)

ATMEL

The following code examples show how to do an atomic read of the TCNTn Register
contents. Reading any of the OCRnx or ICRn Registers can be done by using the same
principle.

Assembly Code Example®

TIM16_ReadTCNTn:
; Save global interrupt flag
in rl18,SREG
; Disable interrupts
cli
; Read TCNTn into rl7:rlé
lds rl16, TCNTnL
lds r17, TCNTnH
; Restore global interrupt flag
out SREG,rl8

ret

C Code Example®

unsigned int TIM16_ReadTCNTn(void)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI();
/* Read TCNTn into i */
i = TCNTn;
/* Restore global interrupt flag */
SREG = sreg;

return i;

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

114 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Reusing the Temporary High
Byte Register

7522C-AUTO-09/06

The following code examples show how to do an atomic write of the TCNTn Register
contents. Writing any of the OCRnx or ICRn Registers can be done by using the same
principle.

Assembly Code Example®

TIM16 _WriteTCNTn:
; Save global interrupt flag
in rl18,SREG
; Disable interrupts
cli
; Set TCNTn to rl7:rlé6
sts TCNTnH,r1l7
sts TCNTnL, rlé6
; Restore global interrupt flag
out SREG,rl8

ret

C Code Example®

void TIM16 WriteTCNTn(unsigned int i)
{
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;

/* Disable interrupts */

_CLI();
/* Set TCNTn to 1 */
TCNTn = i;

/* Restore global interrupt flag */
SREG = sreg;

Note: 1. The example code assumes that the part specific header file is included.

The assembly code example requires that the r17:rl6 register pair contains the value to
be written to TCNTn.

If writing to more than one 16-bit register where the high byte is the same for all registers
written, then the high byte only needs to be written once. However, note that the same
rule of atomic operation described previously also applies in this case.

AIMEL 15

I)

Timer/Counter Clock
Sources

Counter Unit

ATMEL

The Timer/Counter can be clocked by an internal or an external clock source. The clock
source is selected by the Clock Select logic which is controlled by the Clock Select
(CSn2:0) bits located in the Timer/Counter control Register B (TCCRnB). For details on
clock sources and prescaler, see “Timer/Counter3/1/0 Prescalers” on page 92.

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional
counter unit. Figure 49 shows a block diagram of the counter and its surroundings.

Figure 49. Counter Unit Block Diagram
DATA BUS (s-bit)

- -
TOVn
(Int.Req.)
Clock Select
C
ount Edge P -
[TonTnH(@8biy [TCNTAL (8-bit Clear ey, Detector
- Control Logic [
TCNTh (16-bit Counter) g orection
(From Prescaler)
TTOP TBOTTOM
Signal description (internal signals):
Count Increment or decrement TCNTh by 1.

Direction Select between increment and decrement.

Clear Clear TCNTn (set all bits to zero).
clks, Timer/Counter clock.
TOP Signalize that TCNTn has reached maximum value.

BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High
(TCNTnH) containing the upper eight bits of the counter, and Counter Low (TCNTnL)
containing the lower eight bits. The TCNTnH Register can only be indirectly accessed
by the CPU. When the CPU does an access to the TCNTnH 1/O location, the CPU
accesses the high byte temporary register (TEMP). The temporary register is updated
with the TCNTnH value when the TCNTnL is read, and TCNTnH is updated with the
temporary register value when TCNTnL is written. This allows the CPU to read or write
the entire 16-bit counter value within one clock cycle via the 8-bit data bus. It is impor-
tant to notice that there are special cases of writing to the TCNTn Register when the
counter is counting that will give unpredictable results. The special cases are described
in the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or dec-
remented at each timer clock (clky,). The clk, can be generated from an external or
internal clock source, selected by the Clock Select bits (CSn2:0). When no clock source
is selected (CSn2:0 = 0) the timer is stopped. However, the TCNTn value can be
accessed by the CPU, independent of whether clk;, is present or not. A CPU write over-
rides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation mode
bits (WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and
TCCRnNB). There are close connections between how the counter behaves (counts) and
how waveforms are generated on the Output Compare outputs OCnx. For more details

116 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Input Capture Unit

7522C-AUTO-09/06

about advanced counting sequences and waveform generation, see “Modes of Opera-
tion” on page 122.

The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation
selected by the WGMnN3:0 bits. TOVn can be used for generating a CPU interrupt.

The Timer/Counter incorporates an Input Capture unit that can capture external events
and give them a time-stamp indicating time of occurrence. The external signal indicating
an event, or multiple events, can be applied via the ICPn pin or alternatively, via the
analog-comparator unit. The time-stamps can then be used to calculate frequency, duty-
cycle, and other features of the signal applied. Alternatively the time-stamps can be
used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 50. The ele-
ments of the block diagram that are not directly a part of the Input Capture unit are gray
shaded.

Figure 50. Input Capture Unit Block Diagram

< x DATA BUS (s-bit) >

TEMP (8-bit)

\

ICRnH 8-bi) | ICRnL (8-bit) | [ToNTRH@-bi) | TCNTNL (8-bit

—® WRITE ICRn (16-bit Register) (16-bit Counter)

TE |

ICNC3 ICES3

- Noise - Edge _
ICP3 Canceler Detoctor » ICF3 (Int.Req.)

ACIC* ICNC1 ICES1
ICP1 > ¢ ¢

Noise Edge _

Canceler Detector » ICF1 (Int.Req.)
ACO* 4’—>

Analog
Comparator

Note: The Analog Comparator Output (ACO) can only trigger the Timer/Counterl IC Unit— not
Timer/Counter3.

When a change of the logic level (an event) occurs on the Input Capture pin (ICPn),
alternatively on the Analog Comparator output (ACO), and this change confirms to the
setting of the edge detector, a capture will be triggered. When a capture is triggered, the
16-bit value of the counter (TCNTR) is written to the Input Capture Register (ICRn). The
Input Capture Flag (ICFn) is set at the same system clock as the TCNTh value is copied

AIMEL 17

I)

Input Capture Trigger Source

Noise Canceler

Using the Input Capture Unit

ATMEL

into ICRn Register. If enabled (ICIEn = 1), the Input Capture Flag generates an Input
Capture interrupt. The ICFn flag is automatically cleared when the interrupt is executed.
Alternatively the ICFn flag can be cleared by software by writing a logical one to its 1/O
bit location.

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the
low byte (ICRnL) and then the high byte (ICRnH). When the low byte is read the high
byte is copied into the high byte temporary register (TEMP). When the CPU reads the
ICRNH I/O location it will access the TEMP Register.

The ICRn Register can only be written when using a Waveform Generation mode that
utilizes the ICRn Register for defining the counter’'s TOP value. In these cases the
Waveform Generation mode (WGMn3:0) bits must be set before the TOP value can be
written to the ICRn Register. When writing the ICRn Register the high byte must be writ-
ten to the ICRNnH I/O location before the low byte is written to ICRnL.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit
Registers” on page 112.

The main trigger source for the Input Capture unit is the Input Capture pin (ICPn). Only
Timer/Counterl can alternatively use the Analog Comparator output as trigger source
for the Input Capture unit. The Analog Comparator is selected as trigger source by set-
ting the Analog Comparator Input Capture (ACIC) bit in the Analog Comparator Control
and Status Register (ACSR). Be aware that changing trigger source can trigger a cap-
ture. The Input Capture Flag must therefore be cleared after the change.

Both the Input Capture pin (ICPn) and the Analog Comparator output (ACO) inputs are
sampled using the same technique as for the Tn pin (Figure 35 on page 92). The edge
detector is also identical. However, when the noise canceler is enabled, additional logic
is inserted before the edge detector, which increases the delay by four system clock
cycles. Note that the input of the noise canceler and edge detector is always enabled
unless the Timer/Counter is set in a Waveform Generation mode that uses ICRn to
define TOP.

An Input Capture can be triggered by software by controlling the port of the ICPn pin.

The noise canceler improves noise immunity by using a simple digital filtering scheme.
The noise canceler input is monitored over four samples, and all four must be equal for
changing the output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit
in Timer/Counter Control Register B (TCCRnB). When enabled the noise canceler intro-
duces additional four system clock cycles of delay from a change applied to the input, to
the update of the ICRNn Register. The noise canceler uses the system clock and is there-
fore not affected by the prescaler.

The main challenge when using the Input Capture unit is to assign enough processor
capacity for handling the incoming events. The time between two events is critical. If the
processor has not read the captured value in the ICRn Register before the next event
occurs, the ICRn will be overwritten with a new value. In this case the result of the cap-
ture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the
interrupt handler routine as possible. Even though the Input Capture interrupt has rela-
tively high priority, the maximum interrupt response time is dependent on the maximum
number of clock cycles it takes to handle any of the other interrupt requests.

118 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Output Compare Units

7522C-AUTO-09/06

Using the Input Capture unit in any mode of operation when the TOP value (resolution)
is actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed
after each capture. Changing the edge sensing must be done as early as possible after
the ICRn Register has been read. After a change of the edge, the Input Capture Flag
(ICFn) must be cleared by software (writing a logical one to the I/O bit location). For
measuring frequency only, the clearing of the ICFn flag is not required (if an interrupt
handler is used).

The 16-bit comparator continuously compares TCNTn with the Output Compare Regis-
ter (OCRnNX). If TCNT equals OCRnx the comparator signals a match. A match will set
the Output Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx =
1), the Output Compare Flag generates an Output Compare interrupt. The OCFnx flag is
automatically cleared when the interrupt is executed. Alternatively the OCFnx flag can
be cleared by software by writing a logical one to its I/O bit location. The Waveform Gen-
erator uses the match signal to generate an output according to operating mode set by
the Waveform Generation mode (WGMn3:0) bits and Compare Output mode
(COMnNx1:0) bits. The TOP and BOTTOM signals are used by the Waveform Generator
for handling the special cases of the extreme values in some modes of operation (See
“Modes of Operation” on page 122)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP
value (i.e., counter resolution). In addition to the counter resolution, the TOP value
defines the period time for waveforms generated by the Waveform Generator.

Figure 51 shows a block diagram of the Output Compare unit. The elements of the block
diagram that are not directly a part of the Output Compare unit are gray shaded.

Figure 51. Output Compare Unit, Block Diagram

DATA BUS (s-bit)
11 i >
— v v
| ocrnxHBut(8-bit) | OCRnxL Buf.(8-bit) | [TonTaH @by | TCNTAL (8-bit)
OCRnx Buffer (16-bit Register) TCNTn (16-bit Counter)
1
—V J’
OCRnxH (8-bit) | OCRnNxL (8-bit) |
OCRnx (16-bit Register)
| = (16-bit Comparator)
—— OCFnx (Int.Req.)
y
TOP R
Waveform Generator OCnx
BOTTOM ———p»

WGMn3:0 COMnx1:0

AIMEL 19

I)

Force Output Compare

Compare Match Blocking by
TCNTn Write

Using the Output Compare
Unit

ATMEL

The OCRnx Register is double buffered when using any of the twelve Pulse Width Mod-
ulation (PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of
operation, the double buffering is disabled. The double buffering synchronizes the
update of the OCRnx Compare Register to either TOP or BOTTOM of the counting
sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical
PWM pulses, thereby making the output glitch-free.

The OCRNx Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCRnx Buffer Register, and if double
buffering is disabled the CPU will access the OCRnx directly. The content of the OCRnx
(Buffer or Compare) Register is only changed by a write operation (the Timer/Counter
does not update this register automatically as the TCNT1 and ICRn Register). Therefore
OCRnNx is not read via the high byte temporary register (TEMP). However, it is a good
practice to read the low byte first as when accessing other 16-bit registers. Writing the
OCRnNx Registers must be done via the TEMP Register since the compare of all 16 bits
is done continuously. The high byte (OCRnxH) has to be written first. When the high
byte I/O location is written by the CPU, the TEMP Register will be updated by the value
written. Then when the low byte (OCRnNxL) is written to the lower eight bits, the high byte
will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx Compare Reg-
ister in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit
Registers” on page 112.

In non-PWM Waveform Generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOCnx) bit. Forcing compare
match will not set the OCFnx flag or reload/clear the timer, but the OCnx pin will be
updated as if a real compare match had occurred (the COMnx1:0 bits settings define
whether the OCnx pin is set, cleared or toggled).

All CPU writes to the TCNTn Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCRnx to be
initialized to the same value as TCNTn without triggering an interrupt when the
Timer/Counter clock is enabled.

Since writing TCNTn in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNTn when using any of the
Output Compare channels, independent of whether the Timer/Counter is running or not.
If the value written to TCNTn equals the OCRnx value, the compare match will be
missed, resulting in incorrect waveform generation. Do not write the TCNTn equal to
TOP in PWM modes with variable TOP values. The compare match for the TOP will be
ignored and the counter will continue to OxFFFF. Similarly, do not write the TCNTn value
equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OCnx value is to use the Force
Output Compare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its
value even when changing between Waveform Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare
value. Changing the COMnx1:0 bits will take effect immediately.

120 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Compare Match Output
Unit

Compare Output Function

7522C-AUTO-09/06

The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Gener-
ator uses the COMnx1.:0 bits for defining the Output Compare (OCnx) state at the next
compare match. Secondly the COMnx1:0 bits control the OCnx pin output source. Fig-
ure 52 shows a simplified schematic of the logic affected by the COMnx1:0 bit setting.
The 1/0O Registers, 1/O bits, and I/O pins in the figure are shown in bold. Only the parts of
the general 1/0 port control registers (DDR and PORT) that are affected by the
COMnNx1:0 bits are shown. When referring to the OCnx state, the reference is for the
internal OCnx Register, not the OCnx pin. If a system reset occur, the OCnx Register is
reset to “0”.

Figure 52. Compare Match Output Unit, Schematic

—D

COMnx1
COMnNx0 Waveform D O
FOCnx Generator
— 1
OCnx
OCnx Pin
0
A
»D Q
2
m PORT
<
i
o » D Q
DDR
clkyo

The general I/O port function is overridden by the Output Compare (OCnx) from the
Waveform Generator if either of the COMnx1:0 bits are set. However, the OCnx pin
direction (input or output) is still controlled by the Data Direction Register (DDR) for the
port pin. The Data Direction Register bit for the OCnx pin (DDR_OCnx) must be set as
output before the OCnx value is visible on the pin. The port override function is generally
independent of the Waveform Generation mode, but there are some exceptions. Refer
to Table 61, Table 62 and Table 63 for details.

The design of the Output Compare pin logic allows initialization of the OCnx state before
the output is enabled. Note that some COMnNx1:0 bit settings are reserved for certain
modes of operation. See “16-bit Timer/Counter Register Description” on page 132

The COMNx1:0 bits have no effect on the Input Capture unit.

AIMEL 121

I)

Compare Output Mode and
Waveform Generation

Modes of Operation

Normal Mode

Clear Timer on Compare
Match (CTC) Mode

ATMEL

The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no
action on the OCnx Register is to be performed on the next compare match. For com-
pare output actions in the non-PWM modes refer to Table 61 on page 132. For fast
PWM mode refer to Table 62 on page 133, and for phase correct and phase and fre-
guency correct PWM refer to Table 63 on page 133.

A change of the COMnx1:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOCnx strobe bits.

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGMn3:0) and
Compare Output mode (COMnNx1:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COMnx1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COMnx1:0 bits control whether the out-
put should be set, cleared or toggle at a compare match (See “Compare Match Output
Unit” on page 121)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 129.

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 16-bit value (MAX = OxFFFF) and
then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter Over-
flow Flag (TOVn) will be set in the same timer clock cycle as the TCNTn becomes zero.
The TOVn flag in this case behaves like a 17th bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOVn
flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maxi-
mum interval between the external events must not exceed the resolution of the counter.
If the interval between events are too long, the timer overflow interrupt or the prescaler
must be used to extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.

In Clear Timer on Compare or CTC mode (WGMn3:0 =4 or 12), the OCRNA or ICRn
Register are used to manipulate the counter resolution. In CTC mode the counter is
cleared to zero when the counter value (TCNTn) matches either the OCRnA (WGMn3:0
= 4) or the ICRn (WGMn3:0 = 12). The OCRNA or ICRn define the top value for the
counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 53. The counter value
(TCNTnN) increases until a compare match occurs with either OCRnA or ICRn, and then
counter (TCNTN) is cleared.

122 ATOOCANI28 AULO m——

7522C-AUTO-09/06

AT90CAN128 Auto

Figure 53. CTC Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

-

3 Y Y

/ / / Yy
8%53@ — ___

(COMNAL:0 = 1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated at each time the counter value reaches the TOP value by
either using the OCFnA or ICFn flag according to the register used to define the TOP
value. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing the TOP to a value close to BOTTOM when the
counter is running with none or a low prescaler value must be done with care since the
CTC mode does not have the double buffering feature. If the new value written to
OCRNA or ICRn is lower than the current value of TCNTn, the counter will miss the com-
pare match. The counter will then have to count to its maximum value (OxFFFF) and
wrap around starting at 0x0000 before the compare match can occur. In many cases
this feature is not desirable. An alternative will then be to use the fast PWM mode using
OCRNA for defining TOP (WGMn3:0 = 15) since the OCRNA then will be double
buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle
its logical level on each compare match by setting the Compare Output mode bits to tog-
gle mode (COMNnAL1:0 = 1). The OCnA value will not be visible on the port pin unless the
data direction for the pin is set to output (DDR_OCNA = 1). The waveform generated will
have a maximum frequency of focna = fe 10/2 When OCRNA is set to zero (0x0000). The
waveform frequency is defined by the following equation:

7 _ Jek 1o
OCnd 2N . (1+OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVn flag is set in the same timer clock cycle
that the counter counts from MAX to 0x0000.

Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 =5, 6, 7, 14, or 15) pro-
vides a high frequency PWM waveform generation option. The fast PWM differs from
the other PWM options by its single-slope operation. The counter counts from BOTTOM
to TOP then restarts from BOTTOM. In non-inverting Compare Output mode, the Output
Compare (OCnx) is set on the compare match between TCNTn and OCRnx, and
cleared at TOP. In inverting Compare Output mode output is cleared on compare match
and set at TOP. Due to the single-slope operation, the operating frequency of the fast
PWM mode can be twice as high as the phase correct and phase and frequency correct
PWM modes that use dual-slope operation. This high frequency makes the fast PWM
mode well suited for power regulation, rectification, and DAC applications. High fre-
guency allows physically small sized external components (coils, capacitors), hence
reduces total system cost.

Alm L 123

7522C-AUTO-09/06 I ©

ATMEL

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either
ICRn or OCRNnA. The minimum resolution allowed is 2-bit (ICRn or OCRNA set to
0x0003), and the maximum resolution is 16-bit (ICRn or OCRNA set to MAX). The PWM
resolution in bits can be calculated by using the following equation:

R _ log(roP +1)
FPWM Iog(2)

In fast PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0xO0FF, 0xO1FF, or OXO3FF (WGMn3:0 = 5, 6, or 7), the value in
ICRn (WGMnN3:0 = 14), or the value in OCRnA (WGMn3:0 = 15). The counter is then
cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is
shown in Figure 54. The figure shows fast PWM mode when OCRNA or ICRn is used to
define TOP. The TCNTn value is in the timing diagram shown as a histogram for illus-
trating the single-slope operation. The diagram includes non-inverted and inverted PWM
outputs. The small horizontal line marks on the TCNTn slopes represent compare
matches between OCRnx and TCNTn. The OCnx interrupt flag will be set when a com-
pare match occurs.

Figure 54. Fast PWM Mode, Timing Diagram

OCRNx/TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set
(Interrupt on TOP)

-

A A
TCNTn / /

OCnx J J (COMNXL:0 = 2)
OCnx |_| (COMnNx1:0 = 3)

SR S S S S

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In
addition the OChA or ICFn flag is set at the same timer clock cycle as TOVn is set when
either OCRNA or ICRn is used for defining the TOP value. If one of the interrupts are
enabled, the interrupt handler routine can be used for updating the TOP and compare
values.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNTn and the OCRnx. Note that when using fixed TOP values the unused bits are
masked to zero when any of the OCRnx Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining
the TOP value. The ICRn Register is not double buffered. This means that if ICRn is
changed to a low value when the counter is running with none or a low prescaler value,
there is a risk that the new ICRn value written is lower than the current value of TCNTn.
The result will then be that the counter will miss the compare match at the TOP value.

124 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Phase Correct PWM Mode

7522C-AUTO-09/06

The counter will then have to count to the MAX value (OXFFFF) and wrap around start-
ing at 0x0000 before the compare match can occur. The OCRnA Register however, is
double buffered. This feature allows the OCRnNA I/O location to be written anytime.
When the OCRNA 1/O location is written the value written will be put into the OCRnA
Buffer Register. The OCRnA Compare Register will then be updated with the value in
the Buffer Register at the next timer clock cycle the TCNTn matches TOP. The update is
done at the same timer clock cycle as the TCNTnh is cleared and the TOVn flag is set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By
using ICRn, the OCRNA Register is free to be used for generating a PWM output on
OCnhA. However, if the base PWM frequency is actively changed (by changing the TOP
value), using the OCRnNA as TOP is clearly a better choice due to its double buffer
feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the
OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COMnx1:0 to three (see Table on
page 133). The actual OCnx value will only be visible on the port pin if the data direction
for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by set-
ting (or clearing) the OCnx Register at the compare match between OCRnx and TCNTn,
and clearing (or setting) the OCnx Register at the timer clock cycle the counter is
cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ Jakuo
Jocnrwn = NT(1+TOP)

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating
a PWM waveform output in the fast PWM mode. If the OCRnx is set equal to BOTTOM
(0x0000) the output will be a narrow spike for each TOP+1 timer clock cycle. Setting the
OCRnx equal to TOP will result in a constant high or low output (depending on the polar-
ity of the output set by the COMnx1.:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OCnhA to toggle its logical level on each compare match (COMnA1:0 = 1). The
waveform generated will have a maximum frequency of foc,a = T 1o/2 when OCRNA is
set to zero (0x0000). This feature is similar to the OCnA toggle in CTC mode, except the
double buffer feature of the Output Compare unit is enabled in the fast PWM mode.

The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1,
2, 3,10, or 11) provides a high resolution phase correct PWM waveform generation
option. The phase correct PWM mode is, like the phase and frequency correct PWM
mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output
mode, the Output Compare (OCnx) is cleared on the compare match between TCNTn
and OCRnx while upcounting, and set on the compare match while downcounting. In
inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor
control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or
defined by either ICRn or OCRNA. The minimum resolution allowed is 2-bit (ICRn or

Alm L 125

I)

ATMEL

OCRDNA set to 0x0003), and the maximum resolution is 16-bit (ICRn or OCRNA set to
MAX). The PWM resolution in bits can be calculated by using the following equation:

_ log(ror +1)

RPCPWM - log(2)

In phase correct PWM mode the counter is incremented until the counter value matches
either one of the fixed values 0xO0FF, Ox01FF, or 0xO3FF (WGMn3:0 = 1, 2, or 3), the
value in ICRn (WGMn3:0 = 10), or the value in OCRnA (WGMn3:0 = 11). The counter
has then reached the TOP and changes the count direction. The TCNTn value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM
mode is shown on Figure 55. The figure shows phase correct PWM mode when OCRnA
or ICRn is used to define TOP. The TCNTn value is in the timing diagram shown as a
histogram for illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-
sent compare matches between OCRnx and TCNTn. The OCnx interrupt flag will be set
when a compare match occurs.

Figure 55. Phase Correct PWM Mode, Timing Diagram

OCRNx/TOP Update and
OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
(Interrupt on Bottom)

7]
/ \ \
TCNTn \/ N

OCnx (COMnNX1:0 = 2)
OCnx (COMnNX1:0 = 3)
Period I 1 I 2 I 3 | 4 |

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOT-
TOM. When either OCRnA or ICRn is used for defining the TOP value, the OCnhA or
ICFn flag is set accordingly at the same timer clock cycle as the OCRnx Registers are
updated with the double buffer value (at TOP). The interrupt flags can be used to gener-
ate an interrupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNTn and the OCRnx. Note that when using fixed TOP values, the unused bits are
masked to zero when any of the OCRnx Registers are written. As the third period shown
in Figure 55 illustrates, changing the TOP actively while the Timer/Counter is running in
the phase correct mode can result in an unsymmetrical output. The reason for this can
be found in the time of update of the OCRnx Register. Since the OCRnx update occurs
at TOP, the PWM period starts and ends at TOP. This implies that the length of the fall-

126 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Phase and Frequency Correct
PWM Mode

7522C-AUTO-09/06

ing slope is determined by the previous TOP value, while the length of the rising slope is
determined by the new TOP value. When these two values differ the two slopes of the
period will differ in length. The difference in length gives the unsymmetrical result on the
output.

It is recommended to use the phase and frequency correct mode instead of the phase
correct mode when changing the TOP value while the Timer/Counter is running. When
using a static TOP value there are practically no differences between the two modes of
operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on
the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COMnx1:0 to three (See Table
on page 133). The actual OCnx value will only be visible on the port pin if the data direc-
tion for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by
setting (or clearing) the OCnx Register at the compare match between OCRnx and
TCNTn when the counter increments, and clearing (or setting) the OCnx Register at
compare match between OCRnx and TCNTn when the counter decrements. The PWM
frequency for the output when using phase correct PWM can be calculated by the fol-
lowing equation:

Ja o
Jocwxpcrn = 5 7OP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCRnx is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.

The phase and frequency correct Pulse Width Modulation, or phase and frequency cor-
rect PWM mode (WGMn3:0 = 8 or 9) provides a high resolution phase and frequency
correct PWM waveform generation option. The phase and frequency correct PWM
mode is, like the phase correct PWM mode, based on a dual-slope operation. The
counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOT-
TOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is cleared
on the compare match between TCNTn and OCRnx while upcounting, and set on the
compare match while downcounting. In inverting Compare Output mode, the operation
is inverted. The dual-slope operation gives a lower maximum operation frequency com-
pared to the single-slope operation. However, due to the symmetric feature of the dual-
slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct
PWM mode is the time the OCRnx Register is updated by the OCRnx Buffer Register,
(see Figure 55 and Figure 56).

The PWM resolution for the phase and frequency correct PWM mode can be defined by
either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRNA set to
0x0003), and the maximum resolution is 16-bit (ICRn or OCRNA set to MAX). The PWM
resolution in bits can be calculated using the following equation:

R _log(70P +1)
PFCPWM ~ T Jog(2)
Alm |, 127

I)

ATMEL

In phase and frequency correct PWM mode the counter is incremented until the counter
value matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA
(WGMn3:0 = 9). The counter has then reached the TOP and changes the count direc-
tion. The TCNTn value will be equal to TOP for one timer clock cycle. The timing
diagram for the phase correct and frequency correct PWM mode is shown on Figure 56.
The figure shows phase and frequency correct PWM mode when OCRnNA or ICRn is
used to define TOP. The TCNTn value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNTn slopes represent compare
matches between OCRnx and TCNTn. The OCnx interrupt flag will be set when a com-
pare match occurs.

Figure 56. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRNx/TOP Update and
¥ TOVn Interrupt Flag Set
(Interrupt on Bottom)

/\//\

OCnx (COMNX1:0 = 2)
OCnx (COMNX1:0 = 3)
Period I 1 I 2 I 3 I 4 I

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the
OCRnNx Registers are updated with the double buffer value (at BOTTOM). When either
OCRNA or ICRn is used for defining the TOP value, the OCnA or ICFn flag set when
TCNTn has reached TOP. The interrupt flags can then be used to generate an interrupt
each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is
higher or equal to the value of all of the Compare Registers. If the TOP value is lower
than any of the Compare Registers, a compare match will never occur between the
TCNTn and the OCRnx.

As Figure 56 shows the output generated is, in contrast to the phase correct mode, sym-
metrical in all periods. Since the OCRnx Registers are updated at BOTTOM, the length
of the rising and the falling slopes will always be equal. This gives symmetrical output
pulses and is therefore frequency correct.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By
using ICRn, the OCRNA Register is free to be used for generating a PWM output on
OCnhA. However, if the base PWM frequency is actively changed by changing the TOP
value, using the OCRNA as TOP is clearly a better choice due to its double buffer
feature.

128 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Timer/Counter Timing
Diagrams

7522C-AUTO-09/06

In phase and frequency correct PWM mode, the compare units allow generation of
PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a
non-inverted PWM and an inverted PWM output can be generated by setting the
COMnNx1:0 to three (See Table on page 133). The actual OCnx value will only be visible
on the port pin if the data direction for the port pin is set as output (DDR_OCnx). The
PWM waveform is generated by setting (or clearing) the OCnx Register at the compare
match between OCRnx and TCNTn when the counter increments, and clearing (or set-
ting) the OCnx Register at compare match between OCRnx and TCNTn when the
counter decrements. The PWM frequency for the output when using phase and fre-
guency correct PWM can be calculated by the following equation:

_ Jak o
Jocmprermu = 53 10P

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating
a PWM waveform output in the phase correct PWM mode. If the OCRnx is set equal to
BOTTOM the output will be continuously low and if set equal to TOP the output will be
set to high for non-inverted PWM mode. For inverted PWM the output will have the
opposite logic values.

The Timer/Counter is a synchronous design and the timer clock (clk,) is therefore
shown as a clock enable signal in the following figures. The figures include information
on when interrupt flags are set, and when the OCRnx Register is updated with the
OCRnx buffer value (only for modes utilizing double buffering). Figure 57 shows a timing
diagram for the setting of OCFnx.

Figure 57. Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling

clkyo

clkq,
(clk, /1)

TCNTn X OCRnx -1 X OCRnNXx OCRnx + 1 X OCRnx + 2

OCRnNx OCRnXx Value

OCFnx

Figure 58 shows the same timing data, but with the prescaler enabled.

AIMEL 129

I)

130

ATMEL

Figure 58. Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (f;y ,0/8)

oo ([DUNUTINUUTOUTUUUU TRt DU

clk,
(clk,/8)

]]

-

TCNTn X OCRnx -1 X OCRnNx OCRnx +1 >< OCRnx + 2
OCRnNx OCRnNx Value
OCFnx

Figure 59 shows the count sequence close to TOP in various modes. When using phase
and frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The
timing diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-1 by
BOTTOM+1 and so on. The same renaming applies for modes that set the TOVn flag at

BOTTOM.

Figure 59. Timer/Counter Timing Diagram, no Prescaling

clk

110

clkq,
(clk, /1)

110

TCNTn
(CTC and FPWM) L

TCNTn
(PC and PFC PWM) _|

TOVn (FPWM)
and ICFn (if used
as TOP)

X TOP -1

X TOP-1

TOP

BOTTOM BOTTOM + 1

TOP

TOP -1 TOP -2

OCRnNx
(Update at TOP)

Old OCRnx Value

New OCRnNx Value

Figure 60 shows the same timing data, but with the prescaler enabled.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

7522C-AUTO-09/06

clko H
(;:6@%) F

LTI
.

TR
F

Figure 60. Timer/Counter Timing Diagram, with Prescaler (fy ,,0/8)

IR
.

AT90CAN128 Auto

UG

TCNTn
(CTC and FPWM) _ |

TCNTn
(PC and PFC PWM) _ i

TOVN(FPWM)
and ICFn(if used

X TOP -1

TOP

BOTTOM

BOTTOM + 1

X TOP -1

TOP

TOP -1

TOP -2

as TOP)

OCRnNx
(Update at TOP)

Old OCRnx Value

New OCRnx Value

AIMEL

I)

131

16-bit Timer/Counter
Register Description

Timer/Counterl1 Control
Register A — TCCR1A

Timer/Counter3 Control
Register A — TCCR3A

ATMEL

Bit 7 6 5 4 3 2 1 0

I COM1A1 | COM1AO | COM1B1 | COM1BO | COM1C1 | COM1CO | WGM11 | WGM10 I TCCR1A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0

| COM3A1 | COM3A0 | COM3B1 | COM3B0O | COM3C1 | COM3CO | WGM31 | WGM30 | TCCR3A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:6 — COMnA1:0: Compare Output Mode for Channel A
* Bit5:4 - COMNnB1:0: Compare Output Mode for Channel B

* Bit 3:2 - COMNC1:0: Compare Output Mode for Channel C

The COMnA1:0, COMnB1:0 and COMNCL1:0 control the Output Compare pins (OCnA,
OCnB and OCnC respectively) behavior. If one or both of the COMNnAL1:0 bits are written
to one, the OCnA output overrides the normal port functionality of the 1/O pin it is con-
nected to. If one or both of the COMnBL1:0 bit are written to one, the OCnB output
overrides the normal port functionality of the 1/O pin it is connected to. If one or both of
the COMNCL1:0 bit are written to one, the OCnC output overrides the normal port func-
tionality of the 1/0O pin it is connected to. However, note that the Data Direction Register
(DDR) bit corresponding to the OCnA, OCnB or OCnC pin must be set in order to
enable the output driver.

When the OCnA, OCnB or OCnC is connected to the pin, the function of the COMnx1:0
bits is dependent of the WGMn3:0 bits setting. Table 61 shows the COMnx1:0 bit func-
tionality when the WGMn3:0 bits are set to a Normal or a CTC mode (non-PWM).
Table 61. Compare Output Mode, non-PWM

COMnA1/COMnB1/ | COMnAO/COMNBO/

COMnC1 COMnCO Description
0 0 Normal port operation, OCnA/OCnB/OCnC
disconnected.
0 1 Toggle OCnA/OCnB/OCNnC on Compare Match.
1 0 Clear OCnA/OCnB/OCNnC on Compare Match (Set

output to low level).

1 1 Set OCnA/OCnB/OCnC on Compare Match (Set
output to high level).

132 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Table 62 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the

fast PWM mode.

Table 62. Compare Output Mode, Fast PWM®)

COMnA1/COMnB1/ | COMnAO/COMNBO/
COMnC1 COMnCO Description

0 0 Normal port operation, OCnA/OCnB/OCnC
disconnected.

0 1 WGMn3=0: Normal port operation,
OCnA/OCnB/OCnC disconnected.
WGMn3=1: Toggle OCnA on Compare Match,
OCnB/OCnC reserved.

1 0 Clear OCnA/OCnB/OCnC on Compare Match
Set OCnA/OCnB/OCnC at TOP

1 1 Set OCnA/OCnB/OCnC on Compare Match
Clear OCnA/OCnB/OCNnC at TOP

Note: 1. A special case occurs when OCRnNA/OCRnNB/OCRnNC equals TOP and

COMNnA1/COMNB1/COMNCL1 is set. In this case the compare match is ignored, but
the set or clear is done at TOP. See “Fast PWM Mode” on page 123 for more details.
Table 63 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the
phase correct or the phase and frequency correct, PWM mode.

Table 63. Compare Output Mode, Phase Correct and Phase and Frequency Correct

PWM®

COMnA1l/COMNnB1/
COMNnC1

COMnAO/COMNBO/
COMNCO

Description

0

0

Normal port operation, OCnA/OCnB/OCnC

disconnected.

WGMn3=0: Normal port operation,
OCnA/OCnB/OCNC disconnected.

WGMn3=1: Toggle OCnA on Compare Match,
OCnB/OCnC reserved.

Clear OCnA/OCnB/OCnC on Compare Match
when up-counting.

Set OCnA/OCnB/OCnC on Compare Match when
downcounting.

Set OCnA/OCnB/OCnC on Compare Match when
up-counting.

Clear OCnA/OCnB/OCnC on Compare Match
when downcounting.

1. A special case occurs when OCnA/OCnB/OCnC equals TOP and
COMnA1/COMNB1/COMNCL1 is set. See “Phase Correct PWM Mode” on page 125
for more details.

Note:

e Bit 1:0 - WGMn1:0: Waveform Generation Mode

Combined with the WGMn3:2 bits found in the TCCRnNB Register, these bits control the
counting sequence of the counter, the source for maximum (TOP) counter value, and
what type of waveform generation to be used, see Table 64. Modes of operation sup-
ported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare

AIMEL

I)

133
7522C~AUTO-09/06

ATMEL

match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes. (See
“Modes of Operation” on page 122).

Table 64. Waveform Generation Mode Bit Description®

WGMn2 WGMn1 WGMnNO | Timer/Counter Mode of Update of TOVn Flag
Mode | WGMn3 (CTCn) (PWMn1) | (PWMnNO) | Operation TOP OCRnXx at Set on

0 0 0 0 0 Normal OXFFFF | Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit | OXOOFF | TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit | OXO1FF | TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10- OxO3FF | TOP BOTTOM
bit

4 0 1 0 0 CTC OCRnA | Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit OxOOFF | TOP TOP

6 0 1 1 0 Fast PWM, 9-bit OxO1FF | TOP TOP

7 0 1 1 1 Fast PWM, 10-bit OxO3FF | TOP TOP

8 1 0 0 0 PWM, Phase and ICRn BOTTOM BOTTOM
Frequency Correct

9 1 0 0 1 PWM, Phase and OCRnA | BOTTOM BOTTOM
Frequency Correct

10 1 0 1 0 PWM, Phase Correct ICRn TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCRnA | TOP BOTTOM

12 1 1 0 0 CTC ICRn Immediate MAX

13 1 1 0 1 (Reserved) - - -

14 1 1 1 0 Fast PWM ICRn TOP TOP

15 1 1 1 1 Fast PWM OCRNA | TOP TOP

Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality and

location of these bits are compatible with previous versions of the timer.

Timer/Counterl1 Control
Register B — TCCR1B

Timer/Counter3 Control
Register B — TCCR3B

134

Bit 7 6 5 4 3 2 1 0
| onet | oicesa - WGM13 | WGM12 | CS12 csi11 Cs10 | TCCR1B
Read/Write R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| ones | icess - WGM33 | WGM32 | CS32 Cs31 cs30 | Tccras
Read/Write R/IW R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0

* Bit 7 - ICNCn: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise can-
celer is activated, the input from the Input Capture pin (ICPn) is filtered. The filter
function requires four successive equal valued samples of the ICPn pin for changing its
output. The Input Capture is therefore delayed by four Oscillator cycles when the noise
canceler is enabled.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Timer/Counterl1 Control
Register C - TCCR1C

7522C-AUTO-09/06

» Bit 6 — ICESn: Input Capture Edge Select

This bit selects which edge on the Input Capture pin (ICPn) that is used to trigger a cap-
ture event. When the ICESnh bit is written to zero, a falling (negative) edge is used as
trigger, and when the ICESn bit is written to one, a rising (positive) edge will trigger the
capture.

When a capture is triggered according to the ICESn setting, the counter value is copied
into the Input Capture Register (ICRn). The event will also set the Input Capture Flag
(ICFn), and this can be used to cause an Input Capture Interrupt, if this interrupt is
enabled.

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in
the TCCRnNA and the TCCRnB Register), the ICPn is disconnected and consequently
the Input Capture function is disabled.

* Bit5 - Reserved Bit

This bit is reserved for future use. For ensuring compatibility with future devices, this bit
must be written to zero when TCCRnB is written.

* Bit 4:3 -WGMn3:2: Waveform Generation Mode
See TCCRNA Register description.

* Bit2:0 - CSn2:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see
Figure 57 and Figure 58.

Table 65. Clock Select Bit Description

Ccsn2 csnl CSn0 | Description

0 0 0 No clock source (Timer/Counter stopped).

clk,o/1 (No prescaling)

clk,o/8 (From prescaler)

clk,o/64 (From prescaler)

clk,o/256 (From prescaler)

clk,o/1024 (From prescaler)

External clock source on Tn pin. Clock on falling edge.

0 0
0 1
0 1
1 0
1 0
1 1
1 1

P |lo|lRr|lO|lRr|O|F

External clock source on Tn pin. Clock on rising edge.

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will
clock the counter even if the pin is configured as an output. This feature allows software
control of the counting.

Bit 7 6 5 4 3 2 1 0

| Focia | Focis | Focic - - - - - | Tceric
Read/Write R/IW R/W R/W R R R R
Initial Value 0 0 0 0 0 0 0 0

AIMEL 135

I)

Timer/Counter3 Control
Register C — TCCR3C

Timer/Counterl1—TCNT1H and
TCNTIL

Timer/Counter3—TCNT3H and
TCNT3L

ATMEL

Bit 7 6 5 4 3 2 1 0
| Focsa | Focse | Focsc - - - - - | Tcersc

Read/Write R/IW R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - FOCnhA: Force Output Compare for Channel A
» Bit 6 - FOCnB: Force Output Compare for Channel B

» Bit 5—-FOCNnC: Force Output Compare for Channel C

The FOCnA/FOCnB/FOCNC bits are only active when the WGMn3:0 bits specifies a
non-PWM mode. However, for ensuring compatibility with future devices, these bits
must be set to zero when TCCRnNA is written when operating in a PWM mode. When
writing a logical one to the FOCnA/FOCnB/FOCNC bit, an immediate compare match is
forced on the Waveform Generation unit. The OCnA/OCnB/OCnC output is changed
according to its COMnx1:0 bits setting. Note that the FOCnA/FOCnhB/FOCNC bits are
implemented as strobes. Therefore it is the value present in the COMnx1:0 bits that
determine the effect of the forced compare.

A FOCnA/FOCNnB/FOCNC strobe will not generate any interrupt nor will it clear the timer
in Clear Timer on Compare match (CTC) mode using OCRnA as TOP.

The FOCnA/FOCnB/FOCNC bits are always read as zero.

Bit 7 6 5 4 3 2 1 0
TCNT1[15:8] TCNT1H
TCNT1[7:0] TCNTIL
Read/Write R/IW R/W R/W R/W R/W R/W RIW R/IW
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
TCNT3[15:8] TCNT3H
TCNT3[7:0] TCNT3L
Read/Write R/IW R/W R/W R/W R/W R/W RIW R/IW
Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter I/O locations (TCNTnH and TCNTnL, combined TCNTn) give
direct access, both for read and for write operations, to the Timer/Counter unit 16-bit
counter. To ensure that both the high and low bytes are read and written simultaneously
when the CPU accesses these registers, the access is performed using an 8-bit tempo-
rary high byte register (TEMP). This temporary register is shared by all the other 16-bit
registers. See “Accessing 16-bit Registers” on page 112

Modifying the counter (TCNTnN) while the counter is running introduces a risk of missing
a compare match between TCNTn and one of the OCRnx Registers.

Writing to the TCNTn Register blocks (removes) the compare match on the following
timer clock for all compare units.

136 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Output Compare Register A —
OCR1AH and OCR1AL

Output Compare Register B —
OCR1BH and OCR1BL

Output Compare Register C —
OCR1CH and OCR1CL

Output Compare Register A —
OCR3AH and OCR3AL

Output Compare Register B —
OCR3BH and OCR3BL

Output Compare Register C —
OCR3CH and OCR3CL

Input Capture Register —
ICR1H and ICR1L

7522C-AUTO-09/06

Bit 7 6 5 4 3 2 1 0
OCRI1A[15:8] OCRI1AH
OCRI1A[7:0] OCRIAL
Read/Write R/IW R/W R/W R/W R/W R/W R/IW R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
OCR1BJ[15:8] OCR1BH
OCR1BJ[7:0] OCRI1BL
Read/Write R/IW R/W R/W R/W R/W R/W R/IW R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
OCR1C[15:8] OCR1CH
OCR1C[7:0] OCR1CL
Read/Write R/IW R/W R/W R/W R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
OCRB3A[15:8] OCR3AH
OCRB3A[7:0] OCR3AL
Read/Write R/IW R/W R/W R/W R/W R/W R/IW R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
OCR3B[15:8] OCR3BH
OCR3B[7:0] OCR3BL
Read/Write R/IW R/W R/W R/W R/W R/W R/IW R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
OCR3C[15:8] OCR3CH
OCR3C[7:0] OCR3CL
Read/Write R/IW R/W R/W R/W R/W R/W R/IW R/W
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared
with the counter value (TCNTn). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OCnx pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low
bytes are written simultaneously when the CPU writes to these registers, the access is
performed using an 8-bit temporary high byte register (TEMP). This temporary register
is shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on page 112

Bit 7 6 5 4 3 2 1 0
ICR1[15:8] ICR1H
ICR1[7:0] ICRIL
Read/Write RIW RIW RIW RIW RIW RIW R/W RIW
ATMEL 137
Y P

Input Capture Register —
ICR3H and ICR3L

Timer/Counterl Interrupt
Mask Register — TIMSK1

Timer/Counter3 Interrupt
Mask Register — TIMSK3

Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
ICR3[15:8] ICR3H
ICR3[7:0] ICR3L
Read/Write R/IW R/W R/W R/W R/W R/W R/IW R/W
Initial Value 0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNTn) value each time an event occurs
on the ICPn pin (or optionally on the Analog Comparator output for Timer/Counterl).
The Input Capture can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes
are read simultaneously when the CPU accesses these registers, the access is per-
formed using an 8-bit temporary high byte register (TEMP). This temporary register is
shared by all the other 16-bit registers. See “Accessing 16-bit Registers” on page 112

Bit 7 6 5 4 3 2 1 0

| - - ICIE1 - OCIEIC | OCIE1B | OCIE1A | TOIE1 | TiMsk1
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0

| - - ICIE3 - OCIE3C | OCIE3B | OCIE3A | TOIES | TIMSK3
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7..6 — Reserved Bits

These bits are reserved for future use.

* Bit 5 - ICIEN: Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Input Capture interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 57) is executed when the ICFn
flag, located in TIFRnN, is set.

* Bit 4 — Reserved Bit

This bit is reserved for future use.

* Bit 3- OCIENnC: Output Compare C Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Output Compare C Match interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 57) is executed when the
OCFnC flag, located in TIFRn, is set.

* Bit 2 - OCIENnB: Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Output Compare B Match interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 57) is executed when the
OCFnB flag, located in TIFRn, is set.

138 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Timer/Counterl Interrupt Flag
Register — TIFR1

Timer/Counter3 Interrupt Flag
Register — TIFR3

7522C-AUTO-09/06

* Bit 1 - OCIEnA: Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Output Compare A Match interrupt is enabled. The
corresponding Interrupt Vector (See “Interrupts” on page 57) is executed when the
OCFnA flag, located in TIFRnN, is set.

* Bit 0 — TOIENn: Timer/Counter Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts glo-
bally enabled), the Timer/Countern Overflow interrupt is enabled. The corresponding
Interrupt Vector (See “Interrupts” on page 57) is executed when the TOVn flag, located
in TIFRN, is set.

Bit 7 6 5 4 3 2 1 0
| - - ICF1 - OCFIC | OCF1B | OCF1A | TOV1i | TIFR1
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
| - - ICF3 - OCF3C | OCF3B | OCF3A | TOV3 | TIFR3
Read/Write R R R/W R R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7..6 — Reserved Bits

These bits are reserved for future use.

* Bit 5—ICFn: Input Capture Flag

This flag is set when a capture event occurs on the ICPn pin. When the Input Capture
Register (ICRn) is set by the WGMn3:0 to be used as the TOP value, the ICFn flag is set
when the counter reaches the TOP value.

ICFn is automatically cleared when the Input Capture Interrupt Vector is executed. Alter-
natively, ICFn can be cleared by writing a logic one to its bit location.
* Bit 4 — Reserved Bit

This bit is reserved for future use.

e Bit 3- OCFnC: Output Compare C Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Out-
put Compare Register C (OCRNC).

Note that a Forced Output Compare (FOCnC) strobe will not set the OCFnC flag.
OCFnC is automatically cleared when the Output Compare Match C Interrupt Vector is
executed. Alternatively, OCFnC can be cleared by writing a logic one to its bit location.
* Bit 2 - OCFnB: Output Compare B Match Flag

This flag is set in the timer clock cycle after the counter (TCNTnN) value matches the Out-
put Compare Register B (OCRnNB).

Note that a Forced Output Compare (FOCnB) strobe will not set the OCFnB flag.

Alm L 139

I)

140

ATMEL

OCFnB is automatically cleared when the Output Compare Match B Interrupt Vector is
executed. Alternatively, OCFnB can be cleared by writing a logic one to its bit location.
e Bit 1 - OCFnA: Output Compare A Match Flag

This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Out-
put Compare Register A (OCRnA).

Note that a Forced Output Compare (FOCnA) strobe will not set the OCFnA flag.
OCFnA is automatically cleared when the Output Compare Match A Interrupt Vector is
executed. Alternatively, OCFnA can be cleared by writing a logic one to its bit location.
* Bit 0 — TOVn: Timer/Counter Overflow Flag

The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC
modes, the TOVn flag is set when the timer overflows. Refer to Table 64 on page 134
for the TOVn flag behavior when using another WGMn3:0 bit setting.

TOVn is automatically cleared when the Timer/Countern Overflow Interrupt Vector is
executed. Alternatively, TOVn can be cleared by writing a logic one to its bit location.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

8-bit Timer/Counter2 with PWM and Asynchronous Operation

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The
main features are:

Features * Single Channel Counter
e Clear Timer on Compare Match (Auto Reload)
* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Frequency Generator
* 10-bit Clock Prescaler
* Overflow and Compare Match Interrupt Sources (TOV2 and OCF2A)
* Allows Clocking from External 32 kHz Watch Crystal Independent of the 1/0 Clock

Overview Many register and bit references in this section are written in general form.

* Alower case “n” replaces the Timer/Counter number, in this case 2. However, when
using the register or bit defines in a program, the precise form must be used, i.e.,
TCNT2 for accessing Timer/Counter2 counter value and so on.

» Alower case “X” replaces the Output Compare unit channel, in this case A.
However, when using the register or bit defines in a program, the precise form must
be used, i.e., OCR2A for accessing Timer/Counter2 output compare channel A
value and so on.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 61. For the
actual placement of I/O pins, refer to Figure 2 on page 4. CPU accessible I/O Registers,
including I/0O bits and I/O pins, are shown in bold. The device-specific /0 Register and
bit locations are listed in the “8-bit Timer/Counter Register Description” on page 152.

AIMEL 141

7522C-AUTO-09/06 I ©

Definitions

ATMEL

Figure 61. 8-bit Timer/Counter2 Block Diagram

A
-t :I TCCRnx |
count > TOVn
clear (Int.Req.)
—— Control Logic
direction clky,
—» TOSC2

T/IC
Oscillator

BOTTOM

Prescaler
TOSC1

y Y

Timer/Counter
TCNTn | ,—_O—l

* OoCnx clkyo
(%2} (Int.Req.)
3 ! f
p— | Waveform
|<£ |:__| "| Generation B OCnx
[a)]
4—»' OCRnNXx

. l CI k e}
Synchronized Status flags

Synchronization Unit
* f——clk,q,

Status flags 9
J > ASSRn A

asynchronous mode
select (ASn)

A

 J

4

\

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A) are 8-bit registers.
Interrupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag
Register (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask
Register (TIMSK2). TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously
clocked from the TOSC1/2 pins, as detailed later in this section. The asynchronous
operation is controlled by the Asynchronous Status Register (ASSR). The Clock Select
logic block controls which clock source the Timer/Counter uses to increment (or decre-
ment) its value. The Timer/Counter is inactive when no clock source is selected. The
output from the Clock Select logic is referred to as the timer clock (clky,).

The double buffered Output Compare Register (OCR2A) is compared with the
Timer/Counter value at all times. The result of the compare can be used by the Wave-
form Generator to generate a PWM or variable frequency output on the Output Compare
pin (OC2A). See “Output Compare Unit” on page 144 for details. The compare match
event will also set the compare flag (OCF2A) which can be used to generate an Output
Compare interrupt request.

The definitions in Table 66 are also used extensively throughout the section.

142 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Timer/Counter Clock
Sources

Counter Unit

7522C-AUTO-09/06

Table 66. Definitions

BOTTOM | The counter reaches the BOTTOM when it becomes zero (0x00).
MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest
value in the count sequence. The TOP value can be assigned to be the
fixed value OXFF (MAX) or the value stored in the OCR2A Register. The
assignment is dependent on the mode of operation.

The Timer/Counter can be clocked by an internal synchronous or an external asynchro-
nous clock source. The clock source is selected by the clock select logic which is
controlled by the clock select (CS22:0) bits located in the Timer/Counter control register
(TCCR2).The clock source clky, is by default equal to the MCU clock, clk;,q. When the
AS2 bit in the ASSR Register is written to logic one, the clock source is taken from the
Timer/Counter Oscillator connected to TOSC1 and TOSC2 or directly from TOSCL1. For
details on asynchronous operation, see “Asynchronous Status Register — ASSR” on
page 155. For details on clock sources and prescaler, see “Timer/Counter2 Prescaler”
on page 159.

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit.
Figure 62 shows a block diagram of the counter and its surrounding environment.

Figure 62. Counter Unit Block Diagram

TOVn

—
DATA BUS (intReq)
- -
t —® TOSC2
count TIC
clear clk clk; o Oscillator
TCNTn Control Logic [+ Prescaler |-
direction TOSC1
bottom T Ttop
clko
Figure 63.

Signal description (internal signals):
count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).
clky, Timer/Counter clock.
top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or dec-
remented at each timer clock (clky,). clks, can be generated from an external or internal
clock source, selected by the Clock Select bits (CS22:0). When no clock source is
selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be accessed

Alm L 143

I)

Output Compare Unit

ATMEL

by the CPU, regardless of whether clk;, is present or not. A CPU write overrides (has
priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits
located in the Timer/Counter Control Register (TCCR2A). There are close connections
between how the counter behaves (counts) and how waveforms are generated on the
Output Compare output OC2A. For more details about advanced counting sequences
and waveform generation, see “Modes of Operation” on page 146.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation
selected by the WGM21.:0 bits. TOV2 can be used for generating a CPU interrupt.

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2A). Whenever TCNT2 equals OCR2A, the comparator signals a match. A match
will set the Output Compare Flag (OCF2A) at the next timer clock cycle. If enabled
(OCIE2A = 1), the Output Compare Flag generates an Output Compare interrupt. The
OCF2A flag is automatically cleared when the interrupt is executed. Alternatively, the
OCF2A flag can be cleared by software by writing a logical one to its I/O bit location. The
Waveform Generator uses the match signal to generate an output according to operat-
ing mode set by the WGM21:0 bits and Compare Output mode (COM2A1:0) bits. The
max and bottom signals are used by the Waveform Generator for handling the special
cases of the extreme values in some modes of operation (“Modes of Operation” on page
146).

Figure 64 shows a block diagram of the Output Compare unit.

Figure 64. Output Compare Unit, Block Diagram
DATA BUS

- t t >
OCRnx TCNTn

JL 1L

| = (8-bit Comparator) |

OCFnx (Int.Req.)
»

A

top »

bottom | Waveform Generator oCnx

L]

WGMn1:0 COMNX1:0

FOCn »

The OCR2A Register is double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation,
the double buffering is disabled. The double buffering synchronizes the update of the
OCR2A Compare Register to either top or bottom of the counting sequence. The syn-
chronization prevents the occurrence of odd-length, non-symmetrical PWM pulses,
thereby making the output glitch-free.

The OCR2A Register access may seem complex, but this is not case. When the double
buffering is enabled, the CPU has access to the OCR2A Buffer Register, and if double
buffering is disabled the CPU will access the OCR2A directly.

144 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Force Output Compare

Compare Match Blocking by
TCNT2 Write

Using the Output Compare
Unit

7522C-AUTO-09/06

In non-PWM waveform generation modes, the match output of the comparator can be
forced by writing a one to the Force Output Compare (FOC2A) bit. Forcing compare
match will not set the OCF2A flag or reload/clear the timer, but the OC2A pin will be
updated as if a real compare match had occurred (the COM2AL1:0 bits settings define
whether the OC2A pin is set, cleared or toggled).

All CPU write operations to the TCNT2 Register will block any compare match that
occurs in the next timer clock cycle, even when the timer is stopped. This feature allows
OCR2A to be initialized to the same value as TCNT2 without triggering an interrupt
when the Timer/Counter clock is enabled.

Since writing TCNT2 in any mode of operation will block all compare matches for one
timer clock cycle, there are risks involved when changing TCNT2 when using the Output
Compare channel, independently of whether the Timer/Counter is running or not. If the
value written to TCNT2 equals the OCR2A value, the compare match will be missed,
resulting in incorrect waveform generation. Similarly, do not write the TCNT2 value
equal to BOTTOM when the counter is downcounting.

The setup of the OC2A should be performed before setting the Data Direction Register
for the port pin to output. The easiest way of setting the OC2A value is to use the Force
Output Compare (FOC2A) strobe bit in Normal mode. The OC2A Register keeps its
value even when changing between Waveform Generation modes.

Be aware that the COM2A1:0 bits are not double buffered together with the compare
value. Changing the COM2AL1.:0 bits will take effect immediately.

AIMEL 145

I)

Compare Match Output
Unit

Compare Output Function

Compare Output Mode and
Waveform Generation

Modes of Operation

ATMEL

The Compare Output mode (COM2AL1:0) bits have two functions. The Waveform Gener-
ator uses the COM2A1.:0 bits for defining the Output Compare (OC2A) state at the next
compare match. Also, the COM2AL1.:0 bits control the OC2A pin output source. Figure 65
shows a simplified schematic of the logic affected by the COM2A1:0 bit setting. The I/O
Registers, 1/O bits, and I/O pins in the figure are shown in bold. Only the parts of the
general 1/0O port control registers (DDR and PORT) that are affected by the COM2A1:0
bits are shown. When referring to the OC2A state, the reference is for the internal OC2A
Register, not the OC2A pin.

Figure 65. Compare Match Output Unit, Schematic

—D

COMnx1
COMnNx0 Waveform D Q
FOCnx Generator
— 1
OCnx
OCnx Pin
0
A
»D Q
3
m PORT
<
i
[a) VD Q
DDR
clk,o

The general I/O port function is overridden by the Output Compare (OC2A) from the
Waveform Generator if either of the COM2A1:0 bits are set. However, the OC2A pin
direction (input or output) is still controlled by the Data Direction Register (DDR) for the
port pin. The Data Direction Register bit for the OC2A pin (DDR_OC2A) must be set as
output before the OC2A value is visible on the pin. The port override function is indepen-
dent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2A state
before the output is enabled. Note that some COM2AL1:0 bit settings are reserved for
certain modes of operation. See “8-bit Timer/Counter Register Description” on page 152

The Waveform Generator uses the COM2A1.:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM2A1:0 = 0 tells the Waveform Generator that no
action on the OC2A Register is to be performed on the next compare match. For com-
pare output actions in the non-PWM modes refer to Table 68 on page 153. For fast
PWM mode, refer to Table 69 on page 153, and for phase correct PWM refer to Table
70 on page 154.

A change of the COM2A1.:0 bits state will have effect at the first compare match after the
bits are written. For non-PWM modes, the action can be forced to have immediate effect
by using the FOC2A strobe bits.

The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare
pins, is defined by the combination of the Waveform Generation mode (WGM21:0) and

146 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Normal Mode

Clear Timer on Compare
Match (CTC) Mode

7522C-AUTO-09/06

Compare Output mode (COM2A1:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM2A1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COM2AL1:0 bits control whether the out-
put should be set, cleared, or toggled at a compare match (See “Compare Match Output
Unit” on page 146).

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 151.

The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 8-bit value (TOP = OxFF) and then
restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag
(TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The
TOV?2 flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV2
flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.

In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2A Register is used
to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT2) matches the OCR2A. The OCR2A defines the top value for
the counter, hence also its resolution. This mode allows greater control of the compare
match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 66. The counter value
(TCNTZ2) increases until a compare match occurs between TCNT2 and OCR2A, and
then counter (TCNT?2) is cleared.

Figure 66. CTC Mode, Timing Diagram

OCnx Interrupt Flag Set

-

/ / / o

OCnx]
(Toggle) _ L L

(COMnNx1:0 = 1)

Period I 1 ~I 2 ~I 3 ~I 4 ~I

An interrupt can be generated each time the counter value reaches the TOP value by
using the OCF2A flag. If the interrupt is enabled, the interrupt handler routine can be
used for updating the TOP value. However, changing the TOP to a value close to BOT-
TOM when the counter is running with none or a low prescaler value must be done with
care since the CTC mode does not have the double buffering feature. If the new value
written to OCR2A is lower than the current value of TCNT2, the counter will miss the
compare match. The counter will then have to count to its maximum value (OxFF) and
wrap around starting at 0x00 before the compare match can occur.

Alm L 147

I)

Fast PWM Mode

148 AT90CAN128 Auto

ATMEL

For generating a waveform output in CTC mode, the OC2A output can be set to toggle
its logical level on each compare match by setting the Compare Output mode bits to tog-
gle mode (COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the
data direction for the pin is set to output. The waveform generated will have a maximum
frequency of focon = fo 110/2 when OCR2A is set to zero (0x00). The waveform fre-
quency is defined by the following equation:

p _ Jelk 1o
OCnx 2N . (1+OCRnx)

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 flag is set in the same timer clock cycle
that the counter counts from MAX to 0x00.

The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high fre-
guency PWM waveform generation option. The fast PWM differs from the other PWM
option by its single-slope operation. The counter counts from BOTTOM to MAX then
restarts from BOTTOM. In non-inverting Compare Output mode, the Output Compare
(OC2A) is cleared on the compare match between TCNT2 and OCR2A, and set at BOT-
TOM. In inverting Compare Output mode, the output is set on compare match and
cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the
fast PWM mode can be twice as high as the phase correct PWM mode that uses dual-
slope operation. This high frequency makes the fast PWM mode well suited for power
regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX
value. The counter is then cleared at the following timer clock cycle. The timing diagram
for the fast PWM mode is shown in Figure 67. The TCNT2 value is in the timing diagram
shown as a histogram for illustrating the single-slope operation. The diagram includes
non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2
slopes represent compare matches between OCR2A and TCNT2.

Figure 67. Fast PWM Mode, Timing Diagram

OCRnX Interrupt Flag Set

OCRnNx Update and
TOVn Interrupt Flag Set

T A A /
m//////
OCnx (COMNXL:0 = 2)

OCnx |_| (COMNX1:0 = 3)
; | e o e e e e ol
Period |<—1 2 — A I —7

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If
the interrupt is enabled, the interrupt handler routine can be used for updating the com-
pare value.

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Phase Correct PWM Mode

7522C-AUTO-09/06

In fast PWM mode, the compare unit allows generation of PWM waveforms on the
OC2A pin. Setting the COM2A1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM2AL1:0 to three (See Table 69
on page 153). The actual OC2A value will only be visible on the port pin if the data direc-
tion for the port pin is set as output. The PWM waveform is generated by setting (or
clearing) the OC2A Register at the compare match between OCR2A and TCNT2, and
clearing (or setting) the OC2A Register at the timer clock cycle the counter is cleared
(changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

~ Jak o

fOCnxPWM N - 256

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a
PWM waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM,
the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A
equal to MAX will result in a constantly high or low output (depending on the polarity of
the output set by the COM2A1.:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved
by setting OC2A to toggle its logical level on each compare match (COM2A1:0 = 1). The
waveform generated will have a maximum frequency of fy.,n = fok 1o/2 Wwhen OCR2A is
set to zero. This feature is similar to the OC2A toggle in CTC mode, except the double
buffer feature of the Output Compare unit is enabled in the fast PWM mode.

The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-
slope operation. The counter counts repeatedly from BOTTOM to MAX and then from
MAX to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC2A)
is cleared on the compare match between TCNT2 and OCR2A while upcounting, and
set on the compare match while downcounting. In inverting Output Compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency
than single slope operation. However, due to the symmetric feature of the dual-slope
PWM modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase
correct PWM mode the counter is incremented until the counter value matches MAX.
When the counter reaches MAX, it changes the count direction. The TCNT2 value will
be equal to MAX for one timer clock cycle. The timing diagram for the phase correct
PWM mode is shown on Figure 68. The TCNT2 value is in the timing diagram shown as
a histogram for illustrating the dual-slope operation. The diagram includes non-inverted
and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes repre-
sent compare matches between OCR2A and TCNT2.

AIMEL 149

I)

150

ATMEL

Figure 68. Phase Correct PWM Mode, Timing Diagram

OCnx Interrupt Flag Set

OCRnx Update

TOVnN Interrupt Flag Set

-t
¢
-t
¢
-t
-t
-t
¢

o/ ININATN

OCnx |_| |_ (COMNX1:0 = 2)
OCnx |_| |—| |— (COMNx1:0 = 3)
Period I 1 I 2 I 3 I

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOT-
TOM. The interrupt flag can be used to generate an interrupt each time the counter
reaches the BOTTOM value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on
the OC2A pin. Setting the COM2AL1.:0 bits to two will produce a non-inverted PWM. An
inverted PWM output can be generated by setting the COM2AL1:0 to three (See Table 70
on page 154). The actual OC2A value will only be visible on the port pin if the data direc-
tion for the port pin is set as output. The PWM waveform is generated by clearing (or
setting) the OC2A Register at the compare match between OCR2A and TCNT2 when
the counter increments, and setting (or clearing) the OC2A Register at compare match
between OCR2A and TCNT2 when the counter decrements. The PWM frequency for
the output when using phase correct PWM can be calculated by the following equation:

_ Jew o

fOCnxPCPWM N-510

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCR2A is set equal to
BOTTOM, the output will be continuously low and if set equal to MAX the output will be
continuously high for non-inverted PWM mode. For inverted PWM the output will have
the opposite logic values.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Timer/Counter Timing The following figures show the Timer/Counter in synchronous mode, and the timer clock

Diagrams (clky,) is therefore shown as a clock enable signal. In asynchronous mode, clk;,5 should
be replaced by the Timer/Counter Oscillator clock. The figures include information on
when interrupt flags are set. Figure 69 contains timing data for basic Timer/Counter
operation. The figure shows the count sequence close to the MAX value in all modes
other than phase correct PWM mode.

Figure 69. Timer/Counter Timing Diagram, no Prescaling

clk,,
(clk, /1)
TONTn | MAX - 1 MAX BOTTOM BOTTOM + 1
TOVn

Figure 70 shows the same timing data, but with the prescaler enabled.

Figure 70. Timer/Counter Timing Diagram, with Prescaler (f; ,,0/8)

clk

I R i s
<c?k'55/”s> F r r r

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

/0

TOVn

Figure 71 shows the setting of OCF2A in all modes except CTC mode.

Figure 71. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (f ,0/8)

« [JUUUUUUULUUUTU UL UUUUUU iUyt
[i] i
(clk,,/8)
TCNTn] OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2
OCRnx OCRnx Value
OCFnx

AIMEL 151

7522C-AUTO-09/06 I ©

8-bit Timer/Counter
Register Description

Timer/Counter2 Control
Register A— TCCR2A

ATMEL

Figure 72 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 72. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with
Prescaler (fo 10/8)

S
<c?iﬁ/"8) F r r r

TCNTn
(CTC)] TOP - 1 TOP BOTTOM BOTTOM + 1
OCRnx TOP
OCFnx
Bit 7 6 5 4 3 2 1 0
| FOC2A | WGM20 | COM2A1 | COM2A0 | WGM21 CS22 CS21 CS20 | TCCR2A
Read/Write W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - FOC2A: Force Output Compare A

The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However,
for ensuring compatibility with future devices, this bit must be set to zero when TCCR2A
is written when operating in PWM mode. When writing a logical one to the FOC2A bit,
an immediate compare match is forced on the Waveform Generation unit. The OC2A
output is changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is
implemented as a strobe. Therefore it is the value present in the COM2A1:0 bits that
determines the effect of the forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode
using OCR2A as TOP.

The FOC2A bit is always read as zero.

152 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

e Bit 6, 3—WGM21:0: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum
(TOP) counter value, and what type of waveform generation to be used. Modes of oper-
ation supported by the Timer/Counter unit are: Normal mode, Clear Timer on Compare
match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes. See Table
67 and “Modes of Operation” on page 146.

Table 67. Waveform Generation Mode Bit Descriptiont?)

7522C-AUTO-09/06

WGM21 | WGM20 | Timer/Counter Mode Update of | TOV2 Flag
Mode | (CTC2) | (PWM2) | of Operation TOP OCR2A at | Seton
0 0 0 Normal OxFF Immediate | MAX
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCR2A | Immediate | MAX
3 1 1 Fast PWM OxFF TOP MAX
Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 def-

initions. However, the functionality and location of these bits are compatible with
previous versions of the timer.

* Bit 5:4 — COM2A1:0: Compare Match Output Mode A

These bits control the Output Compare pin (OC2A) behavior. If one or both of the
COM2A1:0 bits are set, the OC2A output overrides the normal port functionality of the
I/0 pin it is connected to. However, note that the Data Direction Register (DDR) bit cor-
responding to OC2A pin must be set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1.:0 bits depends on the
WGM21:0 bit setting. Table 68 shows the COM2AL1:0 bit functionality when the
WGM21:0 bits are set to a normal or CTC mode (non-PWM).

Table 68. Compare Output Mode, non-PWM Mode

COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Toggle OC2A on compare match.
1 0 Clear OC2A on compare match.
1 1 Set OC2A on compare match.

Table 69 shows the COM2A1.:0 bit functionality when the WGM21:0 bits are set to fast
PWM mode.

Table 69. Compare Output Mode, Fast PWM Mode™

COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Reserved
1 0 Clear OC2A on compare match.
Set OC2A at TOP.
1 1 Set OC2A on compare match.
Clear OC2A at TOP.

153

AIMEL

I)

Timer/Counter2 Register —
TCNT2

ATMEL

Note: 1. A special case occurs when OCR2A equals TOP and COM2AL is set. In this case,
the compare match is ignored, but the set or clear is done at TOP. See “Fast PWM
Mode” on page 148 for more details.

Table 70 shows the COM21:0 bit functionality when the WGM21.:0 bits are set to phase
correct PWM mode.

Table 70. Compare Output Mode, Phase Correct PWM Mode®

COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 Reserved
1 0 Clear OC2A on compare match when up-counting.
Set OC2A on compare match when downcounting.
1 1 Set OC2A on compare match when up-counting.
Clear OC2A on compare match when downcounting.

Note: 1. A special case occurs when OCR2A equals TOP and COM2AL is set. In this case,
the compare match is ignored, but the set or clear is done at TOP. See “Phase Cor-
rect PWM Mode” on page 149 for more details.

* Bit 2:0 - CS22:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see
Table 71.

Table 71. Clock Select Bit Description

CSs22 Cs21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkrog/(No prescaling)

0 1 0 clky,5/8 (From prescaler)

0 1 1 clky,5/32 (From prescaler)

1 0 0 clkyo5/64 (From prescaler)

1 0 1 clk1o5/128 (From prescaler)

1 1 0 clky,5/256 (From prescaler)

1 1 1 clky,5/1024 (From prescaler)
Bit 7 6 5 4 3 2 1 0

| TCNT2[7:0] | Tonm2

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to
the Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes)
the compare match on the following timer clock. Modifying the counter (TCNT2) while
the counter is running, introduces a risk of missing a compare match between TCNT2
and the OCR2A Register.

154 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Output Compare Register A —

OCR2A Bit 7 6 5 4 3 2 1 0
| OCR2A[7:0] | ocrea
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared
with the counter value (TCNT2). A match can be used to generate an Output Compare
interrupt, or to generate a waveform output on the OC2A pin.

Asynchronous operation
of the Timer/Counter2

Asynchronous Status

Register — ASSR Bit U 5 5 4 3 2 1 0
| - - - EXCLK AS2 TCN2UB | OCR2UB | TCR2UB | ASSR

Read/Write R R R R/W R/W R R R

Initial Value 0 0 0 0 0 0 0 0

* Bit 7..5 - Reserved Bits

These bits are reserved for future use.

» Bit 4 — EXCLK: Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock
input buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1)
pin instead of a 32 kHz crystal. Writing to EXCLK should be done before asynchronous
operation is selected. Note that the crystal Oscillator will only run when this bit is zero.

» Bit 3—-AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the 1/O clock, clk,q and the
crystal Oscillator connected to the Timer/Counter2 Oscillator (TOSC) does nor run.
When AS2 is written to one, Timer/Counter2 is clocked from a crystal Oscillator con-
nected to the Timer/Counter2 Oscillator (TOSC) or from external clock on TOSC1
depending on EXCLK setting. When the value of AS2 is changed, the contents of
TCNT2, OCR2A, and TCCR2A might be corrupted.

» Bit 2 - TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes
set. When TCNT2 has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that TCNT2 is ready to be
updated with a new value.

* Bit 1 - OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes
set. When OCR2A has been updated from the temporary storage register, this bit is
cleared by hardware. A logical zero in this bit indicates that OCR2A is ready to be
updated with a new value.

» Bit 0 — TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit
becomes set. When TCCR2A has been updated from the temporary storage register,

Alm L 155

7522C-AUTO-09/06 I ©

Asynchronous Operation of
Timer/Counter2

ATMEL

this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2A is ready
to be updated with a new value.

If a write is performed to any of the three Timer/Counter2 Registers while its update
busy flag is set, the updated value might get corrupted and cause an unintentional inter-
rupt to occur.

The mechanisms for reading TCNT2, OCR2A, and TCCR2A are different. When read-
ing TCNT2, the actual timer value is read. When reading OCR2A or TCCR2A, the value
in the temporary storage register is read.

When Timer/Counter2 operates asynchronously, some considerations must be taken.

Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the timer registers TCNT2, OCR2A, and TCCR2A might be
corrupted. A safe procedure for switching clock source is:

1. Disable the Timer/Counter2 interrupts by clearing OCIE2A and TOIE2.
2. Select clock source by setting AS2 and EXCLK as appropriate.

3. Write new values to TCNT2, OCR2A, and TCCR2A.
4

To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and
TCR2UB.

5. Clear the Timer/Counter2 interrupt flags.
6. Enable interrupts, if needed.

The Oscillator is optimized for use with a 32.768 kHz watch crystal. The CPU main
clock frequency must be more than four times the Oscillator or external clock
frequency.

When writing to one of the registers TCNT2, OCR2A, or TCCR2A, the value is
transferred to a temporary register, and latched after two positive edges on TOSC1.
The user should not write a new value before the contents of the temporary register
have been transferred to its destination. Each of the three mentioned registers have
their individual temporary register, which means that e.g. writing to TCNT2 does not
disturb an OCR2A write in progress. To detect that a transfer to the destination
register has taken place, the Asynchronous Status Register — ASSR has been
implemented.

When entering Power-save or Extended Standby mode after having written to
TCNT2, OCR2A, or TCCR2A, the user must wait until the written register has been
updated if Timer/Counter2 is used to wake up the device. Otherwise, the MCU wiill
enter sleep mode before the changes are effective. This is particularly important if
the Output Compare?2 interrupt is used to wake up the device, since the Output
Compare function is disabled during writing to OCR2A or TCNT2. If the write cycle
is not finished, and the MCU enters sleep mode before the OCR2UB bit returns to
zero, the device will never receive a compare match interrupt, and the MCU will not
wake up.

If Timer/Counter2 is used to wake the device up from Power-save or Extended
Standby mode, precautions must be taken if the user wants to re-enter one of these
modes: The interrupt logic needs one TOSCL1 cycle to be reset. If the time between
wake-up and re-entering sleep mode is less than one TOSC1 cycle, the interrupt will
not occur, and the device will fail to wake up. If the user is in doubt whether the time
before re-entering Power-save mode is sufficient, the following algorithm can be
used to ensure that one TOSC1 cycle has elapsed:

1. Write avalue to TCCR2A, TCNT2, or OCR2A.
2. Wait until the corresponding Update Busy flag in ASSR returns to zero.

156 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Timer/Counter2 Interrupt
Mask Register — TIMSK2

7522C-AUTO-09/06

3. Enter Power-save or ADC Noise Reduction mode.

* When the asynchronous operation is selected, the 32.768 kHz Oscillator for

Timer/Counter2 is always running, except in Power-down and Standby modes. After
a Power-up Reset or wake-up from Power-down or Standby mode, the user should
be aware of the fact that this Oscillator might take as long as one second to
stabilize. The user is advised to wait for at least one second before using
Timer/Counter2 after power-up or wake-up from Power-down or Standby mode. The
contents of all Timer/Counter2 Registers must be considered lost after a wake-up
from Power-down or Standby mode due to unstable clock signal upon start-up, no
matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

» Description of wake up from Power-save mode when the timer is clocked

asynchronously: When the interrupt condition is met, the wake up process is started
on the following cycle of the timer clock, that is, the timer is always advanced by at
least one before the processor can read the counter value. After wake-up, the MCU
is halted for four cycles, it executes the interrupt routine, and resumes execution
from the instruction following SLEEP.

» Reading of the TCNT2 Register shortly after wake-up from Power-save may give an
incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading
TCNT2 must be done through a register synchronized to the internal 1/0O clock
domain. Synchronization takes place for every rising TOSC1 edge. When waking up
from Power-save mode, and the 1/O clock (clk,5) again becomes active, TCNT2 will
read as the previous value (before entering sleep) until the next rising TOSC1 edge.
The phase of the TOSC clock after waking up from Power-save mode is essentially
unpredictable, as it depends on the wake-up time. The recommended procedure for
reading TCNT2 is thus as follows:

1. Write any value to either of the registers OCR2A or TCCR2A.
2. Wait for the corresponding Update Busy Flag to be cleared.
3. Read TCNT2.

» During asynchronous operation, the synchronization of the interrupt flags for the
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is
therefore advanced by at least one before the processor can read the timer value
causing the setting of the interrupt flag. The Output Compare pin is changed on the
timer clock and is not synchronized to the processor clock.

Bit 7 6 5 4 3 2 1 0
| - - - - - - OCIE2A | TOIE2 | TIMSK2

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7..2 — Reserved Bits

These bits are reserved for future use.

» Bit 1 - OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one),
the Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt
is executed if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is
set in the Timer/Counter2 Interrupt Flag Register — TIFR2.

Alm L 157

I)

Timer/Counter2 Interrupt Flag
Register — TIFR2

ATMEL

* Bit 0 — TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if
an overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the
Timer/Counter2 Interrupt Flag Register — TIFR2.

Bit 7 6 5 4 3 2 1 0

| - - - - - - OCF2A | TOV2 | TIFR2
Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7..2 — Reserved Bits

These bits are reserved for future use.

* Bit 1 - OCF2A: Output Compare Flag 2 A

The OCF2A hit is set (one) when a compare match occurs between the Timer/Counter2
and the data in OCR2A — Output Compare Register2. OCF2A is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCF2A is
cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2
(Timer/Counter2 Compare match Interrupt Enable), and OCF2A are set (one), the
Timer/Counter2 Compare match Interrupt is executed.

» Bit 0 — TOV2: Timer/Counter2 Overflow Flag

The TOV2 hit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared
by hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV2 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2A
(Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one), the
Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when
Timer/Counter2 changes counting direction at 0x00.

158 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Timer/Counter2 Figure 73. Prescaler for Timer/Counter2
Prescaler
AS2 EXCLK
TOSC2 ¢ Enable

32 kHz
Oscillator]

10-BIT T/C PRESCALER

Clear
A

TOSC1

clky,g/8

clkp,g/32
Clky,/64
Clkppe/128
clky,g/256
Clky,s/1024

EXCLK

PSR2

— O

CSs20
Cs21
Cs22

524

TIMER/COUNTER2 CLOCK SOURCE
clky,

The clock source for Timer/Counter2 is named clky,s. Clky,g is by default connected to
the main system I/O clock clk,q. By setting the AS2 bitin ASSR, Timer/Counter2 is asyn-
chronously clocked from the TOSC oscillator or TOSCL1 pin. This enables use of
Timer/Counter2 as a Real Time Counter (RTC).

A crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an
independent clock source for Timer/Counter2. The Oscillator is optimized for use with a
32.768 kHz crystal. Setting AS2 and resetting EXCLK enables the TOSC oscillator.

Figure 74. Timer/Counter2 Crystal Oscillator Connections

12 - 22 pF
TOSC2
32.768 KHz [
»—)|—b TOSC1
12 - 22 pF
GND

A external clock can also be used using TOSC1 as input. Setting AS2 and EXCLK
enables this configuration.

Figure 75. Timer/Counter2 External Clock Connections

NC —— - TOSC2
External
Clock —— - TOSC1
Signal

Alm L 159

7522C-AUTO-09/06 I ©

General Timer/Counter
Control Register — GTCCR

ATMEL

For Timer/Counter2, the possible prescaled selections are: clky,5/8, clky,5/32, clk ,5/64,
clky,5/128, clky,5/256, and clk,5/1024. Additionally, clky,g as well as 0 (stop) may be
selected. Setting the PSR2 bit in GTCCR resets the prescaler. This allows the user to
operate with a predictable prescaler.

Bit 7 6 5 4 3 2 1 0

| 7sm - - - - - PSR2 | PSR310 | GTCCR
Read/Write R/W R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 1 - PSR2: Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally
cleared immediately by hardware. If the bit is written when Timer/Counter2 is operating
in asynchronous mode, the bit will remain one until the prescaler has been reset. The bit
will not be cleared by hardware if the TSM bit is set. Refer to the description of the “Bit 7
— TSM: Timer/Counter Synchronization Mode” on page 93 for a description of the
Timer/Counter Synchronization mode.

160 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Output Compare Modulator - OCM

Overview Many register and bit references in this section are written in general form.

* Alower case “n” replaces the Timer/Counter number, in this case 0 and 1. However,
when using the register or bit defines in a program, the precise form must be used,
i.e., TCNTO for accessing Timer/CounterO counter value and so on.

* Alower case “X” replaces the Output Compare unit channel, in this case A or C.
However, when using the register or bit defines in a program, the precise form must
be used, i.e., OCROA for accessing Timer/CounterO output compare channel A
value and so on.

The Output Compare Modulator (OCM) allows generation of waveforms modulated with
a carrier frequency. The modulator uses the outputs from the Output Compare Unit C of
the 16-bit Timer/Counterl and the Output Compare Unit of the 8-bit Timer/Counter0. For
more details about these Timer/Counters see “16-bit Timer/Counter (Timer/Counterl
and Timer/Counter3)” on page 109 and “8-bit Timer/Counter0 with PWM” on page 95.

Figure 76. Output Compare Modulator, Block Diagram

Timer/Counter 1

OCl1C

Pin

OCOA / OC1C/PB7

Timer/Counter O OCOA

When the modulator is enabled, the two output compare channels are modulated
together as shown in the block diagram (Figure 76).

Description The Output Compare unit 1C and Output Compare unit OA shares the PB7 port pin for
output. The outputs of the Output Compare units (OC1C and OCOA) overrides the nor-
mal PORTB7 Register when one of them is enabled (i.e., when COMnx1:0 is not equal
to zero). When both OC1C and OCOA are enabled at the same time, the modulator is
automatically enabled.

When the modulator is enabled the type of modulation (logical AND or OR) can be
selected by the PORTB7 Register. Note that the DDRB7 controls the direction of the
port independent of the COMnNXx1:0 bit setting.

The functional equivalent schematic of the modulator is shown on Figure 77. The sche-
matic includes part of the Timer/Counter units and the port B pin 7 output driver circuit.

AIMEL 161

7522C-AUTO-09/06 I ©

COMOA1
COMOAO

COMI1C1
COM1CO

7y

ATMEL

Figure 77. Output Compare Modulator, Schematic

Modulator
DI 0\ |

(From T/C1 ——»|
Waveform Generator)

Pin

(From T/CO ——»
Waveform Generator)

OCOA /OC1C/PB7

oot .

Timing Example

PORTB7

Resolution of the PWM Signal

DDRB7
DATABUS

Figure 78 illustrates the modulator in action. In this example the Timer/Counterl is set to
operate in fast PWM mode (non-inverted) and Timer/CounterO uses CTC waveform
mode with toggle Compare Output mode (COMnx1:0 = 1).

Figure 78. Output Compare Modulator, Timing Diagram

i L O e

OCi1C
(FPWM Mode) |

LUUITUUIUUIL
BRI
]

OCOA
(CTC Mode)

EHIGTIL

PB7
(PORTB7 = 0)

=El

1]
1]

PB7
(PORTB7 = 1)

JIUHUUUUL

3

JUUL TUBDTUOUY

T

(Period)

In this example, Timer/Counter0 provides the carrier, while the modulating signal is gen-
erated by the Output Compare unit C of the Timer/Counterl.

The resolution of the PWM signal (OC1C) is reduced by the modulation. The reduction
factor is equal to the number of system clock cycles of one period of the carrier (OCOA).
In this example the resolution is reduced by a factor of two. The reason for the reduction
is illustrated in Figure 78 at the second and third period of the PB7 output when
PORTBY7 equals zero. The period 2 high time is one cycle longer than the period 3 high
time, but the result on the PB7 output is equal in both periods.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Serial Peripheral Interface — SPI

Features

7522C-AUTO-09/06

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer
between the AT90CAN128 and peripheral devices or between several AVR devices.
The AT90CAN128 SPI includes the following features:

* Full-duplex, Three-wire Synchronous Data Transfer
* Master or Slave Operation

e LSB First or MSB First Data Transfer

* Seven Programmable Bit Rates

* End of Transmission Interrupt Flag

* Write Collision Flag Protection

* Wake-up from Idle Mode

* Double Speed (CK/2) Master SPI Mode

Figure 79. SPI Block Diagram®

MISO
y s
clkio MSB LSB Mo
- D s Q
l 8 BIT SHIFT REGISTER 9
READ DATA BUFFER 3
DIVIDER &
12/4/8/16/32/64/128 : - Z
v O
O
L v vy CLOCK z
SPI CLOCK (MASTER) | o
SELECT CLOCK S i
LOGIC v
A A A L
Xl =| 2 7'y 2 2 -7
NI 44 SS
&l &| 5
hd [m]
Elwl
2 5 8
3 4MSTR
SPI CONTROL «SPE
Qo — < — o
L
u @ o« o, & & 8 2 & & & &
ol © N n| »nl Qo 2 O O un o
VA L1118
v v | SPI CONTROL REGISTER
| SPI STATUS REGISTER |
‘ R 8 %
v

SPI INTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Refer to Figure 2 on page 4, and Table 33 on page 72 for SPI pin placement.

The interconnection between Master and Slave CPUs with SPI is shown in Figure 80.
The system consists of two shift Registers, and a Master clock generator. The SPI Mas-
ter initiates the communication cycle when pulling low the Slave Select SS pin of the
desired Slave. Master and Slave prepare the data to be sent in their respective shift
Registers, and the Master generates the required clock pulses on the SCK line to inter-

AIMEL 163

I)

164

ATMEL

change data. Data is always shifted from Master to Slave on the Master Out — Slave In,
MOSI, line, and from Slave to Master on the Master In — Slave Out, MISO, line. After
each data packet, the Master will synchronize the Slave by pulling high the Slave Select,
SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line.
This must be handled by user software before communication can start. When this is
done, writing a byte to the SPI Data Register starts the SPI clock generator, and the
hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock gener-
ator stops, setting the end of transmission flag (SPIF). If the SPI Interrupt Enable bit
(SPIE) in the SPCR Register is set, an interrupt is requested. The Master may continue
to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high
the Slave Select, SS line. The last incoming byte will be kept in the Buffer Register for
later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated
as long as the SS pin is driven high. In this state, software may update the contents of
the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock
pulses on the SCK pin until the SS pin is driven low. As one byte has been completely
shifted, the end of transmission flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in
the SPCR Register is set, an interrupt is requested. The Slave may continue to place
new data to be sent into SPDR before reading the incoming data. The last incoming byte
will be kept in the Buffer Register for later use.

Figure 80. SPI Master-slave Interconnection
MSB MASTER LSB 50 wmiso MSB SLAVE LSB

8 BIT SHIFT REGISTER |——<«————+———| 8 BIT SHIFT REGISTER T

v

iMOSI MOSIi

SHIFT
ENABLE

SPI SCK sCK
CLOCK GENERATOR| " r————

The system is single buffered in the transmit direction and double buffered in the receive
direction. This means that bytes to be transmitted cannot be written to the SPI Data
Register before the entire shift cycle is completed. When receiving data, however, a
received character must be read from the SPI Data Register before the next character
has been completely shifted in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To
ensure correct sampling of the clock signal, the frequency of the SPI clock should never
exceed fy,;./4.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is
overridden according to Table 72. For more details on automatic port overrides, refer to
“Alternate Port Functions” on page 68.

Table 72. SPI Pin Overrides®

Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input
MISO Input User Defined

SCK User Defined Input

sSs User Defined Input

Note: 1. See “Alternate Functions of Port B” on page 72 for a detailed description of how to
define the direction of the user defined SPI pins.

AIMEL 165

I)

166

ATMEL

The following code examples show how to initialize the SPI as a Master and how to per-
form a simple transmission.

DDR_SPI in the examples must be replaced by the actual Data Direction Register con-
trolling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual
data direction bits for these pins. E.g. if MOSI is placed on pin PB2, replace DD_MOSI
with DDB2 and DDR_SPI with DDRB.

Assembly Code Example®

SPI_MasterInit:
; Set MOSI and SCK output, all others input

1di rl7, (1<<DD_MOSI) | (1<<DD_SCK)

out DDR_SPI,rl7

; Enable SPI, Master, set clock rate fck/16

1di rl7, (1<<SPE) | (1<<MSTR) | (1<<SPRO)

out SPCR,rl7

ret

SPI_MasterTransmit:
; Start transmission of data (rlé)
out SPDR, rlé6

Wait Transmit:

; Wait for transmission complete
in rl7,SPSR

sbrs rl17,SPIF

rjmp Wait Transmit

ret

C Code Example®

void SPI_MasterInit (void)

{
/* Set MOSI and SCK output, all others input */
DDR_SPI = (1<<DD_MOST) | (1<<DD_SCK) ;
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPRO) ;

void SPI_MasterTransmit (char cData)
/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */

while (! (SPSR & (1<<SPIF)))

7

Note: 1. The example code assumes that the part specific header file is included.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

The following code examples show how to initialize the SPI as a Slave and how to per-
form a simple reception.

Assembly Code Example®

SPI_SlavelInit:
; Set MISO output, all others input
1di rl17, (1<<DD_MISO)
out DDR_SPI,rl7
; Enable SPI
1di rl7, (1<<SPE)
out SPCR,rl7

ret

SPI_SlaveReceive:
; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in rl6,SPDR

ret

C Code Example®

void SPI_SlavelInit (void)
{
/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO) ;
/* Enable SPI */
SPCR = (1<<SPE);

char SPI_SlaveReceive (void)

{
/* Wait for reception complete */
while (! (SPSR & (1<<SPIF)))
/* Return data register */

return SPDR;

Note: 1. The example code assumes that the part specific header file is included.

AIMEL 167

I)

SS Pin Functionality

Slave Mode

Master Mode

SPI Control Register — SPCR

ATMEL

When the SPl is configured as a Slave, the Slave Select (S_S) pin is always input. When
SS is held low, the SPI is activated, and MISO becomes an output if configured so by
the user. All other pins are inputs. When SS is driven high, all pins are inputs, and the
SPl is passive, which means that it will not receive incoming data. Note that the SPI
logic will be reset once the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter syn-
chronous with the master clock generator. When the SS pin is driven high, the SPI slave
will immediately reset the send and receive logic, and drop any partially received data in
the Shift Register.

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine
the direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the
SPI system. Typically, the pin will be driving the SS pin of the SPI Slave.

If g_is configured as an input, it must be held high to ensure Master SPI operation. If
the SS pin is driven low by peripheral circuitry when the SPI is configured as a Master
with the SS pin defined as an input, the SPI system interprets this as another master
selecting the SPI as a slave and starting to send data to it. To avoid bus contention, the
SPI system takes the following actions:

1. The MSTR bitin SPCR is cleared and the SPI system becomes a Slave. As a
result of the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in
SREG is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a
possibility that SS is driven low, the interrupt should always check that the MSTR bit is
still set. If the MSTR bit has been cleared by a slave select, it must be set by the user to
re-enable SPI Master mode.

Bit 7 6 5 4 3 2 1 0
| srE SPE DORD | MSTR CPOL CPHA SPR1 SPRO | spcr

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

» Bit 7 — SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set
and the if the Global Interrupt Enable bit in SREG is set.

* Bit 6 — SPE: SPI Enable

When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable
any SPI operations.

* Bit 5 - DORD: Data Order

When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.

168 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

SPI Status Register — SPSR

7522C-AUTO-09/06

* Bit 4 — MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written
logic zero. If SSis configured as an input and is driven low while MSTR is set, MSTR will
be cleared, and SPIF in SPSR will become set. The user will then have to set MSTR to
re-enable SPI Master mode.

» Bit 3- CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero,
SCK is low when idle. Refer to Figure 81 and Figure 82 for an example. The CPOL func-
tionality is summarized below:

Table 73. CPOL Functionality

CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

* Bit 2 - CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading
(first) or trailing (last) edge of SCK. Refer to Figure 81 and Figure 82 for an example.
The CPOL functionality is summarized below:

Table 74. CPHA Functionality

CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample

* Bits 1, 0 — SPR1, SPRO: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and
SPRO have no effect on the Slave. The relationship between SCK and the clk,, fre-
qguency fy, is shown in the following table:

Table 75. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPRO SCK Frequency
0 0 0 ool
0 0 1 fokio/16
0 1 0 fokiol 64
0 1 1 fkio/128
1 0 0 fokiof2
1 0 1 fokio/8
1 1 0 foio/32
1 1 1 fokio/64
Bit 7 6 5 4 3 2 1 0
| spr WCOL - - - - - spizx | spsr
Read/Write R R R R R R R R/W
Initial Value 0 0 0 0 0 0 0 0
AIMEL 169
Y)

SPI Data Register — SPDR

ATMEL

» Bit 7 — SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF flag is set. An interrupt is generated if SPIE
in SPCR is set and global interrupts are enabled. If SS is an input and is driven low
when the SPI is in Master mode, this will also set the SPIF flag. SPIF is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, the
SPIF bit is cleared by first reading the SPI Status Register with SPIF set, then accessing
the SPI Data Register (SPDR).

» Bit 6 — WCOL: Write COLIlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer.
The WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register
with WCOL set, and then accessing the SPI Data Register.

* Bit5..1 — Res: Reserved Bits

These bits are reserved bits in the AT90CAN128 and will always read as zero.

» Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when
the SPI is in Master mode (see Table 75). This means that the minimum SCK period will
be two CPU clock periods. When the SPI is configured as Slave, the SPI is only guaran-
teed to work at fy,;,/4 or lower.

The SPI interface on the AT90OCAN128 is also used for program memory and EEPROM
downloading or uploading. See page 338 for serial programming and verification.

Bit 7 6 5 4 3 2 1 0
| spo7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPDO | SPDR

Read/Write RIW RIW RIW RIW RIW RIW RIW RIW

Initial Value X X X X X X X X Undefined

* Bits 7:0 - SPD7:0: SPI Data

The SPI Data Register is a read/write register used for data transfer between the Regis-
ter File and the SPI Shift Register. Writing to the register initiates data transmission.
Reading the register causes the Shift Register Receive buffer to be read.

170 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Data Modes

7522C-AUTO-09/06

There are four combinations of SCK phase and polarity with respect to serial data,
which are determined by control bits CPHA and CPOL. The SPI data transfer formats
are shown in Figure 81 and Figure 82. Data bits are shifted out and latched in on oppo-
site edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is
clearly seen by summarizing Table 73 and Table 74, as done below:

Table 76. CPOL Functionality

Leading Edge Trailing eDge SPI Mode
CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) 0
CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) 1
CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) 2
CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) 3

Figure 81. SPI Transfer Format with CPHA =0

[scK (CPOL =0)
mode 0
SCK (CPOL = 1)
mode 2

SAMPLE |
MOSI/MISO

Hpl
iy

L
i

L
ul

L) L L] L
L L L

CHANGE 0 \
MOSI PIN

CHANGE 0
MISO PIN

A
%

s
%

"
A

"
A

a
A

v
A

[s

—

Lol T

MSB first (DORD = 0)
LSB first (DORD = 1)

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Figure 82. SPI Transfer Format with CPHA = 1

SCK (CPOL =0)
mode 1

SAMPLE |
MOSI/MISO

ul
L

|
L

ul
L

Bit 3 Bit 2 Bit 1
Bit 4 Bit5 Bit 6

L L
L L)L

LSB
MSB

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

[s

!

]
| soxgron |

VY

2l

H
A

A
A

A
ja

a
R A

A
H

i

L
iy
Il

~ T

MSB first (DORD = 0)
LSB first (DORD = 1)

MSB
LSB

AlmEL

®

Bit 6
Bit 1

Bit5
Bit 2

Bit 4
Bit 3

Bit 3 Bit 2
Bit 4 Bit5

Bit 1
Bit6

LSB
MSB

171

ATMEL

USART (USARTO and USART1)

Features

Overview

Dual USART

The Universal Synchronous and Asynchronous serial Receiver and Transmitter
(USART) is a highly flexible serial communication device. The main features are:

Full Duplex Operation (Independent Serial Receive and Transmit Registers)
Asynchronous or Synchronous Operation

Master or Slave Clocked Synchronous Operation

High Resolution Baud Rate Generator

Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
Odd or Even Parity Generation and Parity Check Supported by Hardware
Data OverRun Detection

Framing Error Detection

Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
Multi-processor Communication Mode

Double Speed Asynchronous Communication Mode

Many register and bit references in this section are written in general form.

A lower case “n” replaces the USART number, in this case 0 or 1. However, when
using the register or bit defines in a program, the precise form must be used, i.e.,
UDRO for accessing USARTO I/O data value and so on.

The AT90CAN128 has two USART'’s, USARTO and USARTL1. The functionality for both
USART's is described below. USARTO and USARTL1 have different I/O registers as
shown in “Register Summary” on page 398.

172 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

A simplified block diagram of the USARTn Transmitter is shown in Figure 83. CPU
accessible 1/0 Registers and I/O pins are shown in bold.

Figure 83. USARTn Block Diagram®

UBRRN[H:L]

v

|

|

| CLKio
|

|

I BAUD RATE GENERATOR |«

|

|

|

|

Y

I SYNC LOGIC PIN

CONTROL

1 XCKn

A

____________________________ _I

Transmitter

|
. X
UDRnN (Transmit) CONTROL |
+ PARITY I
%) GENERATOR |
2 PIN |
o TRANSMIT SHIFT REGISTER ~I N CONTROL »| TXDn
< > " '
:: |
[a)

Lt CLOCK RX
RECOVERY CONTROL

RxDn

I—V DATA PIN
;:D_» RECEIVE SHIFT REGISTER RECOVERY CONTROL

PARITY
CHECKER

UDRnN (Receive)

|

|

|

|

|

|
L]
| Receiver
|

|

|

|

|

|

|

|

|

y
A
A

UCSRAN UCSRBnN UCSRCn

Note: 1. Refer to Figure 2 on page 4, Table 42 on page 79, and Table 37 on page 75 for
USARTN pin placement.

The dashed boxes in the block diagram separate the three main parts of the USARTnN
(listed from the top): Clock Generator, Transmitter and Receiver. Control registers are
shared by all units. The Clock Generation logic consists of synchronization logic for
external clock input used by synchronous slave operation, and the baud rate generator.
The XCKn (Transfer Clock) pin is only used by synchronous transfer mode. The Trans-
mitter consists of a single write buffer, a serial Shift Register, Parity Generator and
Control logic for handling different serial frame formats. The write buffer allows a contin-
uous transfer of data without any delay between frames. The Receiver is the most
complex part of the USARTNn module due to its clock and data recovery units. The
recovery units are used for asynchronous data reception. In addition to the recovery
units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two
level receive buffer (UDRN). The Receiver supports the same frame formats as the
Transmitter, and can detect Frame Error, Data OverRun and Parity Errors.

AIMEL 173

7522C-AUTO-09/06 I ©

Clock Generation

Internal Clock Generation —
Baud Rate Generator

ATMEL

The Clock Generation logic generates the base clock for the Transmitter and Receiver.
The USARTN supports four modes of clock operation: Normal asynchronous, Double
Speed asynchronous, Master synchronous and Slave synchronous mode. The UMSELnN
bit in USARTn Control and Status Register C (UCSRnNC) selects between asynchronous
and synchronous operation. Double Speed (asynchronous mode only) is controlled by
the U2Xn found in the UCSRNA Register. When using synchronous mode (UMSELNn =
1), the Data Direction Register for the XCKn pin (DDR_XCKn) controls whether the
clock source is internal (Master mode) or external (Slave mode). The XCKn pin is only
active when using synchronous mode.

Figure 84 shows a block diagram of the clock generation logic.

Figure 84. USARTnN Clock Generation Logic, Block Diagram

UBRRN
u2xn
felkio

Prescaling UBRRn+1 N _ N
Down-Counter > /2 > /4 i 2 >
A
clkip, — txn clk
DDR_XCKn
Y }
Sync - Edge _
i Register | Detector >
n cki
XoKn ; ; A UMSELnNn
Pin |gX" cko v .
DDR_XCKn UCPOLN
rxn clk

Signal description:
txn clk Transmitter clock (Internal Signal).
rxn clk Receiver base clock (Internal Signal).
xn cki Input from XCK pin (internal Signal). Used for synchronous slave operation.

xn cko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.

fclkio System I/O Clock frequency.

Internal clock generation is used for the asynchronous and the synchronous master
modes of operation. The description in this section refers to Figure 84.

The USARTn Baud Rate Register (UBRRnN) and the down-counter connected to it func-
tion as a programmable prescaler or baud rate generator. The down-counter, running at
system clock (fclkio), is loaded with the UBRRn value each time the counter has counted
down to zero or when the UBRRnNL Register is written. A clock is generated each time
the counter reaches zero. This clock is the baud rate generator clock output (=
fclkiol(UBRRn+1)). The Transmitter divides the baud rate generator clock output by 2, 8
or 16 depending on mode. The baud rate generator output is used directly by the
Receiver’'s clock and data recovery units. However, the recovery units use a state
machine that uses 2, 8 or 16 states depending on mode set by the state of the UMSELRN,
U2Xn and DDR_XCKn bits.

174 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Double Speed Operation
(U2X)

External Clock

7522C-AUTO-09/06

Table 77 contains equations for calculating the baud rate (in bits per second) and for
calculating the UBRRn value for each mode of operation using an internally generated

clock source.

Table 77. Equations for Calculating Baud Rate Register Setting

Equation for Calculating Equation for Calculating

Operating Mode Baud Rate® UBRRn Value
Asynchronous Normal fCLKio ¥ :

BAUD = ————— _ CLKio
mode (U2Xn = 0) 16(UBRRn+1) = UBRRn = o=ms -
Asynchronous Double BAUD = fCLKio UBRRn = fCLKio _
Speed mode (U2Xn =1) 8(UBRRn+1) 8BAUD
Synchronous Master BAUD = Jevkio UBRRn = Jevkio _
mode 2(UBRRn+1) 2BAUD

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)
BAUD Baud rate (in bits per second, bps).
fclkio System I/O Clock frequency.
UBRRn Contents of the UBRRnH and UBRRnNL Registers, (0-4095).

Some examples of UBRRn values for some system clock frequencies are found in Table
85 (see page 196).

The transfer rate can be doubled by setting the U2Xn bit in UCSRNA. Setting this bit
only has effect for the asynchronous operation. Set this bit to zero when using synchro-
nous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively
doubling the transfer rate for asynchronous communication. Note however that the
Receiver will in this case only use half the number of samples (reduced from 16 to 8) for
data sampling and clock recovery, and therefore a more accurate baud rate setting and
system clock are required when this mode is used. For the Transmitter, there are no
downsides.

External clocking is used by the synchronous slave modes of operation. The description
in this section refers to Figure 84 for details.

External clock input from the XCKn pin is sampled by a synchronization register to mini-
mize the chance of meta-stability. The output from the synchronization register must
then pass through an edge detector before it can be used by the Transmitter and
Receiver. This process introduces a two CPU clock period delay and therefore the max-
imum external XCKn clock frequency is limited by the following equation:

fCLKio
Txckn<—Fg—

Note that fclkio depends on the stability of the system clock source. It is therefore recom-
mended to add some margin to avoid possible loss of data due to frequency variations.

Alm L 175

I)

ATMEL

Synchronous Clock Operation When synchronous mode is used (UMSELnN = 1), the XCKn pin will be used as either

Serial Frame

Frame Formats

176 AT90CAN128 Auto

clock input (Slave) or clock output (Master). The dependency between the clock edges
and data sampling or data change is the same. The basic principle is that data input (on
RxDn) is sampled at the opposite XCKn clock edge of the edge the data output (TxDn)
is changed.

Figure 85. Synchronous Mode XCKn Timing.

UCPOLNn =1 XCKn m

RxDn / TxDn X \X X X
T— Sample

UCPOLN =0 XCKn W

wonsmon Y Y Y Y

T— Sample

The UCPOLN bit UCRSNC selects which XCKn clock edge is used for data sampling
and which is used for data change. As Figure 85 shows, when UCPOLn is zero the data
will be changed at rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is
set, the data will be changed at falling XCKn edge and sampled at rising XCKn edge.

A serial frame is defined to be one character of data bits with synchronization bits (start
and stop bits), and optionally a parity bit for error checking.

The USARTN accepts all 30 combinations of the following as valid frame formats:

o 1 start bit

* 5,6,7, 8, or9 data bits

* no, even or odd parity bit

e 1 or?2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next
data bits, up to a total of nine, are succeeding, ending with the most significant bit. If
enabled, the parity bit is inserted after the data bits, before the stop bits. When a com-
plete frame is transmitted, it can be directly followed by a new frame, or the

communication line can be set to an idle (high) state. Figure 86 illustrates the possible
combinations of the frame formats. Bits inside brackets are optional.

Figure 86. Frame Formats

le FRAME N

i

[
(IDLE) \St/ 0 X 1 X 2 X 3 X 4 X[S] X [e]Xm X 8] X[P] /Spl [sz]\ (St/ IDLE)

St Start bit, always low.

(n) Data bits (0 to 8).

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Parity Bit Calculation

USART Initialization

7522C-AUTO-09/06

P Parity bit. Can be odd or even.
Sp Stop bit, always high.

IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line must be
high.

The frame format used by the USARTN is set by the UCSZn2:0, UPMn1:0 and USBSn
bits in UCSRnB and UCSRNC. The Receiver and Transmitter use the same setting.
Note that changing the setting of any of these bits will corrupt all ongoing communica-
tion for both the Receiver and Transmitter.

The USARTN Character SiZe (UCSZn2:0) bits select the number of data bits in the
frame. The USARTnN Parity mode (UPMn1:0) bits enable and set the type of parity bit.
The selection between one or two stop bits is done by the USARTn Stop Bit Select
(USBSN) bit. The Receiver ignores the second stop bit. An FEn (Frame Error) will there-
fore only be detected in the cases where the first stop bit is zero.

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is
used, the result of the exclusive or is inverted. The relation between the parity bit and
data bits is as follows:

oy = A, 1® . Ody®d,Ddy DdyD O

Poygg=d, 19..0d;0d,®d, ®dy®1
Peven Parity bit using even parity
Po.qg Parity bit using odd parity
d

If used, the parity bit is located between the last data bit and first stop bit of a serial
frame.

n Data bit n of the character

The USARTN has to be initialized before any communication can take place. The initial-
ization process normally consists of setting the baud rate, setting frame format and
enabling the Transmitter or the Receiver depending on the usage. For interrupt driven
USARTN operation, the Global Interrupt Flag should be cleared (and interrupts globally
disabled) when doing the initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that
there are no ongoing transmissions during the period the registers are changed. The
TXCn flag can be used to check that the Transmitter has completed all transfers, and
the RXCn flag can be used to check that there are no unread data in the receive buffer.
Note that the TXCn flag must be cleared before each transmission (before UDRn is writ-
ten) if it is used for this purpose.

AIMEL 177

I)

178

ATMEL

The following simple USARTO initialization code examples show one assembly and one
C function that are equal in functionality. The examples assume asynchronous opera-
tion using polling (no interrupts enabled) and a fixed frame format. The baud rate is
given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 Registers.

Assembly Code Example®

USARTO Init:

; Set baud rate

sts UBRROH, rl7

sts UBRROL, rlé6

; Set frame format: 8data, no parity & 2 stop bits

1di rl6, (0<<UMSELO) | (0<<UPMO) | (1<<USBS0) | (3<<UCSZ0)

sts UCSR0OC, rle

; Enable receiver and transmitter
1di rl6, (1<<RXENO) | (1<<TXENO)
sts UCSROB, rle6

ret

C Code Example®

void USARTO_Init (unsigned int baud)

{
/* Set baud rate */
UBRROH = (unsigned char) (baud>>8);
UBRROL = (unsigned char) baud;
/* Set frame format: 8data, no parity & 2 stop bits */
UCSROC = (0<<UMSELO) | (0<<UPMO) | (1<<USBSO0) | (3<<UCSZ0);
/* Enable receiver and transmitter */

UCSROB = (1<<RXENO) | (1<<TXENO) ;

Note: 1. The example code assumes that the part specific header file is included.

More advanced initialization routines can be made that include frame format as parame-
ters, disable interrupts and so on. However, many applications use a fixed setting of the
baud and control registers, and for these types of applications the initialization code can
be placed directly in the main routine, or be combined with initialization code for other
I/O modules.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Data Transmission —
USART Transmitter

Sending Frames with 5to 8
Data Bit

7522C-AUTO-09/06

The USARTN Transmitter is enabled by setting the Transmit Enable (TXENRN) bit in the
UCSRnNB Register. When the Transmitter is enabled, the normal port operation of the
TxDn pin is overridden by the USARTnN and given the function as the Transmitter’s serial
output. The baud rate, mode of operation and frame format must be set up once before
doing any transmissions. If synchronous operation is used, the clock on the XCKn pin
will be overridden and used as transmission clock.

A data transmission is initiated by loading the transmit buffer with the data to be trans-
mitted. The CPU can load the transmit buffer by writing to the UDRn 1/O location. The
buffered data in the transmit buffer will be moved to the Shift Register when the Shift
Register is ready to send a new frame. The Shift Register is loaded with new data if it is
in idle state (no ongoing transmission) or immediately after the last stop bit of the previ-
ous frame is transmitted. When the Shift Register is loaded with new data, it will transfer
one complete frame at the rate given by the Baud Register, U2Xn bit or by XCKn
depending on mode of operation.

The following code examples show a simple USARTO transmit function based on polling
of the Data Register Empty (UDREDO) flag. When using frames with less than eight bits,
the most significant bits written to the UDRO are ignored. The USARTO has to be initial-
ized before the function can be used. For the assembly code, the data to be sent is
assumed to be stored in Register R16.

Assembly Code Example®

USARTO_Transmit:
; Wait for empty transmit buffer
lds rl7, UCSROA
sbrs rl17, UDREO
rjmp USARTO_Transmit
; Put data (rlé6) into buffer, sends the data
sts UDRO, rle6

ret

C Code Example®

void USARTO_ Transmit (unsigned char data)

{

/* Wait for empty transmit buffer */
while (! (UCSRAO & (1<<UDREO)))

/* Put data into buffer, sends the data */
UDRO = data;

Note: 1. The example code assumes that the part specific header file is included.

The function simply waits for the transmit buffer to be empty by checking the UDREO
flag, before loading it with new data to be transmitted. If the Data Register Empty inter-
rupt is utilized, the interrupt routine writes the data into the buffer.

AIMEL 179

I)

Sending Frames with 9 Data
Bit

Transmitter Flags and
Interrupts

ATMEL

If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8n bit in
UCSRnNB before the low byte of the character is written to UDRn. The following code
examples show a transmit function that handles 9-bit characters. For the assembly
code, the data to be sent is assumed to be stored in registers R17:R16.

Assembly Code ExampleY®

USARTO_Transmit:
; Wait for empty transmit buffer
lds r1l8, UCSROA
sbrs r18, UDREO
rjmp USARTO_Transmit
; Copy 9th bit from rl17-bit0 to TXB80 via T-bit of SREG
lds r1l8, UCSROB
bst rl7, O
bld rl8, TXB8O
sts UCSROB, rls8
; Put LSB data (rl6) into buffer, sends the data
sts UDRO, rle6

ret

C Code Example®®

void USARTO_Transmit (unsigned int data)
{
/* Wait for empty transmit buffer */
while (! (UCSROA & (1<<UDREO)))

/* Copy 9th bit to TXB8 */
UCSROB &= ~(1<<TXB80) ;
if (data & 0x0100)
UCSROB |= (1<<TXB80) ;
/* Put data into buffer, sends the data */
UDRO = data;

}

Notes: 1. These transmit functions are written to be general functions. They can be optimized if
the contents of the UCSROB is static. For example, only the TXB80 bit of the
UCSRBO Register is used after initialization.
2. The example code assumes that the part specific header file is included.
sparc.

The ninth bit can be used for indicating an address frame when using multi processor
communication mode or for other protocol handling as for example synchronization.

The USARTN Transmitter has two flags that indicate its state: USART Data Register
Empty (UDREN) and Transmit Complete (TXCn). Both flags can be used for generating
interrupts.

The Data Register Empty (UDRER) flag indicates whether the transmit buffer is ready to
receive new data. This bit is set when the transmit buffer is empty, and cleared when the
transmit buffer contains data to be transmitted that has not yet been moved into the Shift
Register. For compatibility with future devices, always write this bit to zero when writing
the UCSRNA Register.

180 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Parity Generator

Disabling the Transmitter

Data Reception — USART
Receiver

Receiving Frames with 5to 8
Data Bits

7522C-AUTO-09/06

When the Data Register Empty Interrupt Enable (UDRIERN) bit in UCSRBNnN is written to
one, the USARTnN Data Register Empty Interrupt will be executed as long as UDRERN is
set (provided that global interrupts are enabled). UDREnN is cleared by writing UDRn.
When interrupt-driven data transmission is used, the Data Register Empty interrupt rou-
tine must either write new data to UDRn in order to clear UDREn or disable the Data
Register Empty interrupt, otherwise a new interrupt will occur once the interrupt routine
terminates.

The Transmit Complete (TXCn) flag bit is set one when the entire frame in the Transmit
Shift Register has been shifted out and there are no new data currently present in the
transmit buffer. The TXCn flag bit is automatically cleared when a transmit complete
interrupt is executed, or it can be cleared by writing a one to its bit location. The TXCn
flag is useful in half-duplex communication interfaces (like the RS-485 standard), where
a transmitting application must enter receive mode and free the communication bus
immediately after completing the transmission.

When the Transmit Complete Interrupt Enable (TXCIEN) bit in UCSRnNB is set, the
USARTnN Transmit Complete Interrupt will be executed when the TXCn flag becomes
set (provided that global interrupts are enabled). When the transmit complete interrupt is
used, the interrupt handling routine does not have to clear the TXCn flag, this is done
automatically when the interrupt is executed.

The Parity Generator calculates the parity bit for the serial frame data. When parity bit is
enabled (UPMn1 = 1), the transmitter control logic inserts the parity bit between the last
data bit and the first stop bit of the frame that is sent.

The disabling of the Transmitter (setting the TXENN to zero) will not become effective
until ongoing and pending transmissions are completed, i.e., when the Transmit Shift
Register and Transmit Buffer Register do not contain data to be transmitted. When dis-
abled, the Transmitter will no longer override the TxDn pin.

The USARTnN Receiver is enabled by writing the Receive Enable (RXENN) bit in the
UCSRnNB Register to one. When the Receiver is enabled, the normal pin operation of
the RxDn pin is overridden by the USARTn and given the function as the Receiver’'s
serial input. The baud rate, mode of operation and frame format must be set up once
before any serial reception can be done. If synchronous operation is used, the clock on
the XCKn pin will be used as transfer clock.

The Receiver starts data reception when it detects a valid start bit. Each bit that follows
the start bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive
Shift Register until the first stop bit of a frame is received. A second stop bit will be
ignored by the Receiver. When the first stop bit is received, i.e., a complete serial frame
is present in the Receive Shift Register, the contents of the Shift Register will be moved
into the receive buffer. The receive buffer can then be read by reading the UDRn I/O
location.

AIMEL 181

I)

Receiving Frames with 9 Data
Bits

ATMEL

The following code example shows a simple USARTO receive function based on polling
of the Receive Complete (RXCO) flag. When using frames with less than eight bits the
most significant bits of the data read from the UDRO will be masked to zero. The
USARTO has to be initialized before the function can be used.

Assembly Code Example®

USARTO_Receive:
; Wait for data to be received
lds r1l8, UCSROA
sbrs r18, RXCO
rjmp USARTO_Receive
; Get and return received data from buffer
lds rlée, UDRO

ret

C Code Example®

unsigned char USARTO_Receive (void)

{

/* Wait for data to be received */

while (! (UCSROA & (1<<RXCO)))

/* Get and return received data from buffer */

return UDRO;

Note: 1. The example code assumes that the part specific header file is included.

The function simply waits for data to be present in the receive buffer by checking the
RXCO flag, before reading the buffer and returning the value.

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in
UCSRnNB before reading the low bits from the UDRn. This rule applies to the FEn,
DORN and UPEnN Status Flags as well. Read status from UCSRnA, then data from
UDRN. Reading the UDRnN 1/O location will change the state of the receive buffer FIFO
and consequently the TXB8n, FEn, DORn and UPEn bits, which all are stored in the
FIFO, will change.

182 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

The following code example shows a simple USARTO receive function that handles both
nine bit characters and the status bits.

Assembly Code Example®

USARTO_Receive:
; Wait for data to be received
lds r1l8, UCSROA
sbrs r18, RXCO
rjmp USARTO_Receive
; Get status and 9th bit, then data from buffer
lds rl7, UCSROB
lds rlée, UDRO
; If error, return -1
andi r18, (1<<FE0) | (1<<DORO) | (1<<UPEO)
breq USARTO_ReceiveNoError
1di rl7, HIGH(-1)
1di rle, LOW(-1)
USARTO_ReceiveNoError:
; Filter the 9th bit, then return
lsr rl7
andi rl17, 0x01

ret

C Code Example®

unsigned int USARTO_Receive(void)
{
unsigned char status, resh, resl;
/* Wait for data to be received */
while (! (UCSROA & (1<<RXCO)))
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSROA;
resh = UCSROB;
resl = UDRO;
/* If error, return -1 */
if (status & (1<<FEO0) | (1<<DORO) | (1<<UPEQ))
return -1;
/* Filter the 9th bit, then return */
resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

Note: 1. The example code assumes that the part specific header file is included.

The receive function example reads all the I/O Registers into the Register File before
any computation is done. This gives an optimal receive buffer utilization since the buffer
location read will be free to accept new data as early as possible.

Alm L 183

7522C-AUTO-09/06 I ©

Receive Complete Flag and
Interrupt

Receiver Error Flags

Parity Checker

ATMEL

The USARTnN Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) flag indicates if there are unread data present in the
receive buffer. This flag is one when unread data exist in the receive buffer, and zero
when the receive buffer is empty (i.e., does not contain any unread data). If the Receiver
is disabled (RXENN = 0), the receive buffer will be flushed and consequently the RXCn
bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEN) in UCSRnNB is set, the USARTNn
Receive Complete interrupt will be executed as long as the RXCn flag is set (provided
that global interrupts are enabled). When interrupt-driven data reception is used, the
receive complete routine must read the received data from UDRn in order to clear the
RXCn flag, otherwise a new interrupt will occur once the interrupt routine terminates.

The USARTN Receiver has three error flags: Frame Error (FEn), Data OverRun (DORn)
and Parity Error (UPEN). All can be accessed by reading UCSRnA. Common for the
error flags is that they are located in the receive buffer together with the frame for which
they indicate the error status. Due to the buffering of the error flags, the UCSRnA must
be read before the receive buffer (UDRnN), since reading the UDRnN I/O location changes
the buffer read location. Another equality for the error flags is that they can not be
altered by software doing a write to the flag location. However, all flags must be set to
zero when the UCSRnNA is written for upward compatibility of future USART implementa-
tions. None of the error flags can generate interrupts.

The Frame Error (FEN) flag indicates the state of the first stop bit of the next readable
frame stored in the receive buffer. The FEn flag is zero when the stop bit was correctly
read (as one), and the FEn flag will be one when the stop bit was incorrect (zero). This
flag can be used for detecting out-of-sync conditions, detecting break conditions and
protocol handling. The FEn flag is not affected by the setting of the USBSn bit in UCS-
RnC since the Receiver ignores all, except for the first, stop bits. For compatibility with
future devices, always set this bit to zero when writing to UCSRnA.

The Data OverRun (DORNn) flag indicates data loss due to a receiver buffer full condi-
tion. A Data OverRun occurs when the receive buffer is full (two characters), it is a new
character waiting in the Receive Shift Register, and a new start bit is detected. If the
DORn flag is set there was one or more serial frame lost between the frame last read
from UDRn, and the next frame read from UDRnN. For compatibility with future devices,
always write this bit to zero when writing to UCSRnA. The DORn flag is cleared when
the frame received was successfully moved from the Shift Register to the receive buffer.

The Parity Error (UPEN) Flag indicates that the next frame in the receive buffer had a
Parity Error when received. If Parity Check is not enabled the UPEn bit will always be
read zero. For compatibility with future devices, always set this bit to zero when writing
to UCSRNA. For more details see “Parity Bit Calculation” on page 177 and “Parity
Checker” on page 184.

The Parity Checker is active when the high USARTn Parity mode (UPMn1) bit is set.
Type of Parity Check to be performed (odd or even) is selected by the UPMnO bit. When
enabled, the Parity Checker calculates the parity of the data bits in incoming frames and
compares the result with the parity bit from the serial frame. The result of the check is
stored in the receive buffer together with the received data and stop bits. The Parity
Error (UPEN) flag can then be read by software to check if the frame had a Parity Error.

The UPEN bit is set if the next character that can be read from the receive buffer had a
Parity Error when received and the Parity Checking was enabled at that point (UPMn1 =
1). This bit is valid until the receive buffer (UDRN) is read.

184 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Disabling the Receiver

Flushing the Receive Buffer

Asynchronous Data
Reception

Asynchronous Clock
Recovery

7522C-AUTO-09/06

In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from
ongoing receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero)
the Receiver will no longer override the normal function of the RxDn port pin. The
Receiver buffer FIFO will be flushed when the Receiver is disabled. Remaining data in
the buffer will be lost

The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer
will be emptied of its contents. Unread data will be lost. If the buffer has to be flushed
during normal operation, due to for instance an error condition, read the UDRn I/O loca-
tion until the RXCn flag is cleared.

The following code example shows how to flush the receive buffer.

Assembly Code Example®

USARTO_Flush:
lds rl6e, UCSROA
sbrs rl6, RXCO
ret
lds rlée, UDRO
rjmp USARTO_Flush

C Code Example®

void USARTO_Flush (void)

{

unsigned char dummy;

while (UCSROA & (1<<RXCO)) dummy = UDRO;

Note: 1. The example code assumes that the part specific header file is included.

The USARTn includes a clock recovery and a data recovery unit for handling asynchro-
nous data reception. The clock recovery logic is used for synchronizing the internally
generated baud rate clock to the incoming asynchronous serial frames at the RxDn pin.
The data recovery logic samples and low pass filters each incoming bit, thereby improv-
ing the noise immunity of the Receiver. The asynchronous reception operational range
depends on the accuracy of the internal baud rate clock, the rate of the incoming
frames, and the frame size in number of bits.

The clock recovery logic synchronizes internal clock to the incoming serial frames. Fig-
ure 87 illustrates the sampling process of the start bit of an incoming frame. The sample
rate is 16 times the baud rate for Normal mode, and eight times the baud rate for Double
Speed mode. The horizontal arrows illustrate the synchronization variation due to the
sampling process. Note the larger time variation when using the Double Speed mode
(U2Xn = 1) of operation. Samples denoted zero are samples done when the RxDn line
is idle (i.e., no communication activity).

AIMEL 185

I)

Asynchronous Data Recovery

186

ATMEL

Figure 87. Start Bit Sampling

RxDn IDLE START BITO
e | 1R DT T Pttt
(U2Xn = 0) o o 1 2 3 4 5 6 7 [8]o9J10]11 12 13 14 15 16 1 2 3
Sample T \<—T—>1 T T T T T
(U2xn=1) 0 1 2 3 7 8 1 2

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn
line, the start bit detection sequence is initiated. Let sample 1 denote the first zero-sam-
ple as shown in the figure. The clock recovery logic then uses samples 8, 9, and 10 for
Normal mode, and samples 4, 5, and 6 for Double Speed mode (indicated with sample
numbers inside boxes on the figure), to decide if a valid start bit is received. If two or
more of these three samples have logical high levels (the majority wins), the start bit is
rejected as a noise spike and the Receiver starts looking for the next high to low-transi-
tion. If however, a valid start bit is detected, the clock recovery logic is synchronized and
the data recovery can begin. The synchronization process is repeated for each start bit.

When the receiver clock is synchronized to the start bit, the data recovery can begin.
The data recovery unit uses a state machine that has 16 states for each bit in Normal
mode and eight states for each bit in Double Speed mode. Figure 88 shows the sam-
pling of the data bits and the parity bit. Each of the samples is given a number that is
eqgual to the state of the recovery unit.

Figure 88. Sampling of Data and Parity Bit

RxDn >< BIT x ><
Pt P
(U2Xn = 0) 1 2 3 4 5 6 7 [8]9J1wo]11 12 13 14 15 16 1
Sample H—Lﬂ T T T T T
(U2Xn = 1) 1 2 3 7 8 1

The decision of the logic level of the received bit is taken by doing a majority voting of
the logic value to the three samples in the center of the received bit. The center samples
are emphasized on the figure by having the sample number inside boxes. The majority
voting process is done as follows: If two or all three samples have high levels, the
received bit is registered to be a logic 1. If two or all three samples have low levels, the
received bit is registered to be a logic 0. This majority voting process acts as a low pass
filter for the incoming signal on the RxDn pin. The recovery process is then repeated
until a complete frame is received. Including the first stop bit. Note that the Receiver only
uses the first stop bit of a frame.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

Asynchronous Operational
Range

7522C-AUTO-09/06

AT90CAN128 Auto

Figure 89 shows the sampling of the stop bit and the earliest possible beginning of the
start bit of the next frame.

Figure 89. Stop Bit Sampling and Next Start Bit Sampling

RxDn STOP 1 A (B) ©

Sample Hi»(T

(U2Xn = 0) 1

(U2Xn = 1)

[8JoJwo]or on on

GJ. 1]

The same majority voting is done to the stop bit as done for the other bits in the frame. If
the stop bit is registered to have a logic 0 value, the Frame Error (FEn) flag will be set.

N — 0 —P
W —p 1 —

A new high to low transition indicating the start bit of a new frame can come right after
the last of the bits used for majority voting. For Normal Speed mode, the first low level
sample can be at point marked (A) in Figure 89. For Double Speed mode the first low
level must be delayed to (B). (C) marks a stop bit of full length. The early start bit detec-
tion influences the operational range of the Receiver.

The operational range of the Receiver is dependent on the mismatch between the
received bit rate and the internally generated baud rate. If the Transmitter is sending
frames at too fast or too slow bit rates, or the internally generated baud rate of the
Receiver does not have a similar (see Table 78) base frequency, the Receiver will not
be able to synchronize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and
internal receiver baud rate.

(D+2)S

(D+1D)S _ Ty
(D+1)S+S),

= Reoi =
Rslow S_1+D- S+SF fast

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.

Sg First sample number used for majority voting. S = 8 for normal speed and Sg = 4
for Double Speed mode.

Sy Middle sample number used for majority voting. S,, = 9 for normal speed and
Sy = 5 for Double Speed mode.

Rs 0w i the ratio of the slowest incoming data rate that can be accepted in relation to the
receiver baud rate.

R;,st IS the ratio of the fastest incoming data rate that can be accepted in relation to the
receiver baud rate.

Table 78 and Table 79 list the maximum receiver baud rate error that can be tolerated.
Note that Normal Speed mode has higher toleration of baud rate variations.

AII“EL@ 187

Multi-processor
Communication Mode

MPCM Protocol

ATMEL

Table 78. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode
(U2Xn = 0)

D Recommended Max
(Data+Parity Bit) | Rgow (%) | Rfas: (%) | Max Total Error (%) Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 +3.0

6 94.12 105.79 +5.79/-5.88 +25

7 94.81 105.11 +5.11/-5.19 +20

8 95.36 104.58 +4.58/-4.54 +20

9 95.81 104.14 +4.14/-4.19 +15

10 96.17 103.78 +3.78/-3.83 +15

Table 79. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode
(U2Xn =1)

D Recommended Max
(Data+Parity Bit) | Rg o (%) | Ria (%) | Max Total Error (%) Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 +25

6 94.92 104.92 +4.92/-5.08 +2.0

7 95.52 104,35 +4.35/-4.48 +1.5

8 96.00 103.90 +3.90/-4.00 +1.5

9 96.39 103.53 +3.53/-3.61 +1.5

10 96.70 103.23 +3.23/-3.30 +1.0

The recommendations of the maximum receiver baud rate error was made under the
assumption that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’'s system
clock (XTAL) will always have some minor instability over the supply voltage range and
the temperature range. When using a crystal to generate the system clock, this is rarely
a problem, but for a resonator the system clock may differ more than 2% depending of
the resonators tolerance. The second source for the error is more controllable. The baud
rate generator can not always do an exact division of the system frequency to get the
baud rate wanted. In this case an UBRRn value that gives an acceptable low error can
be used if possible.

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRNA enables a
filtering function of incoming frames received by the USARTn Receiver. Frames that do
not contain address information will be ignored and not put into the receive buffer. This
effectively reduces the number of incoming frames that has to be handled by the CPU,
in a system with multiple MCUs that communicate via the same serial bus. The Trans-
mitter is unaffected by the MPCMn setting, but has to be used differently when it is a
part of a system utilizing the Multi-processor Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop
bit indicates if the frame contains data or address information. If the Receiver is set up
for frames with nine data bits, then the ninth bit (RXB8n) is used for identifying address

188 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Using MPCM

7522C-AUTO-09/06

and data frames. When the frame type bit (the first stop or the ninth bit) is one, the frame
contains an address. When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data
from a master MCU. This is done by first decoding an address frame to find out which
MCU has been addressed. If a particular slave MCU has been addressed, it will receive
the following data frames as normal, while the other slave MCUs will ignore the received
frames until another address frame is received.

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn
= 7). The ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared
when a data frame (TXBn = 0) is being transmitted. The slave MCUs must in this case
be set to use a 9-bit character frame format.

The following procedure should be used to exchange data in Multi-processor Communi-
cation mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in
UCSRnNA is set).

2. The Master MCU sends an address frame, and all slaves receive and read this
frame. In the Slave MCUs, the RXCn flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been
selected. If so, it clears the MPCMn bit in UCSRNA, otherwise it waits for the next
address byte and keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is
received. The other Slave MCUs, which still have the MPCMn bit set, will ignore
the data frames.

5. When the last data frame is received by the addressed MCU, the addressed
MCU sets the MPCMn bit and waits for a new address frame from master. The
process then repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using N and N+1 character frame formats. This makes
full-duplex operation difficult since the Transmitter and Receiver use the same character
size setting. If 5- to 8-bit character frames are used, the Transmitter must be set to use
two stop bit (USBSh = 1) since the first stop bit is used for indicating the frame type.

AIMEL 189

I)

USART Register
Description

USARTO I/O Data Register —
UDRO

USART1 I/O Data Register —
UDR1

USARTO Control and Status
Register A — UCSROA

USART1 Control and Status
Register A — UCSR1A

ATMEL

Bit 7 6 5 4 3 2 1 0
RXBO[7:0] UDRO (Read)
TXBO[7:0] UDRO (Write)
Read/Write R/W R/W R/W R/W RW RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0
RXB1[7:0] UDRI1 (Read)
TXB1[7:0] UDR1 (Write)
Read/Write R/W R/W R/W R/W R/IW RIW R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7:0 — RxBn7:0: Receive Data Buffer (read access)
* Bit 7:0 — TxBn7:0: Transmit Data Buffer (write access)

The USARTnN Transmit Data Buffer Register and USARTn Receive Data Buffer Regis-
ters share the same 1/0O address referred to as USARTn Data Register or UDRn. The
Transmit Data Buffer Register (TXBn) will be the destination for data written to the
UDRnN Register location. Reading the UDRn Register location will return the contents of
the Receive Data Buffer Register (RXBn).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter
and set to zero by the Receiver.

The transmit buffer can only be written when the UDRER flag in the UCSRnA Register is
set. Data written to UDRn when the UDRERN flag is not set, will be ignored by the
USARTnN Transmitter. When data is written to the transmit buffer, and the Transmitter is
enabled, the Transmitter will load the data into the Transmit Shift Register when the
Shift Register is empty. Then the data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever
the receive buffer is accessed.

Bit 7 6 5 4 3 2 1 0

| rxco TXCO | UDREO FEO DORO UPEO u2xo | MPcMo | ucsroA
Read/Write R R/W R R R R R/W R/W
Initial Value 0 0 1 0 0 0 0 0
Bit 7 6 5 4 3 2 1 0

| rxci TXC1 | UDRE1 FE1 DOR1 UPEL u2xi | MpcM1 | UCSR1A
Read/Write R R/W R R R R R/W R/W
Initial Value 0 0 1 0 0 0 0 0

* Bit 7 — RXCn: USARTNn Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the
receive buffer is empty (i.e., does not contain any unread data). If the Receiver is dis-
abled, the receive buffer will be flushed and consequently the RXCn bit will become
zero. The RXCn flag can be used to generate a Receive Complete interrupt (see
description of the RXCIEn bit).

190 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

USARTO Control and Status
Register B — UCSROB

7522C-AUTO-09/06

* Bit 6 — TXCn: USARTn Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted
out and there are no new data currently present in the transmit buffer (UDRn). The
TXCn flag bit is automatically cleared when a transmit complete interrupt is executed, or
it can be cleared by writing a one to its bit location. The TXCn flag can generate a Trans-
mit Complete interrupt (see description of the TXCIEn bit).

» Bit 5 - UDRENn: USARTn Data Register Empty

The UDRERN flag indicates if the transmit buffer (UDRn) is ready to receive new data. If
UDRERN is one, the buffer is empty, and therefore ready to be written. The UDRERN flag
can generate a Data Register Empty interrupt (see description of the UDRIEN bit).

UDRERN is set after a reset to indicate that the Transmitter is ready.

e Bit 4 — FEn: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when
received. l.e., when the first stop bit of the next character in the receive buffer is zero.
This bit is valid until the receive buffer (UDRn) is read. The FEn bit is zero when the stop
bit of received data is one. Always set this bit to zero when writing to UCSRnA.

* Bit 3—- DORnN: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the
receive buffer is full (two characters), it is a new character waiting in the Receive Shift
Register, and a new start bit is detected. This bit is valid until the receive buffer (UDRn)
is read. Always set this bit to zero when writing to UCSRNnA.

» Bit 2 - UPEN: USARTn Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received
and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the
receive buffer (UDRN) is read. Always set this bit to zero when writing to UCSRnNA.

e Bit1-U2Xn: Double the USARTn Transmission Speed

This bit only has effect for the asynchronous operation. Write this bit to zero when using
synchronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effec-
tively doubling the transfer rate for asynchronous communication.

e Bit 0 — MPCMn: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCMn bit is writ-
ten to one, all the incoming frames received by the USARNT Receiver that do not
contain address information will be ignored. The Transmitter is unaffected by the
MPCMn setting. For more detailed information see “Multi-processor Communication
Mode” on page 188.

Bit 7 6 5 4 3 2 1 0
IRXCIEO TXCIEO | UDRIEO RXENO TXENO UCSz02 RXB80 TXB80 I UCSROB
Read/Write R/W R/W R/W R/W R/W R/W R R/W
Initial Value 0 0 0 0 0 0 0 0
AIMEL 101
Y)

USART1 Control and Status
Register B — UCSR1B

USARTO Control and Status
Register C — UCSROC

ATMEL

Bit 7 6 5 4 3 2 1 0

IRXCIEl TXCIE1 | UDRIE1 RXEN1 TXEN1 UCsz12 RXB81 TXB81 I UCSR1B
Read/Write R/W R/W R/W R/W R/W R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 — RXCIEn: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXCn flag. A USARTNn Receive Complete
interrupt will be generated only if the RXCIEn bit is written to one, the Global Interrupt
Flag in SREG is written to one and the RXCn bit in UCSRnNA is set.

» Bit 6 — TXCIEn: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXCn flag. A USARTn Transmit Complete
interrupt will be generated only if the TXCIEn bit is written to one, the Global Interrupt
Flag in SREG is written to one and the TXCn bit in UCSRnNA is set.

» Bit 5—- UDRIENn: USARTn Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRERN flag. A Data Register Empty inter-
rupt will be generated only if the UDRIER bit is written to one, the Global Interrupt Flag in
SREG is written to one and the UDRER bit in UCSRnNA is set.

* Bit 4 — RXENn: Receiver Enable

Writing this bit to one enables the USARTN Receiver. The Receiver will override normal
port operation for the RxDn pin when enabled. Disabling the Receiver will flush the
receive buffer invalidating the FEn, DORnN, and UPEn Flags.

e Bit 3 - TXENnN: Transmitter Enable

Writing this bit to one enables the USARTnN Transmitter. The Transmitter will override
normal port operation for the TxDn pin when enabled. The disabling of the Transmitter
(writing TXENN to zero) will not become effective until ongoing and pending transmis-
sions are completed, i.e., when the Transmit Shift Register and Transmit Buffer Register
do not contain data to be transmitted. When disabled, the Transmitter will no longer
override the TxDn port.

e Bit 2 - UCSZn2: Character Size

The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRNC sets the number of data
bits (Character SiZe) in a frame the Receiver and Transmitter use.

* Bit 1 - RXB8n: Receive Data Bit 8

RXB8n is the ninth data bit of the received character when operating with serial frames
with nine data bits. Must be read before reading the low bits from UDRn.

e Bit 0 — TXB8n: Transmit Data Bit 8

TXB8n is the ninth data bit in the character to be transmitted when operating with serial
frames with nine data bits. Must be written before writing the low bits to UDRn.

Bit 7 6 5 4 3 2 1 0
| - UMSELO | UPMO1 | UPMO00 | USBSO | UCSZO01 | UCSZ00 | UCPOLO | UCSROC
Read/Write R R/W R/W R/W R/W R/W R/W R/IW

192 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

USART1 Control and Status
Register C - UCSR1C

7522C-AUTO-09/06

Initial Value 0 0 0 0 0 1 1 0
Bit 7 6 5 4 3 2 1 0
| - UMSEL1 | UPM11 UPM10 USBS1 | UCSZ11 | UCSZ10 | UCPO1L | UCSR1C
Read/Write R R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 1 1 0

* Bit 7 — Reserved Bit

This bit is reserved for future use. For compatibility with future devices, these bit must be
written to zero when UCSRnNC is written.

e Bit 6 — UMSELN: USARTn Mode Select

This bit selects between asynchronous and synchronous mode of operation.

Table 80. UMSELn Bit Settings

UMSELnN Mode
0 Asynchronous Operation
1 Synchronous Operation

* Bit 5:4 — UPMn1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the Transmit-
ter will automatically generate and send the parity of the transmitted data bits within
each frame. The Receiver will generate a parity value for the incoming data and com-
pare it to the UPMnO setting. If a mismatch is detected, the UPEn Flag in UCSRnA will
be set.

Table 81. UPMn Bits Settings

UPMn1 UPMnNO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 1 Enabled, Odd Parity

» Bit 3-USBSnN: Stop Bit Select

This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver
ignores this setting.

Table 82. USBSnh Bit Settings

USBSn Stop Bit(s)
0 1-bit
1 2-bit

AIMEL 193

I)

ATMEL

e Bit2:1 -UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRNB sets the number of data
bits (Character SiZe) in a frame the Receiver and Transmitter use.

Table 83. UCSZn Bits Settings

UCSszn2 uCsznl uCcszno Character Size
0 0 0 5-bit

6-bit

7-bit

8-bit

Reserved

Reserved

Reserved

9-bit

0 0
0 1
0 1
1 0
1 0
1 1
1 1

P |lOoO|lRr|lO|lRr|O|F

» Bit 0 — UCPOLnN: Clock Polarity

This bit is used for synchronous mode only. Write this bit to zero when asynchronous
mode is used. The UCPOLnN bit sets the relationship between data output change and
data input sample, and the synchronous clock (XCKn).

Table 84. UCPOLn Bit Settings

Transmitted Data Changed Received Data Sampled
UCPOLN | (Output of TxDn Pin) (Input on RxDn Pin)
0 Rising XCK Edge Falling XCK Edge
1 Falling XCK Edge Rising XCK Edge
USARTO Baud Rate Registers
— UBRROL and UBRROH Bit 15 14 13 12 11 10 9 8
- - - - | UBRRO[11:8] UBRROH
UBRRO[7:0] UBRROL
7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0
USART1 Baud Rate Registers
— UBRRL1L and UBRR1H Bit 15 14 13 12 11 10 9 8
- - - - | UBRR1[11:8] UBRR1H
UBRR1[7:0] UBRRIL
7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0

194 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

* Bit 15:12 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit
must be written to zero when UBRRnNH is written.

e Bit 11:0 - UBRRnN11:0: USARTn Baud Rate Register

This is a 12-hit register which contains the USARTn baud rate. The UBRRnH contains
the four most significant bits, and the UBRRnL contains the eight least significant bits of
the USARTN baud rate. Ongoing transmissions by the Transmitter and Receiver will be
corrupted if the baud rate is changed. Writing UBRRnL will trigger an immediate update
of the baud rate prescaler.

AIMEL 195

I)

Examples of Baud Rate
Setting

ATMEL

For standard crystal, resonator and external oscillator frequencies, the most commonly
used baud rates for asynchronous operation can be generated by using the UBRRn set-
tings in Table 85 up to Table 88. UBRRn values which yield an actual baud rate differing
less than 0.5% from the target baud rate, are bold in the table. Higher error ratings are
acceptable, but the Receiver will have less noise resistance when the error ratings are
high, especially for large serial frames (see “Asynchronous Operational Range” on page
187). The error values are calculated using the following equation:

BaudRate
Error[%] = (1 - Baugg’;‘i: Matc“) * 100%
Table 85. Examples of UBRRn Settings for Commonly Frequencies
fclk,, = 1.0000 MHz fclk, = 1.8432 MHz fclk,, = 2.0000 MHz
i‘;‘:s U2Xn =0 U2xn =1 U2Xn =0 u2xn=1 u2Xn =0 U2xn =1
(bps) |UBRRn |Error UBRRnN |Error UBRRnNn |Error UBRRnNn |[Error UBRRn |Error UBRRnNn |Error
2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
4800 12 0.2% 25 0.2% 23 0.0% a7 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%
28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k - - 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%
230.4k - - - - - - 0 0.0% - - - -
250k - - - - - - - - - - - -
500k - - - - - - - - - - - -
1M - - - - - - - - - - - -
Max. @ 62.5 kbps 125 kbps 115.2 kbps 230.4 Kbps 125 kpbs 250 kbps
1. UBRRnN =0, Error = 0.0%
106 ATOIOCANL2E /A U T O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Table 86. Examples of UBRRn Settings for Commonly Frequencies (Continued)

fclk,, = 3.6864 MHz fclk,, = 4.0000 MHz fclk,, = 7.3728 MHz
i‘;‘:s U2Xn =0 U2xn =1 U2Xn =0 u2xn=1 u2Xn =0 u2xn=1
(bps) |UBRRn |Error UBRRnNn |[Error UBRRnNn |Error UBRRnNn |[Error UBRRn |Error UBRRnNn |Error
2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%
19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%
38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%
57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%
76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%
115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%
230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%
500k - - 0 -7.8% - - 0 0.0% 0 -7.8% 1 -7.8%
1M - - - - - - - - - - 0 -7.8%
Max. @ 230.4 kbps 460.8 kbps 250 kbps 0.5 Mbps 460.8 kpbs 921.6 kbps
1. UBRRnN =0, Error = 0.0%

AIMEL 197

7522C-AUTO-09/06 I ©

ATMEL

Table 87. Examples of UBRRn Settings for Commonly Frequencies (Continued)

fclk,, = 8.0000 MHz fclk,, = 10.000 MHz fclk, = 11.0592 MHz
i‘;‘:s U2Xn =0 U2xn =1 U2Xn =0 u2xn=1 u2Xn =0 U2xn=1
(bps) |UBRRn |Error UBRRnN |[Error UBRRn |Error UBRRnNn |[Error UBRRnNn |Error UBRRnNn |Error
2400 207 0.2% 416 -0.1% 259 0.2% 520 0.0% 287 0.0% 575 0.0%
4800 103 0.2% 207 0.2% 129 0.2% 259 0.2% 143 0.0% 287 0.0%
9600 51 0.2% 103 0.2% 64 0.2% 129 0.2% 71 0.0% 143 0.0%
14.4k 34 -0.8% 68 0.6% 42 0.9% 86 0.2% 47 0.0% 95 0.0%
19.2k 25 0.2% 51 0.2% 32 -1.4% 64 0.2% 35 0.0% 71 0.0%
28.8k 16 2.1% 34 -0.8% 21 -1.4% 42 0.9% 23 0.0% 47 0.0%
38.4k 12 0.2% 25 0.2% 15 1.8% 32 -1.4% 17 0.0% 35 0.0%
57.6k 8 -3.5% 16 2.1% 10 -1.5% 21 -1.4% 1 0.0% 23 0.0%
76.8k 6 -7.0% 12 0.2% 7 1.9% 15 1.8% 8 0.0% 17 0.0%
115.2k 3 8.5% 8 -3.5% 4 9.6% 10 -1.5% 5 0.0% 1 0.0%
230.4k 1 8.5% 3 8.5% 2 -16.8% 4 9.6% 2 0.0% 5 0.0%
250k 1 0.0% 3 0.0% 2 -33.3% 4 0.0% 2 -7.8% 5 -7.8%
500k 0 0.0% 1 0.0% - - 2 -33.3% - - 2 -7.8%
M - - 0 0.0% - - - - - - - -
Max. @ 0.5 Mbps 1 Mbps 625 kbps 1.25 Mbps 691.2 kbps 1.3824 Mbps
1. UBRRnN =0, Error = 0.0%
108 ATOIOCANIL2E /A U T O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Table 88. Examples of UBRRn Settings for Commonly Frequencies (Continued)

fclk,, = 12.0000 MHz fclk,, = 14.7456 MHz fclk,, = 16.0000 MHz
i‘;‘:s U2Xn =0 U2xn =1 u2Xn =0 u2xn=1 U2Xn =0 U2xn =1
(bps) |UBRRn |Error UBRRn |Error UBRRnNn |[Error UBRRnNn |[Error UBRRnNn |Error UBRRn |[Error
2400 312 -0.2% 624 0.0% 383 0.0% 767 0.0% 416 -0.1% 832 0.0%
4800 155 0.2% 312 -0.2% 191 0.0% 383 0.0% 207 0.2% 416 -0.1%
9600 77 0.2% 155 0.2% 95 0.0% 191 0.0% 103 0.2% 207 0.2%
14.4k 51 0.2% 103 0.2% 63 0.0% 127 0.0% 68 0.6% 138 -0.1%
19.2k 38 0.2% 77 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
28.8k 25 0.2% 51 0.2% 31 0.0% 63 0.0% 34 -0.8% 68 0.6%
38.4k 19 -2.5% 38 0.2% 23 0.0% a7 0.0% 25 0.2% 51 0.2%
57.6k 12 0.2% 25 0.2% 15 0.0% 31 0.0% 16 2.1% 34 -0.8%
76.8k 9 2.7% 19 -2.5% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
115.2k 6 -8.9% 12 0.2% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
230.4k 2 11.3% 6 -8.9% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
250k 2 0.0% 5 0.0% 3 -7.8% 6 5.3% 3 0.0% 7 0.0%
500k - - 2 0.0% 1 -7.8% 3 -7.8% 1 0.0% 3 0.0%
1M - - - - 0 -7.8% 1 -7.8% 0 0.0% 1 0.0%
Max. @ 750 kbps 1.5 Mbps 921.6 kbps 1.8432 Mbps 1 Mbps 2 Mbps
1. UBRRnN =0, Error = 0.0%

AIMEL 199

7522C-AUTO-09/06 I ©

ATMEL

Two-wire Serial Interface

Features

Two-wire Serial Interface
Bus Definition

TWI Terminology

Electrical Interconnection

* Simple yet Powerful and Flexible Communication Interface, only Two Bus Lines Needed
* Both Master and Slave Operation Supported

* Device can Operate as Transmitter or Receiver

* 7-bit Address Space allows up to 128 Different Slave Addresses

* Multi-master Arbitration Support

* Up to 400 kHz Data Transfer Speed

* Slew-rate Limited Output Drivers

* Noise Suppression Circuitry Rejects Spikes on Bus Lines

* Fully Programmable Slave Address with General Call Support

* Address Recognition Causes Wake-up when AVR is in Sleep Mode

The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applica-
tions. The TWI protocol allows the systems designer to interconnect up to 128 different
devices using only two bi-directional bus lines, one for clock (SCL) and one for data
(SDA). The only external hardware needed to implement the bus is a single pull-up
resistor for each of the TWI bus lines. All devices connected to the bus have individual
addresses, and mechanisms for resolving bus contention are inherent in the TWI
protocol.

Figure 90. TWI Bus Interconnection

Device 1 Device 2 Device3 | Device n
Vee
—T
R1 R2
SDA = >
SCL = >
The following definitions are frequently encountered in this section.
Table 89. TWI Terminology
Term Description
Master The device that initiates and terminates a transmission. The master also

generates the SCL clock

Slave The device addressed by a master

Transmitter | The device placing data on the bus

Receiver The device reading data from the bus

As depicted in Figure 90, both bus lines are connected to the positive supply voltage
through pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or
open-collector. This implements a wired-AND function which is essential to the opera-
tion of the interface. A low level on a TWI bus line is generated when one or more TWI
devices output a zero. A high level is output when all TWI devices tri-state their outputs,

200 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Data Transfer and Frame
Format

Transferring Bits

START and STOP Conditions

7522C-AUTO-09/06

allowing the pull-up resistors to pull the line high. Note that all AVR devices connected to
the TWI bus must be powered in order to allow any bus operation.

The number of devices that can be connected to the bus is only limited by the bus
capacitance limit of 400 pF and the 7-bit slave address space. A detailed specification of
the electrical characteristics of the TWI is given in “Two-wire Serial Interface Character-
istics” on page 360. Two different sets of specifications are presented there, one
relevant for bus speeds below 100 kHz, and one valid for bus speeds up to 400 kHz.

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line.
The level of the data line must be stable when the clock line is high. The only exception
to this rule is for generating start and stop conditions.

Figure 91. Data Validity

SDA

SCL

Data Stable Data Stable

Data Change

The master initiates and terminates a data transmission. The transmission is initiated
when the master issues a START condition on the bus, and it is terminated when the
master issues a STOP condition. Between a START and a STOP condition, the bus is
considered busy, and no other master should try to seize control of the bus. A special
case occurs when a new START condition is issued between a START and STOP con-
dition. This is referred to as a REPEATED START condition, and is used when the
master wishes to initiate a new transfer without relinquishing control of the bus. After a
REPEATED START, the bus is considered busy until the next STOP. This is identical to
the START behaviour, and therefore START is used to describe both START and
REPEATED START for the remainder of this datasheet, unless otherwise noted. As
depicted below, START and STOP conditions are signalled by changing the level of the
SDA line when the SCL line is high.

Figure 92. START, REPEATED START and STOP Conditions

AIMEL 201

Address Packet Format

Data Packet Format

ATMEL

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address
bits, one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is
set, a read operation is to be performed, otherwise a write operation should be per-
formed. When a slave recognizes that it is being addressed, it should acknowledge by
pulling SDA low in the ninth SCL (ACK) cycle. If the addressed slave is busy, or for
some other reason can not service the master’s request, the SDA line should be left
high in the ACK clock cycle. The master can then transmit a STOP condition, or a
REPEATED START condition to initiate a new transmission. An address packet consist-
ing of a slave address and a READ or a WRITE bit is called SLA+R or SLA+W,
respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allo-
cated by the designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in
the ACK cycle. A general call is used when a master wishes to transmit the same mes-
sage to several slaves in the system. When the general call address followed by a Write
bit is transmitted on the bus, all slaves set up to acknowledge the general call will pull
the SDA line low in the ack cycle. The following data packets will then be received by all
the slaves that acknowledged the general call. Note that transmitting the general call
address followed by a Read bit is meaningless, as this would cause contention if several
slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 93. Address Packet Format

Addr MSB AddrLSB R/W

o\ L XX

START

All data packets transmitted on the TWI bus are 9 bits long, consisting of one data byte
and an acknowledge bit. During a data transfer, the master generates the clock and the
START and STOP conditions, while the receiver is responsible for acknowledging the
reception. An Acknowledge (ACK) is signalled by the receiver pulling the SDA line low
during the ninth SCL cycle. If the receiver leaves the SDA line high, a NACK is signalled.
When the receiver has received the last byte, or for some reason cannot receive any
more bytes, it should inform the transmitter by sending a NACK after the final byte. The
MSB of the data byte is transmitted first.

202 ATOOCANI28 AULO m——

7522C-AUTO-09/06

Combining Address and Data
Packets Into a Transmission

Addr MSB

AT90CAN128 Auto

Figure 94. Data Packet Format

Data MSB DataLSB ACK

ffffff XX

I
I
I
I
I
I
I
}
SDA from ~ \ | >< >< / T
Transmitter \ | |
|) |
I
I
I
I
I
I
I
I
I
I

Aggregate
SDA \

SDA from 7

T
I
Receiver / !
I
I
SCL from |
Master SS N

I I

| ! 2 7 8 9 | STOP, REPEATED

SLA+R/W Data Byte ! START or Next

I I

Data Byte

A transmission basically consists of a START condition, a SLA+R/W, one or more data
packets and a STOP condition. An empty message, consisting of a START followed by
a STOP condition, is illegal. Note that the Wired-ANDing of the SCL line can be used to
implement handshaking between the master and the slave. The slave can extend the
SCL low period by pulling the SCL line low. This is useful if the clock speed set up by the
master is too fast for the slave, or the slave needs extra time for processing between the
data transmissions. The slave extending the SCL low period will not affect the SCL high
period, which is determined by the master. As a consequence, the slave can reduce the
TWI data transfer speed by prolonging the SCL duty cycle.

Figure 95 shows a typical data transmission. Note that several data bytes can be trans-
mitted between the SLA+R/W and the STOP condition, depending on the software
protocol implemented by the application software.

Figure 95. Typical Data Transmission

I
AddrLSB R/W ACK Data MSB Data LSB ACK i

son K

NV AVANYAVAVAUEEYVAVANYAVAVANYAEE
1 2] 7 8 9 1 2) 7 8 9

XX XXX]

START SLA+R/W Data Byte STOP

Multi-master Bus
Systems, Arbitration and
Synchronization

7522C-AUTO-09/06

The TWI protocol allows bus systems with several masters. Special concerns have
been taken in order to ensure that transmissions will proceed as normal, even if two or
more masters initiate a transmission at the same time. Two problems arise in multi-mas-
ter systems:

» An algorithm must be implemented allowing only one of the masters to complete the
transmission. All other masters should cease transmission when they discover that
they have lost the selection process. This selection process is called arbitration.
When a contending master discovers that it has lost the arbitration process, it
should immediately switch to slave mode to check whether it is being addressed by
the winning master. The fact that multiple masters have started transmission at the

AIMEL 203

I)

204

ATMEL

same time should not be detectable to the slaves, i.e., the data being transferred on
the bus must not be corrupted.

» Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission
proceed in a lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial
clocks from all masters will be wired-ANDed, yielding a combined clock with a high
period equal to the one from the master with the shortest high period. The low period of
the combined clock is equal to the low period of the master with the longest low period.
Note that all masters listen to the SCL line, effectively starting to count their SCL high
and low time-out periods when the combined SCL line goes high or low, respectively.

Figure 96. SCL Synchronization between Multiple Masters
I TA I I TA I

low

- e

| \ |
| | |
.
SCL from [[\
master A ‘ s | |
\
\
SCL from 0T \ !
master B I \ |
I T
\ \
\ \
SCL Bus | |
Line I I
\
\

\
low ! TBhigh
\ Masters Start \ Masters Start
Counting Low Period Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after out-
putting data. If the value read from the SDA line does not match the value the master
had output, it has lost the arbitration. Note that a master can only lose arbitration when it
outputs a high SDA value while another master outputs a low value. The losing master
should immediately go to slave mode, checking if it is being addressed by the winning
master. The SDA line should be left high, but losing masters are allowed to generate a
clock signal until the end of the current data or address packet. Arbitration will continue
until only one master remains, and this may take many bits. If several masters are trying
to address the same slave, arbitration will continue into the data packet.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

7522C-AUTO-09/06

AT90CAN128 Auto

Figure 97. Arbitration Between two Masters

Master A loses

| \ Arbitration, SDA,# SDA

SDA from

Master A AL\—/—L ,,,,,,,,,,,,,,,,
\
\

\
\
SDA from }

|
Master B ‘
| V—— —t _—

SDA Line \ | / \ | / \
\

|| \
Synchronized

\

\ \

Note that arbitration is not allowed between:

* A REPEATED START condition and a data bit

* A STOP condition and a data bit

* A REPEATED START and a STOP condition

It is the user software’s responsibility to ensure that these illegal arbitration conditions
never occur. This implies that in multi-master systems, all data transfers must use the
same composition of SLA+R/W and data packets. In other words: All transmissions

must contain the same number of data packets, otherwise the result of the arbitration is
undefined.

AIMEL 205

I)

Overview of the TWI
Module

Scl and SDA Pins

Bit Rate Generator Unit

ATMEL

The TWI module is comprised of several submodules, as shown in Figure 98. All regis-
ters drawn in a thick line are accessible through the AVR data bus.

Figure 98. Overview of the TWI Module

SCL SDA
Slew-rate Spike Slew-rate Spike
Control Filter Control Filter
A A
A y
Bus Interface Unit Bit Rate Generator
START / STOP . .
Control Spike Suppression Prescaler
- Lol
N . Address/Data Shift Bit Rate Register
Avrbitration detection Register (TWDR) Ack (TWBR)
A A A
/ / /
Address Match Unit Control Unit
Address Register Status Register Control Register
(TWAR) i = (TWSR) (TWCR)
Address Comparator State Machine and TW|
P Status control Unit

These pins interface the AVR TWI with the rest of the MCU system. The output drivers
contain a slew-rate limiter in order to conform to the TWI specification. The input stages
contain a spike suppression unit removing spikes shorter than 50 ns. Note that the inter-
nal pullups in the AVR pads can be enabled by setting the PORT bits corresponding to
the SCL and SDA pins, as explained in the I/O Port section. The internal pull-ups can in
some systems eliminate the need for external ones.

This unit controls the period of SCL when operating in a Master mode. The SCL period
is controlled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in
the TWI Status Register (TWSR). Slave operation does not depend on Bit Rate or Pres-
caler settings, but the CPU clock frequency in the slave must be at least 16 times higher
than the SCL frequency. Note that slaves may prolong the SCL low period, thereby
reducing the average TWI bus clock period. The SCL frequency is generated according
to the following equation:

CLKio
16 + 2(TWBR) - 4

SCL frequency = S

« TWBR = Value of the TWI Bit Rate Register
« TWPS = Value of the prescaler bits in the TWI Status Register

Note: TWBR should be 10 or higher if the TWI operates in Master mode. If TWBR is lower than
10, the master may produce an incorrect output on SDA and SCL for the reminder of the
byte. The problem occurs when operating the TWI in Master mode, sending Start + SLA
+ R/W to a slave (a slave does not need to be connected to the bus for the condition to
happen).

206 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Bus Interface Unit

Address Match Unit

Control Unit

7522C-AUTO-09/06

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Con-
troller and Arbitration detection hardware. The TWDR contains the address or data
bytes to be transmitted, or the address or data bytes received. In addition to the 8-bit
TWDR, the Bus Interface Unit also contains a register containing the (N)ACK bit to be
transmitted or received. This (N)ACK Register is not directly accessible by the applica-
tion software. However, when receiving, it can be set or cleared by manipulating the
TWI Control Register (TWCR). When in Transmitter mode, the value of the received
(N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START,
REPEATED START, and STOP conditions. The START/STOP controller is able to
detect START and STOP conditions even when the AVR MCU is in one of the sleep
modes, enabling the MCU to wake up if addressed by a master.

If the TWI has initiated a transmission as master, the Arbitration Detection hardware
continuously monitors the transmission trying to determine if arbitration is in process. If
the TWI has lost an arbitration, the Control Unit is informed. Correct action can then be
taken and appropriate status codes generated.

The Address Match unit checks if received address bytes match the 7-bit address in the
TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE)
bit in the TWAR is written to one, all incoming address bits will also be compared
against the General Call address. Upon an address match, the Control Unit is informed,
allowing correct action to be taken. The TWI may or may not acknowledge its address,
depending on settings in the TWCR. The Address Match unit is able to compare
addresses even when the AVR MCU is in sleep mode, enabling the MCU to wake up if
addressed by a master. If another interrupt (e.g., INTO) occurs during TWI Power-down
address match and wakes up the CPU, the TWI aborts operation and return to it's idle
state. If this cause any problems, ensure that TWI Address Match is the only enabled
interrupt when entering Power-down.

The Control unit monitors the TWI bus and generates responses corresponding to set-
tings in the TWI Control Register (TWCR). When an event requiring the attention of the
application occurs on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the
next clock cycle, the TWI Status Register (TWSR) is updated with a status code identify-
ing the event. The TWSR only contains relevant status information when the TWI
Interrupt Flag is asserted. At all other times, the TWSR contains a special status code
indicating that no relevant status information is available. As long as the TWINT flag is
set, the SCL line is held low. This allows the application software to complete its tasks
before allowing the TWI transmission to continue.

The TWINT flag is set in the following situations:

» After the TWI has transmitted a START/REPEATED START condition

» After the TWI has transmitted SLA+R/W

» After the TWI has transmitted an address byte

» After the TWI has lost arbitration

» After the TWI has been addressed by own slave address or general call

» After the TWI has received a data byte

» After a STOP or REPEATED START has been received while still addressed as a
slave

* When a bus error has occurred due to anillegal START or STOP condition

Alm L 207

I)

TWI Register Description

TWI Bit Rate Register - TWBR

TWI Control Register - TWCR

ATMEL

Bit 7 6 5 4 3 2 1 0

I TWBR7 | TWBR6 | TWBR5 | TWBR4 | TWBR3 | TWBR2 | TWBR1 | TWBRO I TWBR
Read/Write R/IW R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bits 7..0 — TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a
frequency divider which generates the SCL clock frequency in the Master modes. See
“Bit Rate Generator Unit” on page 206 for calculating bit rates.

Bit 7 6 5 4 3 2 1 0

I TWINT TWEA TWSTA | TWSTO TWWC TWEN - TWIE I TWCR
Read/Write R/W R/W R/W R/W R R/W R R/W
Initial Value 0 0 0 0 0 0 0 0

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to
initiate a master access by applying a START condition to the bus, to generate a
receiver acknowledge, to generate a stop condition, and to control halting of the bus
while the data to be written to the bus are written to the TWDR. It also indicates a write
collision if data is attempted written to TWDR while the register is inaccessible.

e Bit 7 - TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects appli-
cation software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will
jump to the TWI interrupt vector. While the TWINT flag is set, the SCL low period is
stretched. The TWINT flag must be cleared by software by writing a logic one to it. Note
that this flag is not automatically cleared by hardware when executing the interrupt rou-
tine. Also note that clearing this flag starts the operation of the TWI, so all accesses to
the TWI Address Register (TWAR), TWI Status Register (TWSR), and TWI Data Regis-
ter (TWDR) must be complete before clearing this flag.

» Bit 6 - TWEA: TWI Enable Acknowledge Bit

The TWEA bit controls the generation of the ACK pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the Two-

wire Serial Bus temporarily. Address recognition can then be resumed by writing the
TWEA bit to one again.

* Bit 5 - TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a master on the
Two-wire Serial Bus. The TWI hardware checks if the bus is available, and generates a
START condition on the bus if it is free. However, if the bus is not free, the TWI waits
until a STOP condition is detected, and then generates a new START condition to claim

208 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

TWI Status Register — TWSR

7522C-AUTO-09/06

the bus Master status. TWSTA must be cleared by software when the START condition
has been transmitted.

* Bit4 - TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the
Two-wire Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit
is cleared automatically. In slave mode, setting the TWSTO bit can be used to recover
from an error condition. This will not generate a STOP condition, but the TWI returns to
a well-defined unaddressed Slave mode and releases the SCL and SDA lines to a high
impedance state.

* Bit 3—- TWWC: TWI Write Collision Flag

The TWWC bit is set when attempting to write to the TWI Data Register - TWDR when
TWINT is low. This flag is cleared by writing the TWDR Register when TWINT is high.

* Bit 2 - TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is
written to one, the TWI takes control over the I/O pins connected to the SCL and SDA
pins, enabling the slew-rate limiters and spike filters. If this bit is written to zero, the TWI
is switched off and all TWI transmissions are terminated, regardless of any ongoing
operation.

* Bit 1 — Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when TWCR is written.

» Bit 0 — TWIE: TWI Interrupt Enable

When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will
be activated for as long as the TWINT flag is high.

Bit 7 6 5 4 3 2 1 0
| tws7 | Twse | Twss | Tws4 | Twss - TWPSL | TwPs0 | TWsR

Read/Write R R R R R R R/W RIW

Initial Value 1 1 1 1 1 0 0 0

e Bits 7..3 - TWS: TWI Status

These 5 bits reflect the status of the TWI logic and the Two-wire Serial Bus. The differ-
ent status codes are described later in this section. Note that the value read from TWSR
contains both the 5-bit status value and the 2-bit prescaler value. The application
designer should mask the prescaler bits to zero when checking the Status bits. This
makes status checking independent of prescaler setting. This approach is used in this
datasheet, unless otherwise noted.

* Bit 2 — Res: Reserved Bit

This bit is reserved and will always read as zero.

AIMEL 209

I)

TWI Data Register — TWDR

TWI (Slave) Address Register
- TWAR

ATMEL

* Bits 1..0 - TWPS: TWI Prescaler Bits

These bits can be read and written, and control the bit rate prescaler.

Table 90. TWI Bit Rate Prescaler

TWPS1 TWPSO Prescaler Value
0 0 1
0 1 4
1 0 16
1 1 64

To calculate bit rates, see “Bit Rate Generator Unit” on page 206. The value of
TWPSL1..0 is used in the equation.

Bit 7 6 5 4 3 2 1 0

I TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWDO I TWDR
Read/Write R/IW R/W R/W R/W R/W R/W RIW R/W
Initial Value 1 1 1 1 1 1 1 1

In Transmit mode, TWDR contains the next byte to be transmitted. In receive mode, the
TWDR contains the last byte received. It is writable while the TWI is not in the process of
shifting a byte. This occurs when the TWI interrupt flag (TWINT) is set by hardware.
Note that the Data Register cannot be initialized by the user before the first interrupt
occurs. The data in TWDR remains stable as long as TWINT is set. While data is shifted
out, data on the bus is simultaneously shifted in. TWDR always contains the last byte
present on the bus, except after a wake up from a sleep mode by the TWI interrupt. In
this case, the contents of TWDR is undefined. In the case of a lost bus arbitration, no
data is lost in the transition from Master to Slave. Handling of the ACK bit is controlled
automatically by the TWI logic, the CPU cannot access the ACK bit directly.

» Bits 7..0— TWD: TWI Data Register

These eight bits constitute the next data byte to be transmitted, or the latest data byte
received on the TWI Serial Bus.

Bit 7 6 5 4 3 2 1 0

I TWAG TWAS TWA4 TWA3 TWA2 TWA1 TWAO TWGCE I TWAR
Read/Write R/IW R/W R/W R/W R/W R/W R/W R/W
Initial Value 1 1 1 1 1 1 1 0

e Bits 7..1 — TWA: TWI (Slave) Address Register

These seven bits constitute the slave address of the TWI unit. The TWAR should be
loaded with the 7-bit slave address to which the TWI will respond when programmed as
a slave transmitter or receiver, and not needed in the master modes. In multimaster sys-
tems, TWAR must be set in masters which can be addressed as slaves by other
masters.

210 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

» Bit 0 - TWGCE: TWI General Call Recognition Enable Bit

TWGCE is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address
if enabled) in the received serial address. If a match is found, an interrupt request is
generated. If set, this bit enables the recognition of a General Call given over the TWI
Serial Bus.

AIMEL 211

I)

Using the TWI

ATMEL

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus
events, like reception of a byte or transmission of a START condition. Because the TWI
is interrupt-based, the application software is free to carry on other operations during a
TWI byte transfer. Note that the TWI Interrupt Enable (TWIE) bit in TWCR together with
the Global Interrupt Enable bit in SREG allow the application to decide whether or not
assertion of the TWINT flag should generate an interrupt request. If the TWIE bit is
cleared, the application must poll the TWINT flag in order to detect actions on the TWI
bus.

When the TWINT flag is asserted, the TWI has finished an operation and awaits applica-
tion response. In this case, the TWI Status Register (TWSR) contains a value indicating
the current state of the TWI bus. The application software can then decide how the TWI
should behave in the next TWI bus cycle by manipulating the TWCR and TWDR
Registers.

Figure 99 is a simple example of how the application can interface to the TWI hardware.
In this example, a master wishes to transmit a single data byte to a slave. This descrip-
tion is quite abstract, a more detailed explanation follows later in this section. A simple
code example implementing the desired behaviour is also presented.

Figure 99. Interfacing the Application to the TWI in a Typical Transmission

1. Application 3. Check TWSR to see if 5. Check TWSR to see if SLA+W 7. Check TWSR to see if data
5 writes to TWCR || START was sent. Application was sent and ACK received. was sent and ACK received.
"§ < | toinitiate loads SLA+W into TWDR, and Application loads data into TWDR, Application loads appropriate
= .8 | transmission of loads appropriate control signals and loads appropriate control signals control signals to send STOP
g— < | START into TWCR, making sure that into TWCR, making sure that TWINT into TWCR, making sure that
TWINT is written to one. is written to one. TWINT is written to one

TWI bus | START SLA+W A Data A STOP
2. TWINT set. 4. TWINT set. 6. TWINT set. . T'\r/‘\?l',\cﬁt‘;zt
T™WI Status code indicates Status code indicates Status code indicates
START condition sent SLA+W sendt, ACK data sent, ACK received
Hardware .
Action received

1. The first step in a TWI transmission is to transmit a START condition. This is
done by writing a specific value into TWCR, instructing the TWI hardware to
transmit a START condition. Which value to write is described later on. However,
it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the TWINT
bitin TWCR is set. Inmediately after the application has cleared TWINT, the TWI
will initiate transmission of the START condition.

2. When the START condition has been transmitted, the TWINT flag in TWCR is
set, and TWSR is updated with a status code indicating that the START condition
has successfully been sent.

212 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

3. The application software should now examine the value of TWSR, to make sure
that the START condition was successfully transmitted. If TWSR indicates other-
wise, the application software might take some special action, like calling an
error routine. Assuming that the status code is as expected, the application must
load SLA+W into TWDR. Remember that TWDR is used both for address and
data. After TWDR has been loaded with the desired SLA+W, a specific value
must be written to TWCR, instructing the TWI hardware to transmit the SLA+W
present in TWDR. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT
clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will
initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT flag in TWCR is set,
and TWSR is updated with a status code indicating that the address packet has
successfully been sent. The status code will also reflect whether a slave
acknowledged the packet or not.

5. The application software should now examine the value of TWSR, to make sure
that the address packet was successfully transmitted, and that the value of the
ACK bit was as expected. If TWSR indicates otherwise, the application software
might take some special action, like calling an error routine. Assuming that the
status code is as expected, the application must load a data packet into TWDR.
Subsequently, a specific value must be written to TWCR, instructing the TWI
hardware to transmit the data packet present in TWDR. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI will not start any opera-
tion as long as the TWINT bit in TWCR is set. Immediately after the application
has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT flag in TWCR is set, and
TWSR is updated with a status code indicating that the data packet has success-
fully been sent. The status code will also reflect whether a slave acknowledged
the packet or not.

7. The application software should now examine the value of TWSR, to make sure
that the data packet was successfully transmitted, and that the value of the ACK
bit was as expected. If TWSR indicates otherwise, the application software might
take some special action, like calling an error routine. Assuming that the status
code is as expected, the application must write a specific value to TWCR,
instructing the TWI hardware to transmit a STOP condition. Which value to write
is described later on. However, it is important that the TWINT bit is set in the
value written. Writing a one to TWINT clears the flag. The TWI will not start any
operation as long as the TWINT bit in TWCR is set. Immediately after the appli-
cation has cleared TWINT, the TWI will initiate transmission of the STOP
condition. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmis-
sions. These can be summarized as follows:

* When the TWI has finished an operation and expects application response, the
TWINT flag is set. The SCL line is pulled low until TWINT is cleared.

» When the TWINT flag is set, the user must update all TWI Registers with the value
relevant for the next TWI bus cycle. As an example, TWDR must be loaded with the
value to be transmitted in the next bus cycle.

« After all TWI Register updates and other pending application software tasks have
been completed, TWCR is written. When writing TWCR, the TWINT bit should be

Alm L 213

7522C-AUTO-09/06 I ©

ATMEL

set. Writing a one to TWINT clears the flag. The TWI will then commence executing
whatever operation was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that
the code below assumes that several definitions have been made for example by using

include-files.
Assembly Code Example C Example Comments
1 1di rl6, (1<<TWINT) | (1<<TWSTA) | TWCR = (1<<TWINT) | (1<<TWSTA) |
(1<<TWEN) (1<<TWEN) Send START condition
sts TWCR, rlé6
2 waitl: while (! (TWCR & (1<<TWINT)))
lds rlé6,TWCR i Wait for TWINT flag set. This indicates that
sbrs rlé6, TWINT the START condition has been transmitted
rjmp waitl
3 lds rl6,TWSR if ((TWSR & OxF8) != START)
andi 116 OxFS ERROR () ; Check value of TWI Status Register. Mask
] ' ! prescaler bits. If status different from START
cpi rl6e, START go to ERROR
brne ERROR
1di rlé6, SLA W TWDR = SLA W;
sts TWDR, rlé TWCR = (1<<TWINT) | (1<<TWEN) ; Load SLA_W into TWDR Register. Clear
. TWINT bit in TWCR to start transmission of
1di rl6, (1<<TWINT) | (1<<TWEN) address
sts TWCR, rlé6
4 wait2: while (! (TWCR & (1<<TWINT)))
1ds r16,TWCR . Wait for TWINT flag set. This.indicates that
the SLA+W has been transmitted, and
sbrs rlé, TWINT ACK/NACK has been received.
rjmp wait2
5 lds rl6,TWSR if ((TWSR & OxF8) != MT SLA ACK)
andi rl6. OxF8 ERROR () ; Check value of TWI Status Register. Mask
] ' ' prescaler bits. If status different from
cpi rle, MT_SLA ACK MT_SLA_ACK go to ERROR
brne ERROR
1di rlé6, DATA TWDR = DATA;
sts TWDR, rlé TWCR = (1<<TWINT) | (1<<TWEN); Load DATA into TWDR Register. Clear TWINT
1di r16, (1<<TWINT) | (1<<TWEN) bit in TWCR to start transmission of data
sts TWCR, rlé6
6 wait3: while (! (TWCR & (1<<TWINT)))
1ds rle,TWCR . Wait for TWINT flag set. Thls indicates that
the DATA has been transmitted, and
sbrs rlée, TWINT ACK/NACK has been received.
rjmp wait3
7 lds rl6,TWSR if ((TWSR & OxF8) != MT DATA ACK)
andi 116 OxFS ERROR () ; Check value of TWI Status Register. Mask
] ' ! prescaler bits. If status different from
cpi rle, MT_DATA_ACK MT_DATA_ACK go to ERROR
brne ERROR
1di r1l6, (1<<TWINT) | (1<<TWEN) | TWCR = (1<<TWINT) | (1L<<TWEN) |
(1<<TWSTO) (1<<TWSTO) ; Transmit STOP condition
sts TWCR, rlé6

214

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Transmission Modes

Master Transmitter Mode

7522C-AUTO-09/06

The TWI can operate in one of four major modes. These are named Master Transmitter
(MT), Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several
of these modes can be used in the same application. As an example, the TWI can use
MT mode to write data into a TWI EEPROM, MR mode to read the data back from the
EEPROM. If other masters are present in the system, some of these might transmit data
to the TWI, and then SR mode would be used. It is the application software that decides
which modes are legal.

The following sections describe each of these modes. Possible status codes are
described along with figures detailing data transmission in each of the modes. These fig-
ures contain the following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)
Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 101 to Figure 107, circles are used to indicate that the TWINT flag is set. The
numbers in the circles show the status code held in TWSR, with the prescaler bits
masked to zero. At these points, actions must be taken by the application to continue or
complete the TWI transfer. The TWI transfer is suspended until the TWINT flag is
cleared by software.

When the TWINT flag is set, the status code in TWSR is used to determine the appropri-
ate software action. For each status code, the required software action and details of the
following serial transfer are given in Table 91 to Table 94. Note that the prescaler bits
are masked to zero in these tables.

In the Master Transmitter mode, a number of data bytes are transmitted to a slave
receiver (see Figure 100). In order to enter a Master mode, a START condition must be
transmitted. The format of the following address packet determines whether Master
Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes
mentioned in this section assume that the prescaler bits are zero or are masked to zero.

AIMEL 215

I)

216

ATMEL

Figure 100. Data Transfer in Master Transmitter Mode

Device 1 Device 2)
MASTER SLAVE Device3 | Device n
TRANSMITTER RECEIVER Vv
CcC
R1 R2
SDA = >
SCL = >
A START condition is sent by writing the following value to TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

TWEN must be set to enable the Two-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be written to one to clear the
TWINT flag. The TWI will then test the Two-wire Serial Bus and generate a START con-
dition as soon as the bus becomes free. After a START condition has been transmitted,
the TWINT flag is set by hardware, and the status code in TWSR will be 0x08 (See
Table 91). In order to enter MT mode, SLA+W must be transmitted. This is done by writ-
ing SLA+W to TWDR. Thereafter the TWINT bit should be cleared (by writing it to one)
to continue the transfer. This is accomplished by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

When SLA+W have been transmitted and an acknowledgment bit has been received,
TWINT is set again and a number of status codes in TWSR are possible. Possible sta-
tus codes in Master mode are 0x18, 0x20, or 0x38. The appropriate action to be taken
for each of these status codes is detailed in Table 91.

When SLA+W has been successfully transmitted, a data packet should be transmitted.
This is done by writing the data byte to TWDR. TWDR must only be written when
TWINT is high. If not, the access will be discarded, and the Write Collision bit (TWWC)
will be set in the TWCR Register. After updating TWDR, the TWINT bit should be
cleared (by writing it to one) to continue the transfer. This is accomplished by writing the
following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

This scheme is repeated until the last byte has been sent and the transfer is ended by
generating a STOP condition or a repeated START condition. A STOP condition is gen-
erated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

After a repeated START condition (state 0x10) the Two-wire Serial Interface can access
the same slave again, or a new slave without transmitting a STOP condition. Repeated
START enables the master to switch between slaves, Master Transmitter mode and
Master Receiver mode without losing control of the bus.

Table 91. Status Codes for Master Transmitter Mode

Status Code
(TWSR)

Status of the Two-wire Serial

Application Software Response

. ; : To TWCR
Prescaler Bits Bus and Two-wire Serial Inter- Tolfrom TWDR
are 0 face Hardware STA STO TWINT | TWEA | Next Action Taken by TWI Hardware
0x08 A START condition has been | Load SLA+W X 0 1 X SLA+W will be transmitted;
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition | Load SLA+W or X 0 1 X SLA+W will be transmitted;
has been transmitted ACK or NOT ACK will be received
Load SLA+R X 0 1 X SLA+R will be transmitted,;
Logic will switch to master receiver mode
0x18 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK wiill
ACK has been received be received
No TWDR actionor | 1 0 1 X Repeated START will be transmitted
No TWDR actionor | O 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x20 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK wiill
NOT ACK has been received be received
No TWDR actionor | 1 0 1 X Repeated START will be transmitted
No TWDR actionor | 0 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x28 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK wiill
ACK has been received be received
No TWDR actionor | 1 0 1 X Repeated START will be transmitted
No TWDR actionor | O 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x30 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK wiill
NOT ACK has been received be received
No TWDR actionor | 1 0 1 X Repeated START will be transmitted
No TWDR actionor | O 1 1 X STOP condition will be transmitted and
TWSTO flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x38 Arbitration lost in SLA+W or data | No TWDR actionor | O 0 1 X Two-wire Serial Bus will be released and not addressed
bytes slave mode entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus be-

comes free

7522C-AUTO-09/06

AIMEL

I)

217

ATMEL

Figure 101. Formats and States in the Master Transmitter Mode

218

MT

Successfull
transmission S SLA

DATA

to a slave
receiver

$08

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Not acknowledge
received after a data
byte

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

$18

$28

| Rs SLA ' w

AorA

Other master
continues

$38

Other master
continues

MR

Other master -
AorA continues

4

$38

To corresponding
states in slave mode

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The
prescaler bits are zero or masked to zero

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Master Receiver Mode

7522C-AUTO-09/06

In the Master Receiver Mode, a number of data bytes are received from a slave trans-
mitter (see Figure 102). In order to enter a Master mode, a START condition must be
transmitted. The format of the following address packet determines whether Master
Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT
mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes
mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 102. Data Transfer in Master Receiver Mode

Device 1 Device 2 .
MASTER SLAVE Device 3 | Device n
RECEIVER TRANSMITTER v
CcC
R1 R2
SDA = >
SCL = >
A START condition is sent by writing the following value to TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

TWEN must be written to one to enable the Two-wire Serial Interface, TWSTA must be
written to one to transmit a START condition and TWINT must be set to clear the TWINT
flag. The TWI will then test the Two-wire Serial Bus and generate a START condition as
soon as the bus becomes free. After a START condition has been transmitted, the
TWINT flag is set by hardware, and the status code in TWSR will be 0x08 (See Table
91). In order to enter MR mode, SLA+R must be transmitted. This is done by writing
SLA+R to TWDR. Thereafter the TWINT bit should be cleared (by writing it to one) to
continue the transfer. This is accomplished by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

When SLA+R have been transmitted and an acknowledgment bit has been received,
TWINT is set again and a number of status codes in TWSR are possible. Possible sta-
tus codes in Master mode are 0x38, 0x40, or 0x48. The appropriate action to be taken
for each of these status codes is detailed in Table 101. Received data can be read from
the TWDR Register when the TWINT flag is set high by hardware. This scheme is
repeated until the last byte has been received. After the last byte has been received, the
MR should inform the ST by sending a NACK after the last received data byte. The
transfer is ended by generating a STOP condition or a repeated START condition. A
STOP condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

value 1 X 1 0 X 1 0 X
ATMEL 219
—— —— — [O)

ATMEL

After a repeated START condition (state 0x10) the Two-wire Serial Interface can access
the same slave again, or a new slave without transmitting a STOP condition. Repeated
START enables the master to switch between slaves, Master Transmitter mode and
Master Receiver mode without losing control over the bus.

Figure 103. Formats and States in the Master Receiver Mode

MR

Successfull
reception S

SLA

R A DATA A DATA A P

from a slave
receiver

$08

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the
slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

$40 @ $58

| Rs SLA ' R

A
W
A P
4
$48 \
> 4 > MT
Other master Other master
AorA continues A continues
$38 $38
Y >
A Other master
continues

To corresponding
states in slave mode

From master to slave

From slave to master

Any number of data bytes
DATA A and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The

prescaler bits are zero or masked to zero

220 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Table 92. Status Codes for Master Receiver Mode

Status Code
(TWSR)

Application Software Response

Status of the Two-wire Serial

To TWCR
Prescaler Bits Bus and Two-wire Serial Inter- Tolfrom TWDR
are 0 face Hardware STA STO | TWINT | TWEA | Next Action Taken by TWI Hardware
0x08 A START condition has been | Load SLA+R X 0 1 X SLA+R will be transmitted
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition | Load SLA+R or X 0 1 X SLA+R will be transmitted
has been transmitted ACK or NOT ACK will be received
Load SLA+W X 0 1 X SLA+W will be transmitted
Logic will switch to master transmitter mode
0x38 Arbitration lost in SLA+R or NOT | No TWDR actionor | 0 0 1 X Two-wire Serial Bus will be released and not addressed
ACK bit slave mode will be entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
0x40 SLA+R has been transmitted; No TWDR actionor | 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been received returned
No TWDR action 0 0 1 1 Data byte will be received and ACK will be returned
0x48 SLA+R has been transmitted; No TWDR actionor | 1 0 1 X Repeated START will be transmitted
NOT ACK has been received No TWDR actionor | 0 1 1 X STOP condition will be transmitted and TWSTO flag will
be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset
0x50 Data byte has been received; Read data byte or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
Read data byte 0 0 1 1 Data byte will be received and ACK will be returned
0x58 Data byte has been received; Read data byte or 1 0 1 X Repeated START will be transmitted
NOT ACK has been returned Read data byte or 0 1 1 X STOP condition will be transmitted and TWSTO flag will
be reset
Read data byte 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO flag will be reset

Slave Receiver Mode

7522C-AUTO-09/06

In the Slave Receiver mode, a number of data bytes are received from a master trans-

mitter (see Figure 104). All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

Figure 104. Data Transfer in Slave Receiver Mode

Device 1
SLAVE
RECEIVER

Device 2
MASTER
TRANSMITTER

Device 3

Device n

CC

R1 R2

SDA =

\J

SCL =

\J

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

TWAR TWAB ‘ TWAS ‘ TWA4 ‘ TWA3 ‘ TWA2 ‘ TWA1 ‘ TWAO TWGCE
value Device’s Own Slave Address
AIMEL 221

I)

222

ATMEL

The upper seven bits are the address to which the Two-wire Serial Interface will respond
when addressed by a master. If the LSB is set, the TWI will respond to the general call
address (0x00), otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgment of the device’s own slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode
is entered. After its own slave address and the write bit have been received, the TWINT
flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 93. The slave receiver mode may also be entered if arbi-
tration is lost while the TWI is in the master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”)
to SDA after the next received data byte. This can be used to indicate that the slave is
not able to receive any more bytes. While TWEA is zero, the TWI does not acknowledge
its own slave address. However, the Two-wire Serial Bus is still monitored and address
recognition may resume at any time by setting TWEA. This implies that the TWEA bit
may be used to temporarily isolate the TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the
TWEA bit is set, the interface can still acknowledge its own slave address or the general
call address by using the Two-wire Serial Bus clock as a clock source. The part will then
wake up from sleep and the TWI will hold the SCL clock low during the wake up and
until the TWINT flag is cleared (by writing it to one). Further data reception will be car-
ried out as normal, with the AVR clocks running as normal. Observe that if the AVR is
set up with a long start-up time, the SCL line may be held low for a long time, blocking
other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last
byte present on the bus when waking up from these sleep modes.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Table 93. Status Codes for Slave Receiver Mode

Status Code

Application Software Response

(TWSR) Status of the Two-wire Serial Bus To TWCR
Prescaler Bits and Two-wire Serial Interface Tolfrom TWDR
are 0 Hardware STA STO | TWINT | TWEA Next Action Taken by TWI Hardware
0x60 Own SLA+W has been received; No TWDR actionor | X 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
No TWDR action X 0 1 Data byte will be received and ACK will be returned
0x68 Arbitration lost in SLA+R/W as | No TWDR actionor | X 0 1 Data byte will be received and NOT ACK will be
master; own SLA+W has been returned
received; ACK has been returned | No TWDR action X 0 1 Data byte will be received and ACK will be returned
0x70 General call address has been No TWDR actionor | X 0 1 Data byte will be received and NOT ACK will be
received; ACK has been returned returned
No TWDR action X 0 1 Data byte will be received and ACK will be returned
0x78 Arbitration lost in SLA+R/W as | No TWDR actionor | X 0 1 Data byte will be received and NOT ACK will be
master; General call address has returned
been received; ACK has been No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
returned
0x80 Previously addressed with own | Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
SLA+W; data has been received; returned
ACK has been returned Read data byte X 0 1 Data byte will be received and ACK will be returned
0x88 Previously addressed with own | Read data byte or 0 0 1 Switched to the not addressed slave mode;
SLA+W; data has been received; no recognition of own SLA or GCA
NOT ACK has been returned Read data byte or 0 0 1 1 Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1"
Read data byte or 1 0 1 0 Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0x90 Previously addressed with Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
general call; data has been re- returned
ceived; ACK has been returned Read data byte X 0 1 Data byte will be received and ACK will be returned
0x98 Previously addressed with Read data byte or 0 0 1 Switched to the not addressed slave mode;
general call; data has been no recognition of own SLA or GCA
received; NOT ACK has been Read data byte or 0 0 1 1 Switched to the not addressed slave mode;
returned own SLA will be recognized;
GCA will be recognized if TWGCE = “1"
Read data byte or 1 0 1 0 Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0xAO0 A STOP condition or repeated | Read data byte or 0 0 1 0 Switched to the not addressed slave mode;
START condition has been no recognition of own SLA or GCA
received while still addressed as | Read data byte or 0 0 1 1 Switched to the not addressed slave mode;
slave own SLA will be recognized;
GCA will be recognized if TWGCE = “1"
Read data byte or 1 0 1 0 Switched to the not addressed slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free

7522C-AUTO-09/06

AIMEL

I)

223

ATMEL

Figure 105. Formats and States in the Slave Receiver Mode

Reception of the ' -7
own slave address S SLA W A DATA A DATA A PorS
and one or more * L -- - -
data bytes. All are
acknowledged

$60 $80 $80 $A0

\
Last data byte received
is not acknowledged A PorS
$88
'

Arbitration lost as master
and addressed as slave A

$68

Y o
Reception of the general call
address and one or more data General Call A DATA A DATA A PorS
bytes . - - - =
@ $90 $90 $A0
\
Last data byte received is
not acknowledged A PorS
$98
'

Arbitration lost as master and
addressed as slave by general call A

$78

T Any number of data bytes
From master to slave DATA A and their associated acknowledge bits
From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The

prescaler bits are zero or masked to zero

Slave Transmitter Mode In the Slave Transmitter mode, a number of data bytes are transmitted to a master
receiver (see Figure 106). All the status codes mentioned in this section assume that the
prescaler bits are zero or are masked to zero.

224 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Figure 106. Data Transfer in Slave Transmitter Mode

Device 1 Device 2 . .
SLAVE MASTER Device 3 | Device n
TRANSMITTER RECEIVER V
cc
R1 R2
SDA = >

SCL =

\J

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

TWAR TWAB ‘ TWAS ‘ TWA4 ‘ TWA3 ‘ TWA2 ‘ TWA1 ‘ TWAO TWGCE
value Device’s Own Slave Address

The upper seven bits are the address to which the Two-wire Serial Interface will respond
when addressed by a master. If the LSB is set, the TWI will respond to the general call
address (0x00), otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one
to enable the acknowledgment of the device’s own slave address or the general call
address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its
own slave address (or the general call address if enabled) followed by the data direction
bit. If the direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode
is entered. After its own slave address and the write bit have been received, the TWINT
flag is set and a valid status code can be read from TWSR. The status code is used to
determine the appropriate software action. The appropriate action to be taken for each
status code is detailed in Table 94. The Slave Transmitter mode may also be entered if
arbitration is lost while the TWI is in the Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of
the transfer. State 0xCO or state 0xC8 will be entered, depending on whether the master
receiver transmits a NACK or ACK after the final byte. The TWI is switched to the not
addressed slave mode, and will ignore the master if it continues the transfer. Thus the
master receiver receives all “1” as serial data. State 0xC8 is entered if the master
demands additional data bytes (by transmitting ACK), even though the slave has trans-
mitted the last byte (TWEA zero and expecting NACK from the master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the
Two-wire Serial Bus is still monitored and address recognition may resume at any time
by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate the
TWI from the Two-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the
TWEA bit is set, the interface can still acknowledge its own slave address or the general
call address by using the Two-wire Serial Bus clock as a clock source. The part will then
wake up from sleep and the TWI will hold the SCL clock will low during the wake up and

Alm L 225

7522C-AUTO-09/06 I ©

ATMEL

until the TWINT flag is cleared (by writing it to one). Further data transmission will be
carried out as normal, with the AVR clocks running as normal. Observe that if the AVR is
set up with a long start-up time, the SCL line may be held low for a long time, blocking
other data transmissions.

Note that the Two-wire Serial Interface Data Register — TWDR does not reflect the last
byte present on the bus when waking up from these sleep modes.

Table 94. Status Codes for Slave Transmitter Mode

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the Two-wire Serial Bus
and Two-wire Serial Interface
Hardware

Application Software Response

To/from TWDR

To TWCR

STA

STO

TWINT

TWEA

Next Action Taken by TWI Hardware

O0xA8

Own SLA+R has been received;
ACK has been returned

Load data byte or

Load data byte

X

X

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xBO

Arbitration lost in SLA+R/W as
master; own SLA+R has been
received; ACK has been returned

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xB8

Data byte in TWDR has been
transmitted; ACK has been
received

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xCO0

Data byte in TWDR has been
transmitted; NOT ACK has been
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

Switched to the not addressed slave mode;

no recognition of own SLA or GCA

Switched to the not addressed slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1"

Switched to the not addressed slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1";

a START condition will be transmitted when the bus
becomes free

0xC8

Last data byte in TWDR has been
transmitted (TWEA = “0"); ACK
has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

Switched to the not addressed slave mode;

no recognition of own SLA or GCA

Switched to the not addressed slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1"

Switched to the not addressed slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1";

a START condition will be transmitted when the bus
becomes free

226

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

AT90CAN128 Auto

Figure 107. Formats and States in the Slave Transmitter Mode

Reception of the

own slave address S SLA . R A DATA A DATA A PorS

and one or
more data bytes

Arbitration lost as master

and addressed as slave A
$BO
Last data byte transmitted. oo
Switched to not addressed A All1's | PorS
slave (TWEA ='0") -~
$Cc8
T Any number of data bytes
From master to slave DATA A and their associated acknowledge bits
From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-wire Serial Bus. The

Miscellaneous States

Table 95. Miscellaneous States

prescaler bits are zero or masked to zero

There are two status codes that do not correspond to a defined TWI state, see Table 95.

Status 0xF8 indicates that no relevant information is available because the TWINT flag
is not set. This occurs between other states, and when the TWI is not involved in a serial
transfer.

Status 0x00 indicates that a bus error has occurred during a Two-wire Serial Bus trans-
fer. A bus error occurs when a START or STOP condition occurs at an illegal position in
the format frame. Examples of such illegal positions are during the serial transfer of an
address byte, a data byte, or an acknowledge bit. When a bus error occurs, TWINT is
set. To recover from a bus error, the TWSTO flag must set and TWINT must be cleared
by writing a logic one to it. This causes the TWI to enter the not addressed slave mode
and to clear the TWSTO flag (no other bits in TWCR are affected). The SDA and SCL
lines are released, and no STOP condition is transmitted.

Status Code

(TWSR) Status of the Two-wire Serial

Application Software Response

To TWCR
Prescaler Bits Bus and Two-wire Serial Inter- | 1o/trom TWDR
are 0 face Hardware STA ‘ STO ‘ TWINT ‘ TWEA Next Action Taken by TWI Hardware
OxF8 No relevant state information | No TWDR action No TWCR action Wait or proceed current transfer
available; TWINT = “0”
0x00 Bus error due to an illegal | No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
START or STOP condition tion is sent on the bus. In all cases, the bus is released
and TWSTO is cleared.

Combining Several TWI
Modes

7522C-AUTO-09/06

In some cases, several TWI modes must be combined in order to complete the desired
action. Consider for example reading data from a serial EEPROM. Typically, such a

transfer involves the following steps:

Alm L 227

I)

Multi-master Systems
and Arbitration

ATMEL

The transfer must be initiated

The EEPROM must be instructed what location should be read
The reading must be performed

The transfer must be finished

P wbdpE

Note that data is transmitted both from master to slave and vice versa. The master must
instruct the slave what location it wants to read, requiring the use of the MT mode. Sub-
sequently, data must be read from the slave, implying the use of the MR mode. Thus,
the transfer direction must be changed. The master must keep control of the bus during
all these steps, and the steps should be carried out as an atomical operation. If this prin-
ciple is violated in a multimaster system, another master can alter the data pointer in the
EEPROM between steps 2 and 3, and the master will read the wrong data location.
Such a change in transfer direction is accomplished by transmitting a REPEATED
START between the transmission of the address byte and reception of the data. After a
REPEATED START, the master keeps ownership of the bus. The following figure shows
the flow in this transfer.

Figure 108. Combining Several TWI Modes to Access a Serial EEPROM

Master Transmitter Master Receiver
— T
S SLA+W A ADDRESS A | Rs SLA+R A DATA X =
S = START Rs = REPEATED START P = STOP
Transmitted from master to slave Transmitted from slave to master

If multiple masters are connected to the same bus, transmissions may be initiated simul-
taneously by one or more of them. The TWI standard ensures that such situations are
handled in such a way that one of the masters will be allowed to proceed with the trans-
fer, and that no data will be lost in the process. An example of an arbitration situation is
depicted below, where two masters are trying to transmit data to a slave receiver.

Figure 109. An Arbitration Example

Device 1 Device 2 Device 3)
MASTER SLAVE SLAVE | ...l Device n
TRANSMITTER RECEIVER RECEIVER V
cC
R1 R2
SDA = >

SCL =

\J

Several different scenarios may arise during arbitration, as described below:

» Two or more masters are performing identical communication with the same slave.
In this case, neither the slave nor any of the masters will know about the bus
contention.

228 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Two or more masters are accessing the same slave with different data or direction
bit. In this case, arbitration will occur, either in the READ/WRITE bit or in the data
bits. The masters trying to output a one on SDA while another master outputs a zero
will lose the arbitration. Losing masters will switch to not addressed slave mode or
wait until the bus is free and transmit a new START condition, depending on
application software action.

Two or more masters are accessing different slaves. In this case, arbitration will
occur in the SLA bits. Masters trying to output a one on SDA while another master
outputs a zero will lose the arbitration. Masters losing arbitration in SLA will switch to
slave mode to check if they are being addressed by the winning master. If
addressed, they will switch to SR or ST mode, depending on the value of the
READ/WRITE bit. If they are not being addressed, they will switch to not addressed
slave mode or wait until the bus is free and transmit a new START condition,
depending on application software action.

This is summarized in Figure 110. Possible status values are given in circles.

Figure 110. Possible Status Codes Caused by Arbitration

7522C-AUTO-09/06

received

Direction

START SLA Data STOP
Arbitration lost in SLA Arbitration lost in Data
Address /Ongneral Call No @8 w| TWI bus will be released and not addressed slave mode will be entered

'\LSTART condition will be transmitted when the bus becomes free

Yes

Write @/7}‘ Data byte will be received and NOT ACK will be returned

| Data byte will be received and ACK will be returned

Read me data byte will be transmitted and NOT ACK should be received

@'@a byte will be transmitted and ACK should be received

AIMEL 229

I)

ATMEL

Controller Area Network - CAN

Features

CAN Protocol

Principles

The Controller Area Network (CAN) protocol is a real-time, serial, broadcast protocol
with a very high level of security. The AT90CAN128 CAN controller is fully compatible
with the CAN Specification 2.0 Part A and Part B. It delivers the features required to
implement the kernel of the CAN bus protocol according to the ISO/OSI Reference
Model:

» The Data Link Layer
- the Logical Link Control (LLC) sublayer
- the Medium Access Control (MAC) sublayer
» The Physical Layer
- the Physical Signalling (PLS) sublayer
- not supported - the Physical Medium Attach (PMA)
- not supported - the Medium Dependent Interface (MDI)
The CAN controller is able to handle all types of frames (Data, Remote, Error and Over-
load) and achieves a bitrate of 1 Mbit/s.

* Full Can Controller
* Fully Compliant with CAN Standard rev 2.0 A and rev 2.0 B
« 15 MOb (Message Object) with their own:

— 11 bits of Identifier Tag (rev 2.0 A), 29 bits of Identifier Tag (rev 2.0 B)
— 11 bits of Identifier Mask (rev 2.0 A), 29 bits of Identifier Mask (rev 2.0 B)
— 8 Bytes Data Buffer (Static Allocation)
— Tx, Rx, Frame Buffer or Automatic Reply Configuration
— Time Stamping
* 1 Mbit/s Maximum Transfer Rate at 8 MHz
e TTC Timer

» Listening Mode (for Spying or Autobaud)

The CAN protocol is an international standard defined in the ISO 11898 for high speed
and ISO 11519-2 for low speed.

CAN is based on a broadcast communication mechanism. This broadcast communica-
tion is achieved by using a message oriented transmission protocol. These messages
are identified by using a message identifier. Such a message identifier has to be unique
within the whole network and it defines not only the content but also the priority of the
message.

The priority at which a message is transmitted compared to another less urgent mes-
sage is specified by the identifier of each message. The priorities are laid down during
system design in the form of corresponding binary values and cannot be changed
dynamically. The identifier with the lowest binary number has the highest priority.

Bus access conflicts are resolved by bit-wise arbitration on the identifiers involved by
each node observing the bus level bit for bit. This happens in accordance with the "wired
and" mechanism, by which the dominant state overwrites the recessive state. The com-
petition for bus allocation is lost by all nodes with recessive transmission and dominant
observation. All the "losers" automatically become receivers of the message with the
highest priority and do not re-attempt transmission until the bus is available again.

230 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Message Formats The CAN protocol supports two message frame formats, the only essential difference
being in the length of the identifier. The CAN standard frame, also known as CAN 2.0 A,
supports a length of 11 bits for the identifier, and the CAN extended frame, also known
as CAN 2.0 B, supports a length of 29 bits for the identifier.

Can Standard Frame

Figure 111. CAN Standard Frames

Data Frame
" Bus Idie I 11-bit identifier 44t DLC ‘ CRCI IACK _ ntermission, Buslde
SOF 1D10.0 RTR{IDE| 10 DLC4.0 O-S(bytes 15-hit CRC del. ACK de\.l 7 bits : 3 bits : (Indefinite)
Interframe D < Arbitration e Control > Data e CRC e ACK > End of e Interframe
7 Space Field Field Field Field Field Frame Space

Remote Frame

" Bus Idle I 11-bitidentifier
SOF ID10.0

)

DLC4.0 del. del. 3 bits [(Indefinite)

Rlioe| 1o | 4PtOLC | 15 it cre CRClACKIACKl 7hits 1Intermission; Bus Idle
I

__ Interframe D < Arbitration g Control D CRC g ACK g End of g Interframe _
Space Field Field Field Field Frame Space

A message in the CAN standard frame format begins with the "Start Of Frame (SOF)",
this is followed by the "Arbitration field" which consist of the identifier and the "Remote
Transmission Request (RTR)" bit used to distinguish between the data frame and the
data request frame called remote frame. The following "Control field" contains the "IDen-
tifier Extension (IDE)" bit and the "Data Length Code (DLC)" used to indicate the
number of following data bytes in the "Data field". In a remote frame, the DLC contains
the number of requested data bytes. The "Data field" that follows can hold up to 8 data
bytes. The frame integrity is guaranteed by the following "Cyclic Redundant Check
(CRC)" sum. The "ACKnowledge (ACK) field" compromises the ACK slot and the ACK
delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as a domi-
nant bit by the receivers which have at this time received the data correctly. Correct
messages are acknowledged by the receivers regardless of the result of the acceptance
test. The end of the message is indicated by "End Of Frame (EOF)". The "Intermission
Frame Space (IFS)" is the minimum number of bits separating consecutive messages. If
there is no following bus access by any node, the bus remains idle.

CAN Extended Frame
Figure 112. CAN Extended Frames

Data Frame

BJS I&e 11-hit base identifier 7 18-hit identifier extension
ISOF IDT28.18 SRR] IDE D17.0 RTR| 1L |

>

3 hits | (Indefinite)

45 DLC ’ . CRCI IVACKV “ntermission’ Bus Idle
DLC4.0 0-8(bytes 15-hit CRC el ACK de\.l 7 bits : |

Interframe Arbitration Control Data CRC ACK End of Interframe
<t _ P —<F— 2 ——D<— 2 — < D} —<— - -
Space - Field Field Field Field Field Frame Space

Remote Frame

7Buis I&e 11-hit base identifier 18-hit identifier extension
ISOF 1DT28.18 SRR] IDE D17..0 RTR| 1L |

IS

4-hit DLC . CRCi ACK *Intermission, Bus]d\g a
DLC4.0 | 15DICRC del.lACKIde\.l This T ghis | (ndefinie)

Interframe Arbitration
F—
Space i Field

Control e CRC N ACK e End of N Interframe _ _ _
Field Field Field Frame Space

AIMEL 231

7522C-AUTO-09/06 I ©

Format Co-existence

CAN Bit Timing

Bit Construction

CAN Frame
(producer)

ATMEL

A message in the CAN extended frame format is likely the same as a message in CAN
standard frame format. The difference is the length of the identifier used. The identifier is
made up of the existing 11-bit identifier (base identifier) and an 18-bit extension (identi-
fier extension). The distinction between CAN standard frame format and CAN extended
frame format is made by using the IDE bit which is transmitted as dominant in case of a
frame in CAN standard frame format, and transmitted as recessive in the other case.

As the two formats have to co-exist on one bus, it is laid down which message has
higher priority on the bus in the case of bus access collision with different formats and
the same identifier / base identifier: The message in CAN standard frame format always
has priority over the message in extended format.

There are three different types of CAN modules available:
— 2.0A - Considers 29 bit ID as an error

— 2.0B Passive - Ignores 29 bit ID messages
— 2.0B Active - Handles both 11 and 29 bit ID Messages

To ensure correct sampling up to the last bit, a CAN node needs to re-synchronize
throughout the entire frame. This is done at the beginning of each message with the fall-
ing edge SOF and on each recessive to dominant edge.

One CAN bit time is specified as four non-overlapping time segments. Each segment is
constructed from an integer multiple of the Time Quantum. The Time Quantum or TQ is
the smallest discrete timing resolution used by a CAN node.

Figure 113. CAN Bit Construction

S s s I T N N s Y N O

TransmissionPoit @ ® ® @ ® & 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e e

(producer)

/\

Nominal CAN Bit Time

Time Quantum

Synchronization Segment

Propagation Time Segment

(producer)

Segments
(producer)

ISYNC_SEGI PROP_SEG | PHASE_SEG_1 | PHASE_SEG_2 |

L, propagation
delay

The first segment is used to synchronize the various bus nodes.

On transmission, at the start of this segment, the current bit level is output. If there is a
bit state change between the previous bit and the current bit, then the bus state change
is expected to occur within this segment by the receiving nodes.

This segment is used to compensate for signal delays across the network.

This is necessary to compensate for signal propagation delays on the bus line and
through the transceivers of the bus nodes.

232 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Phase Segment 1

Sample Point

Phase Segment 2

Information Processing Time

Bit Lengthening

Bit Shortening

Synchronization Jump Width

Programming the Sample Point

Synchronization

Arbitration

7522C-AUTO-09/06

Phase Segment 1 is used to compensate for edge phase errors.

This segment may be lengthened during re-synchronization.

The sample point is the point of time at which the bus level is read and interpreted as the
value of the respective bit. Its location is at the end of Phase Segment 1 (between the
two Phase Segments).

This segment is also used to compensate for edge phase errors.

This segment may be shortened during re-synchronization, but the length has to be at
least as long as the Information Processing Time (IPT) and may not be more than the
length of Phase Segment 1.

It is the time required for the logic to determine the bit level of a sampled bit.

The IPT begins at the sample point, is measured in TQ and is fixed at 2TQ for the Atmel
CAN. Since Phase Segment 2 also begins at the sample point and is the last segment in
the bit time, PS2 minimum shall not be less than the IPT.

As a result of resynchronization, Phase Segment 1 may be lengthened or Phase Seg-
ment 2 may be shortened to compensate for oscillator tolerances. If, for example, the
transmitter oscillator is slower than the receiver oscillator, the next falling edge used for
resynchronization may be delayed. So Phase Segment 1 is lengthened in order to
adjust the sample point and the end of the bit time.

If, on the other hand, the transmitter oscillator is faster than the receiver one, the next
falling edge used for resynchronization may be too early. So Phase Segment 2 in bit N
is shortened in order to adjust the sample point for bit N+1 and the end of the bit time

The limit to the amount of lengthening or shortening of the Phase Segments is set by the
Resynchronization Jump Width.

This segment may not be longer than Phase Segment 2.

Programming of the sample point allows "tuning" of the characteristics to suit the bus.

Early sampling allows more Time Quanta in the Phase Segment 2 so the Synchroniza-
tion Jump Width can be programmed to its maximum. This maximum capacity to
shorten or lengthen the bit time decreases the sensitivity to node oscillator tolerances,
so that lower cost oscillators such as ceramic resonators may be used.

Late sampling allows more Time Quanta in the Propagation Time Segment which allows
a poorer bus topology and maximum bus length.

Hard synchronization occurs on the recessive-to-dominant transition of the start bit. The
bit time is restarted from that edge.

Re-synchronization occurs when a recessive-to-dominant edge doesn't occur within the
Synchronization Segment in a message.

The CAN protocol handles bus accesses according to the concept called “Carrier Sense
Multiple Access with Arbitration on Message Priority”.

During transmission, arbitration on the CAN bus can be lost to a competing device with
a higher priority CAN Identifier. This arbitration concept avoids collisions of messages
whose transmission was started by more than one node simultaneously and makes sure
the most important message is sent first without time loss.

AIMEL 233

I)

Errors

Error at Message Level

Error at Bit Level

Error Signalling

ATMEL

The bus access conflict is resolved during the arbitration field mostly over the identifier
value. If a data frame and a remote frame with the same identifier are initiated at the
same time, the data frame prevails over the remote frame (c.f. RTR bit).

Figure 114. Bus Arbitration

Arbitration lost

node A Jvl
TXCAN | | | | Node A loses the bus
Node B wins the bus

e | | | [LT
CAN bus | | u u |

SOF ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 IDO RTR IDE ---------

The CAN protocol signals any errors immediately as they occur. Three error detection
mechanisms are implemented at the message level and two at the bit level:

¢ Cyclic Redundancy Check (CRC)
The CRC safeguards the information in the frame by adding redundant check bits at
the transmission end. At the receiver these bits are re-computed and tested against
the received bits. If they do not agree there has been a CRC error.

* Frame Check
This mechanism verifies the structure of the transmitted frame by checking the bit
fields against the fixed format and the frame size. Errors detected by frame checks
are designated "format errors".

* ACK Errors
As already mentioned frames received are acknowledged by all receivers through
positive acknowledgement. If no acknowledgement is received by the transmitter of
the message an ACK error is indicated.

* Monitoring
The ability of the transmitter to detect errors is based on the monitoring of bus
signals. Each node which transmits also observes the bus level and thus detects
differences between the bit sent and the bit received. This permits reliable detection
of global errors and errors local to the transmitter.

» Bit Stuffing
The coding of the individual bits is tested at bit level. The bit representation used by
CAN is "Non Return to Zero (NRZ)" coding, which guarantees maximum efficiency
in bit coding. The synchronization edges are generated by means of bit stuffing.

If one or more errors are discovered by at least one node using the above mechanisms,
the current transmission is aborted by sending an "error flag". This prevents other nodes
accepting the message and thus ensures the consistency of data throughout the net-
work. After transmission of an erroneous message that has been aborted, the sender
automatically re-attempts transmission.

234 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

CAN Controller

The CAN controller implemented into AT90CAN128 offers V2.0B Active.

This full-CAN controller provides the whole hardware for convenient acceptance filtering
and message management. For each message to be transmitted or received this mod-
ule contains one so called message object in which all information regarding the
message (e.g. identifier, data bytes etc.) are stored.

During the initialization of the peripheral, the application defines which messages are to
be sent and which are to be received. Only if the CAN controller receives a message
whose identifier matches with one of the identifiers of the programmed (receive-) mes-
sage objects the message is stored and the application is informed by interrupt. Another
advantage is that incoming remote frames can be answered automatically by the full-
CAN controller with the corresponding data frame. In this way, the CPU load is strongly
reduced compared to a basic-CAN solution.

Using full-CAN controller, high baudrates and high bus loads with many messages can
be handled.

Figure 115. CAN Controller Structure

7522C-AUTO-09/06

120 Bytes

Size=

[control] Low priority
I Status —
Buffer MOb14 - IDtag+IDmask]
JL - Time Stamp 7]
- =]
[
MOb14
. . MOb
° ° .
o o Scanning
[control -
I Status -1
Buffer MOb2 - IDtag+iDmask T . | Gen. Control _|
14 [Time Stamp 7] |— Gen. Status —|
g — Enable Mob — || L€€ TxDcan
MOb2 [Interrupt — MAC >
E %
,H::
- — | BitTiming _| T RxDcan
L Control . | LineError || PLS
I Status -1 — CAN Timer —
Buffer MOb1 - IDtag+iDmask T .
< [Time Stamp 7] CAN Channel
[
MOb1
[control -
- Status -1
Buffer MObO - IDtag+IDmask T .
JL - Time Stamp 7]
- =]
[
MObO
CAN Data Buffers Message Objets High priority

%/—/

Mailbox

AIMEL 235

I)

CAN Channel

Configuration

Bit Timing

ATMEL

The CAN channel can be in:
e Enabled mode

In this mode:

— the CAN channel (internal TXDCAN & RXDCAN) is enabled,
— the input clock is enabled.

» Standby mode

In standby mode:
— the transmitter constantly provides a recessive level (on internal TXDCAN)
and the receiver is disabled,
— input clock is enabled,
— the registers and pages remain accessible.

» Listening mode

This mode is transparent for the CAN channel:

— enables a hardware loop back, internal TXDCAN on internal RXDCAN
— provides a recessive level on TXDCAN pin

— does not disable RXDCAN

— freezes TEC and REC error counters

Figure 116. Listening Mode

internal

TXDcan

TXDcan

LISTEN »—9

internal 1 . RXDcan
RXDcan =

FSM’s (Finite State Machine) of the CAN channel need to be synchronous to the time
guantum. So, the input clock for bit timing is the clock used into CAN channel FSM’s.
Field and segment abbreviations:

* BRP: Baud Rate Prescaler.

* TQ: Time Quantum (output of Baud Rate Prescaler).

* SYNS: SYNchronization Segmentis 1 TQ long.

* PRS: PRopagation time Segment is programmable to be 1, 2, ..., 8 TQ long.

» PHS1: PHase Segment 1 is programmable to be 1, 2, ..., 8 TQ long.

» PHS2: PHase Segment 2 is programmable to be < PHS1 and > INFORMATION
PROCESSING TIME.

* INFORMATION PROCESSING TIME is 2 TQ.

* SJW: (Re) Synchronization Jump Width is programmable between 1 and min(4,
PHS1).

The total number of TQ in a bit time has to be programmed at least from 8 to 25.

236 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 117. Sample and Transmission Point

Bit Timing

PRS (3-bit length) |—

. Sample
PHS1 (3-bit length) [Point
CLK, . | Fcan (Tscl)
10 Prescaler BRP Time Quantum N
PHS2 (3-bit length) | Transmission
Point

SJW (2-bit length) |

Figure 118. General Structure of a Bit Period

o
> /CLKIO

il Il
T, g,

w L L L LWL L

Data | one nominal bit /\

! 3 ! ZAN

| Tsyns(*) Tprs R Tphsl (1) [0 Tphs2 (2)
(1) Phase error <0 3 3 3 . 3 .
(2) Phase error >0 ! ! ' Tphs1+Tsjw (3) | i |Tphs2+Tsjw (4)
(3) Phase error>0 ! |) 7
(4) Phase error<0 | 3 Thit ‘

‘ Z\
(*) Synchronization Segment: SYNS Sample Transmission
Tsyns=1xTscl (fixed) Point Point
Baud Rate The baud rate selection is made by Ty;; calculation:

Thit®Y = Tsyns + Tprs + Tphs1 + Tphs2
1. Tsyns =1 x Tscl = (BRP[5..0]+ 1)/clk5 (= 1TQ)
2.Tprs = (1 to 8) x Tscl = (PRS[2..0]+ 1) x Tscl
3.Tphsl = (1 to 8) x Tscl = (PHS1[2..0]+ 1) x Tscl
4.Tphs2 = (1 to 8) x Tscl = (PHS2[2..0]?+ 1) x Tscl
5.Tsjw = (1 to 4) x Tscl = (SIWJ1..0]+ 1) x Tscl
Notes: 1. The total number of Tscl (Time Quanta) in a bit time must be between 8 to 25.
2. PHS2[2..0] 2 is programmable to be < PHS1[2..0] and = 1.

Fault Confinement (c.f. Section “Error Management”).

AIMEL 237

7522C-AUTO-09/06 I ©

Overload Frame

Message Objects

Operating Modes

Disabled

Tx Data & Remote Frame

ATMEL

An overload frame is sent by setting an overload request (OVRQ). After the next recep-
tion, the CAN channel sends an overload frame in accordance with the CAN
specification. A status or flag is set (OVRF) as long as the overload frame is sent.

Figure 119. Overload Frame

Instructions - ---------- Setting OVRQ bit - - - - - - Resetting OVRQ bit - - - - - - - - - - - -
OVRQ bit | |
OVFG bit _
RXCAN I I Ident "A" I Cmd I Message Data "A" I CRC IAI Interframe | Over\oadIFrame I | Ident "B" |

TXCAN | Overload I Frame

The MOb is a CAN frame descriptor. It contains all information to handle a CAN frame.
This means that a MOb has been outlined to allow to describe a CAN message like an
object. The set of MObs is the front end part of the “mailbox” where the messages to
send and/or to receive are pre-defined as well as possible to decrease the work load of
the software.

The MObs are numbered from 0 up to 14 (no MOb [15]). They are independent but pri-
ority is given to the lower one in case of multi matching. The operating modes are:
— Disabled mode
Transmit mode
Receive mode
Automatic reply
Frame buffer receive mode

Every MOb has its own fields to control the operating mode. There is no default mode
after RESET. Before enabling the CAN peripheral, each MOb must be configured (ex:
disabled mode - CONMOB=00).

Table 96. MOb Configuration

MOb Configuration | Reply Valid | RTR Tag | Operating Mode
0 0 X X Disabled
X 0 Tx Data Frame
0 1
X 1 Tx Remote Frame
X 0 Rx Data Frame
1 0 0 Rx Remote Frame
1 1 Rx Remote Frame then,
Tx Data Frame (reply)
1 1 X X Frame Buffer Receive Mode

In this mode, the MOb is “free”.

1. Several fields must be initialized before sending:

— Identifier tag (IDT)
— ldentifier extension (IDE)

238 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

— Remote transmission request (RTRTAG)
— Data length code (DLC)

— Reserved bit(s) tag (RBNnTAG)

— Data bytes of message (MSG)

2. The MOb is ready to send a data or a remote frame when the MOb configuration is
set (CONMOB).

3. Then, the CAN channel scans all the MObs in Tx configuration, finds the MOb hav-
ing the highest priority and tries to send it.

4. When the transmission is completed the TXOK flag is set (interrupt).

5. All the parameters and data are available in the MOb until a new initialization.

Rx Data & Remote Frame 1. Several fields must be initialized before receiving:
— Identifier tag (IDT)
— ldentifier mask (IDMSK)
— Identifier extension (IDE)
— ldentifier extension mask (IDEMSK)
— Remote transmission request (RTRTAG)
— Remote transmission request mask (RTRMSK)
— Data length code (DLC)
— Reserved bit(s) tag (RBNnTAG)

2. The MOb is ready to receive a data or a remote frame when the MOb configuration
is set (CONMOB).

3. When a frame identifier is received on CAN network, the CAN channel scans all the
MObs in receive mode, tries to find the MOb having the highest priority which is
matching.

4. On a hit, the IDT, the IDE and the DLC of the matched MOb are updated from the
incoming (frame) values.

5. Once the reception is completed, the data bytes of the received message are stored
(not for remote frame) in the data buffer of the matched MOb and the RXOK flag is
set (interrupt).

6. All the parameters and data are available in the MOb until a new initialization.

Automatic Reply A reply (data frame) to a remote frame can be automatically sent after reception of the
expected remote frame.

1. Several fields must be initialized before receiving the remote frame:

— (c.f. Section “Rx Data & Remote Frame”)

2. When a remote frame matches, automatically the RTRTAG and the reply valid bit
(RPLV) are reset. No flag (or interrupt) is set at this time. Since the CAN data buffer
has not been used by the incoming remote frame, the MOb is then ready to be in
transmit mode without any more setting. The IDT, the IDE, the other tags and the
DLC of the received remote frame are used for the reply.

3. When the transmission of the reply is completed the TXOK flag is set (interrupt).

4.

All the parameters and data are available in the MOb until a new initialization.

Frame Buffer Receive Mode This mode is useful to receive multi frames. The priority between MObs offers a man-
agement for these incoming frames. One set MObs (including non-consecutive MObs)
is created when the MObs are set in this mode. Due to the mode setting, only one set is
possible. A frame buffer completed flag (or interrupt) - BXOK - will rise only when all the
MObs of the set will have received their dedicated CAN frame.

7522C-AUTO-09/06

Alm L 239

I)

ATMEL

1. MObs in frame buffer receive mode need to be initialized as MObs in standard
receive mode.

2. The MObs are ready to receive data (or a remote) frames when their respective
configurations are set (CONMOB).

3. When a frame identifier is received on CAN network, the CAN channel scans all the
MObs in receive mode, tries to find the MOb having the highest priority which is
matching.

4. On a hit, the IDT, the IDE and the DLC of the matched MOb are updated from the
incoming (frame) values.

5. Once the reception is completed, the data bytes of the received message are stored
(not for remote frame) in the data buffer of the matched MOb and the RXOK flag is
set (interrupt).

6. When the reception in the last MOb of the set is completed, the frame buffer com-
pleted BXOK flag is set (interrupt). BXOK flag can be cleared only if all CONMOB
fields of the set have been re-written before.

7. All the parameters and data are available in the MObs until a new initialization.

Acceptance Filter Upon a reception hit (i.e., a good comparison between the ID + RTR + RBn + IDE

received and an IDT+ RTRTAG + RBnTAG + IDE specified while taking the comparison
mask into account) the IDT + RTRTAG + RBnTAG + IDE received are updated in the
MODb (written over the registers).

Figure 120. Acceptance Filter Block Diagram

internal RxDcan »—] Rx Shift Register (internal)

ID &RB ‘ RTR ‘IDE

13(32)

- = 1a@2) i@—o—» Hit MODIi]

13(32) 13(32)

Enable

13(32)

ID &RB ‘ RTRTAG ‘ IDE‘ IDMSK ‘ RTRMSK‘ IDEMSK‘

CANIDT Registers & CANCDMOB (MOb[i]) CANIDM Registers (MOb[i])

Note: Examples:

To accept only ID = 0x317 in part A. To accept ID from 0x310 up to 0x317 in part A.
- ID MSK = 111 1111 1111 b - ID MSK = 111 1111 1000 b
- ID TAG = 011 0001 0111 b - ID TAG = 011 0001 O0xxx b

MOb Page Every MOb is mapped into a page to save place. The page number is the MOb number.
This page number is set in CANPAGE register. The number 15 is reserved for factory
tests.

CANHPMOB register gives the MOb having the highest priority in CANSIT registers. Itis
formatted to provide a direct entry for CANPAGE register. Because CANHPMOB codes
CANSIT registers, it will be only updated if the corresponding enable bits (ENRX, ENTX,
ENERR) are enabled (c.f. Figure 124).

240 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

CAN Data Buffers

CAN Timer

Prescaler

16-bit Timer

Time Triggering

Stamping Message

7522C-AUTO-09/06

To preserve register allocation, the CAN data buffer is seen such as a FIFO (with
address pointer accessible) into a MOb selection.This also allows to reduce the risks of
un-controlled accesses.

There is one FIFO per MOb. This FIFO is accessed into a MOb page thanks to the CAN
message register.

The data index (INDX) is the address pointer to the required data byte. The data byte
can be read or write. The data index is automatically incremented after every access if
the AINC* bit is reset. A roll-over is implemented, after data index=7 it is data index=0.

The first byte of a CAN frame is stored at the data index=0, the second one at the data
index=1, ...

A programmable 16-bit timer is used for message stamping and time trigger communi-
cation (TTC).

Figure 121. CAN Timer Block Diagram

CLK 5 —+} +8|—{> CANTCON ENFG
10 [
TTC SYNCTTC
OVRTIM 20 CANTIM
I~
TXOK[i] =] "EOE"
RXOK[i]) = 5%
CANSTM[i] w CANTTC

An 8-bit prescaler is initialized by CANTCON register. It receives the clk,y divided by 8.
It provides CLKanmim tO the CAN Timer if the CAN controller is enabled.

CLKcantim = CLK o X 8 X (CANTCON [7:0] + 1)

This timer starts counting from 0x0000 when the CAN controller is enabled (ENFG bit).
When the timer rolls over from OxFFFF to 0x0000, an interrupt is generated (OVRTIM).

Two synchronization modes are implemented for TTC (TTC bit):
— synchronization on Start of Frame (SYNCTTC=0),
— synchronization on End of Frame (SYNCTTC=1).

In TTC mode, a frame is sent once, even if an error occurs.
The capture of the timer value is done in the MOb which receives or sends the frame. All

managed MOb are stamped, the stamping of a received (sent) frame occurs on RxOk
(TXOK).

Alm L 241

I)

Error Management

Fault Confinement

Error Types

ATMEL

The CAN channel may be in one of the three following states:

» Error active (default):
The CAN channel takes part in bus communication and can send an active error
frame when the CAN macro detects an error.

» Error passive:
The CAN channel cannot send an active error frame. It takes part in bus
communication, but when an error is detected, a passive error frame is sent. Also,
after a transmission, an error passive unit will wait before initiating further
transmission.

* Bus off:
The CAN channel is not allowed to have any influence on the bus.

For fault confinement, a transmit error counter (TEC) and a receive error counter (REC)
are implemented. BOFF and ERRP bits give the information of the state of the CAN
channel. Setting BOFF to one may generate an interrupt.

Figure 122. Line Error Mode

| Reset |

REC > 127

TEC <127 and
ERPP= 1

BOFF =0

Error
Passive

TEC > 255

BOFFIT interrupt

Note: More than one REC/TEC change may apply during a given message transfer.

 BERR: Bit error. The bit value which is monitored is different from the bit value sent.

Note:Exceptions:

- Recessive bit sent monitored as dominant bit during the arbitration field and the
acknowledge slot.

- Detecting a dominant bit during the sending of an error frame.

» SERR: Stuff error. Detection of more than five consecutive bit with the same polarity.

» CERR: CRC error (Rx only). The receiver performs a CRC check on every destuffed
received message from the start of frame up to the data field. If this checking does
not match with the destuffed CRC field, an CRC error is set.

* FERR: Form error. The form error results from one (or more) violations of the fixed
form of the following bit fields:
— CRC delimiter
— acknowledgement delimiter
— end-of-frame
— error delimiter

242 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Error Setting

7522C-AUTO-09/06

Tx

Rx

— overload delimiter

AERR: Acknowledgment error (Tx only). No detection of the dominant bit in the
acknowledge slot.

Figure 123. Error Detection Procedures in a Data Frame

—_— |SOF| Identifier

Bit error >

Stuff error
Form error

ACK error -

|RTR| Command | Message Data | CRC |del. del. EOF inter.

Bit error

Stuff error

Form error

CRC error

The CAN channel can detect some errors on the CAN network.

In transmission:
The error is set at MOb level.

In reception:

- The identified has matched:
The error is set at MOb level.

- The identified has not or not yet matched:
The error is set at general level.

After detecting an error, the CAN channel sends an error frame on network. If the CAN
channel detects an error frame on network, it sends its own error frame.

AIMEL 243

I)

ATMEL

Interrupts

Interrupt organization The different interrupts are:
* Interrupt on receive completed OK,
* Interrupt on transmit completed OK,
* Interrupt on error (bit error, stuff error, crc error, form error, acknowledge error),
* Interrupt on frame buffer full,
* Interrupt on “Bus Off” setting,
* Interrupt on overrun of CAN timer.
The general interrupt enable is provided by ENIT bit and the specific interrupt enable for

CAN timer overrun is provided by ENORVT bit.

Figure 124. CAN Controller Interrupt Structure

CANGIE.4 CANGIE.5 CANGIE.3

| ENTX || ENRX || ENERR |

CANSTMOB.6 TXOK][i]

CANIE 1/2

CANSTMOB.5 RXOK([i]

IEMOBIi]

CANSTMOB.4 BERRYi]

CANSTMOB.3 SERRYi]

g

CANSTMOB.2 | CERRIi] I 'l>]/
=14
CANSTMOB.1 | FERRIi]
CANGIE2 CANGIEL CANGIE®6 CANGIE7
CANSTMOB.O | AERRIi] -
| ENBX | | ENERG | | ENBOFF |
CANGIT4 | BXOK I > CAN IT
CANGIT3 | sERG
CANGIT2 | CERG |7 \ 'l>
caNGITL | FERG L/
CANGITO | AERG
CANGIE.0
CANGIT6 | BOFFI I 'l> ENOVRT
CANGITS | OVRTIM I OVR IT

242 AT90CAN128 Auto

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Interrupt Behavior

7522C-AUTO-09/06

When an interrupt occurs, the corresponding bit is set in the CANSITn or CANGIT
registers.

To acknowledge a MOb interrupt, the corresponding bits of CANSTMOB register
(RXOK, TXOK,...) must be cleared by the software application. This operation needs a
read-modify-write software routine.

To acknowledge a general interrupt, the corresponding bits of CANGIT register (BXOK,
BOFFIT,...) must be cleared by the software application. This operation is made writing
a logical one in these interrupt flags (writing a logical zero doesn’t change the interrupt
flag value).

OVRTIM interrupt flag is reset as the other interrupt sources of CANGIT register and is
also reset entering in its dedicated interrupt handler.

When the CAN node is in transmission and detects a Form Error in its frame, a bit Error
will also be raised. Consequently, two consecutive interrupts can occur, both due to the
same error.

When a MOb error occurs and is set in its own CANSTMOB register, no general error is
set in CANGIT register.

AIMEL 245

I)

CAN Register Description

Figure 125. Registers Organization

246

-- Page MOb ---ccmmmaaaaoos

AVR Registers
t— >

General Control

General Status

General Interrupt

Bit Timing 1

Bit Timing 2

Bit Timing 3

Enable MOb 2

Enable MOb 1

Enable Interrupt

Enable Interrupt MOb 2

Enable Interrupt MOb 1

Status Interrupt MOb 2

Status Interrupt MOb 1

CAN Timer Control

CAN Timer Low

CAN Timer High

CANTTC Low

CANTTC High

TEC Counter

REC Counter

Hightest Priority MOb

Page MOb
MOb Number ‘ ‘Dal‘a Index
~

MOb Status

MOb Control & DLC

ID Tag 4

ID Tag 3

ID Tag 2

IDTag 1

ID Mask 4

ID Mask 3

ID Mask 2

ID Mask 1

Time Stamp Low

Time Stamp High

Message Data

AT90CAN128 Auto

ATMEL

Registers in Pages

1eCiS
o ODI®

MObO - MOb Status

MObO - MOb Ctrl & DLC

MObO - ID Tag 4

MObO - ID Tag 3

MODO - ID Tag 2

MObO - ID Tag 1

MODO - ID Mask 4

MODbO - ID Mask 3

MODbO - ID Mask 2

MObO - ID Mask 1

MObO - Time Stamp Low

MObO - Time Stamp High

0 - Mess. Data - byte 0

MOb
=t

—

MOb14 - MOb Status

MOb14 - MOb Ctrl & DLC

MOb14 - ID Tag 4

MOb14 - ID Tag 3

MOb14 - ID Tag 2

MOb14 - ID Tag 1

MOb14 - ID Mask 4

MOb14 - ID Mask 3

MOb14 - ID Mask 2

MOb14 - ID Mask 1

MOb14 - Time Stamp Low

MOb14 - Time Stamp High

MOb14 - Mess.Daxa—byteOI

—

JE—
J—

JE—

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

General CAN Registers

CAN General Control Register

- CANGCON Bit 7 6 5 4 3 2 1 0
| ABrRQ | OvRQ | TTC SYNTTC | LISTEN | TEST |ENA/STB| SWRES | CANGCON

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - ABRQ: Abort Request

This is not an auto resettable bit.

— 0-no request.

— 1 - abort request: a reset of CANEN1 and CANENZ2 registers is done. The
pending communications are immediately disabled and the on-going one will be
normally terminated, setting the appropriate status flags.

Note that CONCDMOB register remain unchanged.

» Bit 6 - OVRQ: Overload Frame Request

This is not an auto resettable bit.

— 0-no request.

— 1 - overload frame request: send an overload frame after the next received
frame.

The overload frame can be traced observing OVFG in CANGSTA register (c.f. Figure
119 on page 238).

 Bit5—-TTC: Time Trigger Communication

— 0-noTTC.
— 1- TTC mode.

* Bit4 - SYNTTC: Synchronization of TTC

This bit is only used in TTC mode.

— 0-the TTC timer is caught on SOF.
— 1-the TTC timer is caught on the last bit of the EOF.

e Bit 3-LISTEN: Listening Mode

— 0- no listening mode.
— 1 - listening mode.

* Bit2 - TEST: Test Mode

— 0-no test mode
— 1 -test mode: intend for factory testing and not for customer use.
Note: CAN may malfunction if this bit is set.

» Bit 1 - ENA/STB: Enable / Standby Mode

Because this bit is a command and is not immediately effective, the ENFG bit in CANG-
STA register gives the true state of the chosen mode.
— 0 - standby mode: the on-going communication is normally terminated and the
CAN channel is frozen (the CONMOB bits of every MOb do not change). The

transmitter constantly provides a recessive level. In this mode, the receiver is
not enabled but all the registers and mailbox remain accessible from CPU.

— 1 - enable mode: the CAN channel enters in enable mode once 11 recessive
bits has been read.

Alm L 247

7522C-AUTO-09/06 I ©

ATMEL

» Bit 0 —- SWRES: Software Reset Request

This auto resettable bit only resets the CAN controller.
— 0-noreset
— 1 - reset: this reset is “ORed” with the hardware reset.

CAN General Status Register -

CANGSTA Bit 7 6 5 4 3 2 1 0
I OVFG - TXBSY | RXBSY | ENFG BOFF ERRP]| cANGSTA

Read/Write - R - R R R R R

Initial Value - 0 - 0 0 0 0 0

* Bit 7 — Reserved Bit

This bit is reserved for future use.

» Bit 6 — OVFG: Overload Frame Flag

This flag does not generate an interrupt.
— 0-no overload frame.

— 1 - overload frame: set by hardware as long as the produced overload frame is
sent.

* Bit5 - Reserved Bit

This bit is reserved for future use.

* Bit4 - TXBSY: Transmitter Busy

This flag does not generate an interrupt.

— 0 - transmitter not busy.

— 1-transmitter busy: set by hardware as long as a frame (data, remote, overload
or error frame) or an ACK field is sent. Also set when an inter frame space is
sent.

» Bit 3— RXBSY: Receiver Busy

This flag does not generate an interrupt.

— 0 - receiver not busy
— 1 -receiver busy: set by hardware as long as a frame is received or monitored.

» Bit 2 - ENFG: Enable Flag

This flag does not generate an interrupt.

— 0 - CAN controller disable: because an enable/disable command is not
immediately effective, this status gives the true state of the chosen mode.

— 1 - CAN controller enable.

* Bit 1 - BOFF: Bus Off Mode
BOFF gives the information of the state of the CAN channel. Only entering in bus off
mode generates the BOFFIT interrupt.

— 0 - no bus off mode.
— 1 - bus off mode.

248 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

* Bit 0 — ERRP: Error Passive Mode

ERRP gives the information of the state of the CAN channel. This flag does not generate
an interrupt.

— 0-no error passive mode.
— 1 - error passive mode.

CAN General Interrupt

Register - CANGIT Bit U 5 5 4 3 2 1 0
I CANIT BOFFIT | OVRTIM BXOK SERG CERG FERG AERG I CANGIT
Read/Write R R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - CANIT: General Interrupt Flag

This is a read only bit.

— 0-no interrupt.

— 1 - CAN interrupt: image of all the CAN controller interrupts except for OVRTIM
interrupt. This bit can be used for polling method.

» Bit 6 - BOFFIT: Bus Off Interrupt Flag
Writing a logical one resets this interrupt flag. BOFFIT flag is only set when the CAN
enters in bus off mode coming from error passive mode.

— 0-no interrupt.
— 1 - bus off interrupt when the CAN enters in bus off mode.

* Bit5—- OVRTIM: Overrun CAN Timer
Writing a logical one resets this interrupt flag. Entering in CAN timer overrun interrupt
handler also reset this interrupt flag

— 0-no interrupt.

— 1 - CAN timer overrun interrupt: set when the CAN timer switches from OXFFFF
to 0x0000.

» Bit 4 - BXOK: Frame Buffer Receive Interrupt
Writing a logical one resets this interrupt flag. BXOK flag can be cleared only if all CON-
MOB fields of the MOb'’s of the buffer have been re-written before.

— 0-no interrupt.
— 1 - burst receive interrupt: set when the frame buffer receive is completed.

* Bit 3 — SERG: Stuff Error General

Writing a logical one resets this interrupt flag.

— 0-no interrupt.

— 1 - stuff error interrupt: detection of more than five consecutive bits with the
same polarity.

* Bit 2 - CERG: CRC Error General

Writing a logical one resets this interrupt flag.

— 0-no interrupt.

— 1-CRC error interrupt: the CRC check on destuffed message does not fit with
the CRC field.

Alm L 249

7522C-AUTO-09/06 I ©

CAN General Interrupt Enable
Register - CANGIE

ATMEL

* Bit 1l - FERG: Form Error General

Writing a logical one resets this interrupt flag.

— 0-no interrupt.

— 1 - form error interrupt: one or more violations of the fixed form in the CRC
delimiter, acknowledgment delimiter or EOF.

» Bit 0 - AERG: Acknowledgment Error General

Writing a logical one resets this interrupt flag.

— 0-no interrupt.

— 1 - acknowledgment error interrupt: no detection of the dominant bit in
acknowledge slot.

Bit 7 6 5 4 3 2 1 0
I ENIT ENBOFF ENRX ENTX ENERR ENBX ENERG ENOVRTI CANGIE
Read/Write R/IW R/IW R/W R/W R/W R/W RW R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - ENIT: Enable all Interrupts (Except for CAN Timer Overrun Interrupt)

— 0 - interrupt disabled.
— 1- CANIT interrupt enabled.

» Bit 6 — ENBOFF: Enable Bus Off Interrupt

— 0 - interrupt disabled.
— 1- bus off interrupt enabled.

» Bit 5 - ENRX: Enable Receive Interrupt

— 0 - interrupt disabled.
— 1-receive interrupt enabled.

* Bit4 - ENTX: Enable Transmit Interrupt

— 0 - interrupt disabled.
— 1- transmit interrupt enabled.

* Bit 3 - ENERR: Enable MOb Errors Interrupt

— 0 - interrupt disabled.
— 1- MOb errors interrupt enabled.

* Bit 2 - ENBX: Enable Frame Buffer Interrupt

— 0 - interrupt disabled.
— 1- frame buffer interrupt enabled.

» Bit 1 - ENERG: Enable General Errors Interrupt

— 0 - interrupt disabled.
— 1- general errors interrupt enabled.

» Bit 0 - ENOVRT: Enable CAN Timer Overrun Interrupt

— 0 - interrupt disabled.
— 1- CAN timer interrupt overrun enabled.

250 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

CAN Enable MOb Registers -

CANEN2 and CANEN1 Bit / 6 5 4 3 2 1 0
ENMOB7 | ENMOB6 | ENMOBS | ENMOB4 | ENMOB3 | ENMOB2 | ENMOB1 | ENMOBO | CANEN2

ENMOB14ENMOB13 [ENMOB12 | ENMOB11 | ENMOB10| ENMOB9 | ENMOBS8 | CANEN1

Bit 15 14 13 12 11 10 9 8
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0
Read/Write R R R R R R R
Initial Value 0 0 0 0 0 0 0

* Bits 14:0 - ENMOB14:0: Enable MOb

This bit provides the availability of the MOb.

It is set to one when the MOb is enabled (i.e. CONMOB1:0 of CANCDMOB register).
Once TXOK or RXOK is set to one (TXOK for automatic reply), the corresponding
ENMOB is reset. ENMOB is also set to zero configuring the MOb in disabled mode,
applying abortion or standby mode.

— 0 - message object disabled: MOb available for a new transmission or
reception.

— 1 - message object enabled: MOb in use.

* Bit 15 - Reserved Bit

This bit is reserved for future use.

CAN Enable Interrupt MOb

Registers - Bit 7 6 5 4 3 2 1 0
CANIE2 and CANIE1 IEMOB7 | IEMOB6 | IEMOB5 | IEMOB4 | IEMOB3 | IEMOB2 | IEMOB1 | IEMOBO CANIE2
IEMOB14 | IEMOB13 | IEMOB12 | IEMOB11 | IEMOB10 | IEMOB9 | IEMOB8 CANIE1
Bit 15 14 13 12 11 10 9 8
Read/Write R/IW R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Read/Write - R/W R/W R/W R/W R/W R/W R/W
Initial Value - 0 0 0 0 0 0 0

» Bits 14:0 - IEMOB14:0: Interrupt Enable by MOb
— 0 - interrupt disabled.
— 1-MOb interrupt enabled
Note: Example: CANIE2 = 0000 1100, : enable of interrupts on MOb 2 & 3.
» Bit 15 - Reserved Bit
This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANIEL is written.

CAN Status Interrupt MOb

Registers - CANSIT2 and Bit U 5 5 4 3 2 1 0
CANSIT1 SIT7 SITé SITS SIT4 SIT3 SIT2 SIT1 SITO CANSIT2
SIT14 SIT13 SIT12 SIT11 SIT10 SIT9 SIT8 CANSIT1

Bit 15 14 13 12 11 10 9 8

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0

Read/Write R R R R R R R

Initial Value 0 0 0 0 0 0 0

AIMEL 251

7522C-AUTO-09/06 I ©

CAN Bit Timing Register 1 -
CANBT1

CAN Bit Timing Register 2 -
CANBT2

ATMEL

» Bits 14:0 - SIT14:0: Status of Interrupt by MOb

— 0-no interrupt.
— 1- MOb interrupt.
Note: Example: CANSIT2 = 0010 0001, : MOb 0 & 5 interrupts.

* Bit 15 — Reserved Bit

This bit is reserved for future use.

Bit 7 6 5 4 3 2 1 0
I - BRP5 BRP4 BRP3 BRP2 BRP1 BRPO - I CANBT1
Read/Write - R/W R/W R/W R/W R/W R/W
Initial Value - 0 0 0 0 0 0

» Bit 7- Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANBTL1 is written.

» Bit 6:1 — BRP5:0: Baud Rate Prescaler

The period of the CAN controller system clock Tscl is programmable and determines the
individual bit timing.
BRP[5:0] + 1

Tsclz ————
clk,o frequency

* Bit 0 — Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANBT1 is written.

Bit 7 6 5 4 3 2 1 0
B SIW1 | SJwo - PRS2 | PRS1 | PRSO - | canT2
Read/Write - RIW RIW - R/W R/W R/W
Initial Value - 0 0 - 0 0 0

* Bit 7- Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANBT2 is written.

» Bit 6:5—-SJWL1:0: Re-Synchronization Jump Width

To compensate for phase shifts between clock oscillators of different bus controllers, the
controller must re-synchronize on any relevant signal edge of the current transmission.
The synchronization jump width defines the maximum number of clock cycles. A bit
period may be shortened or lengthened by a re-synchronization.

Tsjw = Tscl x (SIW [1:0] +1)

* Bit 4 — Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANBT2 is written.

252 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

» Bit 3:1 — PRS2:0: Propagation Time Segment

This part of the bit time is used to compensate for the physical delay times within the
network. It is twice the sum of the signal propagation time on the bus line, the input com-
parator delay and the output driver delay.

Tprs = Tscl x (PRS [2:0] + 1)

* Bit 0 — Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANBT2 is written.

CAN Bit Timing Register 3 -

CANBT3 Bit 7 6 5 4 3 2 1 0
| - PHS22 | PHS21 | PHS20 | PHS12 | PHS11 | PHS10 SMP | CANBT3
Read/Write - R/W R/W R/W R/W R/W R/W R/W
Initial Value - 0 0 0 0 0 0 0

* Bit 7- Reserved Bit

This bit is reserved for future use. For compatibility with future devices, this must be writ-
ten to zero when CANBT3 is written.

» Bit 6:4 — PHS22:0: Phase Segment 2

This phase is used to compensate for phase edge errors. This segment may be short-
ened by the re-synchronization jump width. PHS2[2..0] shall be >1 and <PHS1[2..0] (c.f.
Section “CAN Bit Timing” and Section “Baud Rate”).

Tphs2 = Tscl x (PHS2 [2:0] + 1)

e Bit 3:1 - PHS12:0: Phase Segment 1

This phase is used to compensate for phase edge errors. This segment may be length-
ened by the re-synchronization jump width.

Tphsl = Tscl x (PHS1 [2:0] + 1)

* Bit 0 — SMP: Sample Point(s)
— 0-once, at the sample point.

— 1 - three times, the threefold sampling of the bus is the sample point and twice
over a distance of a 1/2 period of the Tscl. The result corresponds to the
majority decision of the three values.

CAN Timer Control Register -

CANTCON Bit 7 6 5 4 3 2 1 0
I TPRSC7 | TPRSC6 | TPRSC5 | TPRSC4 | TPRSC3 | TPRSC2 | TRPSC1 | TPRSCO I CANTCON
Read/Write R/IW RIW RIW RIW RIW RIW R/W RIW
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:0 — TPRSC7:0: CAN Timer Prescaler

Prescaler for the CAN timer upper counter range 0 to 255. It provides the clock to the
CAN timer if the CAN controller is enabled.

CLKcantim = CLK o X 8 X (CANTCON [7:0] + 1)

Alm L 253

7522C-AUTO-09/06 I ©

CAN Timer Registers -

ATMEL

CANTIML and CANTIMH Bit ! 5 5 4 3 2 L 0
CANTIM7 | CANTIM6 | CANTIM5 | CANTIM4 | CANTIM3 | CANTIM2 | CANTIM1 | CANTIMO | CANTIML
CANTIM15|CANTIM14 | CANTIM13 |CANTIM12 | CANTIM11 [CANTIM10 | CANTIM9 | CANTIM8 | CANTIMH
Bit 15 14 13 12 11 10 9 8
Read/Write R R R R R R R R
Initial Value 0 0 0 0
e Bits 15:0 - CANTIM15:0: CAN Timer Count
CAN timer counter range 0 to 65,535.
CAN TTC Timer Registers -
CANTTCL and CANTTCH Bit ! 6 5 4 3 2 1 0
TIMTTC7 | TIMTTC6 | TIMTTC5 | TIMTTC4 | TIMTTC3 | TIMTTC2 |TIMTTC1 | TIMTTCOJ CANTTCL
TIMTTC15 | TIMTTC14 | TIMTTC13 | TIMTTC12 | TIMTTC11 | TIMTTC10 | TIMTTCO | TIMTTC8 J CANTTCH
Bit 15 14 13 12 11 10 9 8
Read/Write R R R R R
Initial Value 0 0 0 0
e Bits 15:0 - TIMTTC15:0: TTC Timer Count
CAN TTC timer counter range 0 to 65,535.
CAN Transmit Error Counter
Register - CANTEC Bit U 5 5 4 3 2 1 0
| 7ec7 | 7ece | TEC5 | TEC4 | TEC3 | TEC2 | TEC1 | TECO | CANTEC
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
e Bit 7:0 — TEC7:0: Transmit Error Count
CAN transmit error counter range 0 to 255.
CAN Receive Error Counter
Register - CANREC Bit U 5 5 4 3 2 1 0
| Rrec? REC6 REC5 REC4 REC3 REC2 REC1 RECO | canrecC
Read/Write R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
e Bit 7:0 — REC7:0: Receive Error Count
CAN receive error counter range 0 to 255.
252 ATI0OCANI128 AULO m———

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

CAN Highest Priority MOb
Register - CANHPMOB

CAN Page MOb Register -
CANPAGE

MOb Registers

CAN MOb Status Register -
CANSTMOB

7522C-AUTO-09/06

Bit 7 6 5 4 3 2 1 0
IHPMOB3 HPMOB2 | HPMOB1 | HPMOBO | CGP3 CGP2 CGP1 CGPO I CANHPMOB
Read/Write R R R R R/W R/W R/W R/W
Initial Value 1 1 1 1 0 0 0 0

* Bit 7:4 — HPMOB3:0: Highest Priority MOb Number

MODb having the highest priority in CANSIT registers.
If CANSIT = 0 (no MODb), the return value is OxF.

* Bit 3:0 — CGP3:0: CAN General Purpose Bits

These bhits can be pre-programmed to match with the wanted configuration of the
CANPAGE register (i.e., AINC and INDX2:0 setting).

Bit 7 6 5 4 3 2 1 0
IMOBNB3 MOBNB2 | MOBNB1 | MOBNBO AINC INDX2 INDX1 INDXO I CANPAGE
Read/Write R/IW R/W R/W R/W R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:4 — MOBNB3:0: MOb Number

Selection of the MOb number, the available numbers are from 0 to 14.

» Bit 3 - AINC: Auto Increment of the FIFO CAN Data Buffer Index (Active Low)

— 0 - auto increment of the index (default value).
— 1- no auto increment of the index.

* Bit 2:0 — INDX2:0: FIFO CAN Data Buffer Index
Byte location of the CAN data byte into the FIFO for the defined MOb.

The MOb registers has no initial (default) value after RESET.

Bit 7 6 5 4 3 2 1 0
I DLCW TXOK RXOK BERR SERR CERR FERR AERR I CANSTMOB
Read/Write R/IW R/W R/IW R/W R/W R/W RIW R/W
Initial Value

» Bit 7 - DLCW: Data Length Code Warning

The incoming message does not have the DLC expected. Whatever the frame type, the
DLC field of the CANCDMOB register is updated by the received DLC.

* Bit 6 — TXOK: Transmit OK

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

The communication enabled by transmission is completed. When the controller is ready
to send a frame, if two or more message objects are enabled as producers, the lower
MODb index (0 to 14) is supplied first.

Alm L 255

I)

256

ATMEL

* Bit 5 - RXOK: Receive OK

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

The communication enabled by reception is completed. In the case of two or more mes-
sage object reception hits, the lower MOb index (0 to 14) is updated first.
* Bit 4 - BERR: Bit Error (Only in Transmission)

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

The bit value monitored is different from the bit value sent.

Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field
and the acknowledge slot detecting a dominant bit during the sending of an error frame.
* Bit 3 - SERR: Stuff Error

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

Detection of more than five consecutive bits with the same polarity. This flag can gener-
ate an interrupt.
* Bit 2 - CERR: CRC Error

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

The receiver performs a CRC check on every de-stuffed received message from the
start of frame up to the data field. If this checking does not match with the de-stuffed
CRC field, a CRC error is set.

* Bit1-FERR: Form Error

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

The form error results from one or more violations of the fixed form in the following bit
fields:

* CRC delimiter.
» Acknowledgment delimiter.
* EOF

» Bit 0 — AERR: Acknowledgment Error

This flag can generate an interrupt. It must be cleared using a read-modify-write soft-
ware routine on the whole CANSTMOB register.

No detection of the dominant bit in the acknowledge slot.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

CAN MOb Control and DLC

Register - CANCDMOB Bit ! 5 5 4 3 2 L 0
|CONMOBl CONMOBO RPLV IDE DLC3 DLC2 DLC1 DLCO |CANCDMOB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value

» Bit 7:6 — CONMOBL1:0: Configuration of Message Object

These bits set the communication to be performed (no initial value after RESET).
00 - disable.

01 - enable transmission.

10 - enable reception.

11 - enable frame buffer reception

These bits are not cleared once the communication is performed. The user must re-
write the configuration to enable a new communication.

» This operation is necessary to be able to reset the BXOK flag.
» This operation also set the corresponding bit in the CANEN registers.

* Bit 5 - RPLV: Reply Valid
Used in the automatic reply mode after receiving a remote frame.

— 0-reply not ready.
— 1 -reply ready and valid.

* Bit 4 — IDE: Identifier Extension

IDE bit of the remote or data frame to send.
This bit is updated with the corresponding value of the remote or data frame received.

— 0- CAN standard rev 2.0 A (identifiers length = 11 bits).
— 1 - CAN standard rev 2.0 B (identifiers length = 29 bits).
» Bit 3:0 - DLC3:0: Data Length Code
Number of Bytes in the data field of the message.

DLC field of the remote or data frame to send. The range of DLC is from 0 up to 8. If
DLC field >8 then effective DLC=8.

This field is updated with the corresponding value of the remote or data frame received.
If the expected DLC differs from the incoming DLC, a DLC warning appears in the CAN-
STMOB register.

AIMEL 257

7522C-AUTO-09/06 I ©

ATMEL

CAN Identifier Tag Registers - V2.0 part A
CANIDT1, CANIDT2, CANIDTS3, Bit 15/7 14/6 13/5 12/4 11/3 10/2 9 8/0
and CANIDT4 - - - - - RTRTAG - RBOTAG | cANIDT4
CANIDT3
IDT2 IDT1 IDTO - - - - - CANIDT2
IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 IDT4 IDT3 CANIDT1
Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value
V2.0 part B
Bit 15/7 14/6 13/5 12/4 11/3 10/2 9n 8/0
IDT4 IDT3 IDT2 IDT1 IDTO | RTRTAG | RBITAG | RBOTAG | CANIDT4
IDT12 IDT11 IDT10 IDT9 IDT8 IDT7 IDT6 IDT5 CANIDT3
IDT20 IDT19 IDT18 IDT17 IDT16 IDT15 IDT14 IDT13 | CANIDT2
IDT28 IDT27 IDT26 IDT25 IDT24 IDT23 IDT22 DT21 | CANIDT1
Bit 31/23 30/22 29/21 28/20 27/19 26/18 25/17 24/16
Read/Write RIW RIW RIW RIW RIW R/W RIW R/W
Initial Value

V2.0 part A « Bit 31:21 —IDT10:0: Identifier Tag
Identifier field of the remote or data frame to send.

This field is updated with the corresponding value of the remote or data frame received.

* Bit 20:3 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, they must
be written to zero when CANIDTn are written.

When a remote or data frame is received, these bits do not operate in the comparison
but they are updated with un-predicted values.

» Bit 2 - RTRTAG: Remote Transmission Request Tag

RTR bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

* Bit 1 — Reserved Bit

This bit is reserved for future use. For compatibility with future devices, it must be written
to zero when CANIDTn are written.

When a remote or data frame is received, this bit does not operate in the comparison
but it is updated with un-predicted values.

» Bit 0 —- RBOTAG: Reserved Bit 0 Tag

RBO bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

V2.0 part B Bit 31:3 — IDT28:0: Identifier Tag
Identifier field of the remote or data frame to send.

This field is updated with the corresponding value of the remote or data frame received.

258 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

» Bit 2 - RTRTAG: Remote Transmission Request Tag
RTR bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

» Bit 1 - RB1TAG: Reserved Bit 1 Tag
RB1 bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

» Bit 0 —- RBOTAG: Reserved Bit 0 Tag
RBO bit of the remote or data frame to send.

This tag is updated with the corresponding value of the remote or data frame received.

CAN Identifier Mask Registers - V2.0 part A
CANIDM1, CANIDMZ2, CANIDM3, Bit 15/7 14/6 13/5 12/4 11/3 10/2 91 8/0
and CANIDM4 RTRMSK IDEMSK | CANIDM4
CANIDM3
IDMSK2 | IDMSK1 | IDMSKO CANIDM2
IDMSK10 | IDMSK9 | IDMSK8 | IDMSK7 | IDMSK6 | IDMSK5 | IDMSK4 | IDMSK3 | CANIDM1
Bit 31/23 30/22 29/21 28120 27/19 26/18 25/17 24/16
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value
V2.0 part B
Bit 15/7 14/6 13/5 12/4 11/3 10/2 9n 8/0
IDMSK4 | IDMSK3 | IDMSK2 | IDMSK1 | IDMSKO |RTRMSK IDEMSK | CANIDM4
IDMSK12 | IDMSK11 | IDMSK10 | IDMSK9 | IDMSK8 | IDMSK7 | IDMSK6 | IDMSK5 | CANIDM3
IDMSK20 | IDMSK19 | IDMSK18 | IDMSK17 | IDMSK16 | IDMSK15 | IDMSK14 | IDMSK13 | CANIDM2
IDMSK28 | IDMSK27 | IDMSK26 | IDMSK25 | IDMSK24 | IDMSK23 | IDMSK22 | IDMSK21 | CANIDM1
Bit 31/23 30/22 29/21 28120 27/19 26/18 25/17 24/16
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value

V2.0 part A

7522C-AUTO-09/06

e Bit 31:21 — IDMSK10:0: Identifier Mask

— 0 - comparison true forced
— 1 - bit comparison enabled.

» Bit 20:3 — Reserved Bits
These bits are reserved for future use. For compatibility with future devices, they must
be written to zero when CANIDMn are written.

* Bit 2 - RTRMSK: Remote Transmission Request Mask

— 0 - comparison true forced
— 1 - bit comparison enabled.

* Bit 1 - Reserved Bit

This bit is reserved for future use. For compatibility with future devices, it must be written
to zero when CANIDTn are written.

259

AIMEL

I)

ATMEL

* Bit 0 — IDEMSK: Identifier Extension Mask

— 0 - comparison true forced
— 1 - bit comparison enabled.

V2.0 partB « Bit 31:3 - IDMSK28:0: Identifier Mask

— 0 - comparison true forced
— 1 - bit comparison enabled.

» Bit 2 - RTRMSK: Remote Transmission Request Mask

— 0 - comparison true forced
— 1 - bit comparison enabled.

* Bit 1 - Reserved Bit

Writing zero in this bit is recommended.

* Bit 0 — IDEMSK: Identifier Extension Mask

— 0 - comparison true forced
— 1 - bit comparison enabled.

CAN Time Stamp Registers -

CANSTML and CANSTMH Bit ! 5 S 4 3 2 - 0
TIMSTM7 | TIMSTM6 | TIMSTMS | TIMSTM4 | TIMSTM3 | TIMSTM2 | TIMSTM1 | TIMSTMO] CANSTML

TIMSTM15(TIMSTM14|TIMSTM13|TIMSTM12(TIMSTM11|TIMSTM10| TIMSTM9 | TIMSTM8 | CANSTMH

Bit 15 14 13 12 11 10 9 8
Read/Write R R R R R R R R
Initial Value

* Bits 15:0 - TIMSTM15:0: Time Stamp Count
CAN time stamp counter range 0 to 65,535.

CAN Data Message Register -

CANMSG Bit 7 6 5 4 3 2 1 0
| vsc7 | msGé | MSG5 | MSG4 | MSG3 | MSG2 | MSG1 | MSGO | CANMSG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value

* Bit 7:0 - MSG7:0: Message Data
This register contains the CAN data byte pointed at the page MOb register.

After writing in the page MOb register, this byte is equal to the specified message loca-
tion of the pre-defined identifier + index. If auto-incrementation is used, at the end of the
data register writing or reading cycle, the index is auto-incremented.

The range of the counting is 8 with no end of loop (0, 1,..., 7, 0,...).

260 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Examples of CAN
Baud Rate Setting

The CAN bus requires very accurate timing especially for high baud rates. It is recom-
mended to use only an external crystal for CAN operations.

(Refer to “Bit Timing” on page 236 for timing description and page 252 to page 253 for

“CAN Bit Timing Registers”).

Table 97. Examples of CAN Baud Rate Settings for Commonly Frequencies

CAN Description Segments Registers
felky, Baud ; o A A _
(MHz) Rate Samp ing TQ Thit Tprs Tphl Tph2 Tsjw CANBT1 | CANBT2 | CANBT3
(Kbps) Point (Ms) (TQ) | (MTQ) (TQ) (TQ) (TQ)
0.0625 16 7 4 4 1 0x00 0x0C 0x37
1000 75 %
0.125 8 3 2 2 1 0x02 0x04 0x13
0.125 16 7 4 4 1 0x02 0x0C 0x37
500 75 %
0.250 8 3 2 2 1 0x06 0x04 0x13
0.250 16 7 4 4 1 0x06 0x0C 0x37
250 75 %
0.500 8 3 2 2 1 OxOE 0x04 0x13
16.000
0.3125 16 7 4 4 1 0x08 0x0C 0x37
200 75 %
0.625 8 3 2 2 1 0x12 0x04 0x13
0.500 16 7 4 4 1 OxOE 0x0C 0x37
125 75 %
1.000 8 3 2 2 1 Ox1E 0x04 0x13
0.625 16 7 4 4 1 0x12 0x0C 0x37
100 75 %
1.250 8 3 2 2 1 0x26 0x04 0x13
0.083333 12 5 3 3 1 0x00 0x08 0x25
1000 75 %
X - no ata- - -
0.166666 12 5 3 3 1 0x02 0x08 0x25
500 75 %
0.250 8 3 2 2 1 0x04 0x04 0x13
0.250 16 7 4 4 1 0x04 0x0C 0x37
250 75 %
0.500 8 3 2 2 1 O0x0A 0x04 0x13
12.000
0.250 20 8 6 5 1 0x04 OxOE 0x4B
200 75 %
0.416666 12 5 3 3 1 0x08 0x08 0x25
0.500 16 7 4 4 1 O0x0A 0x0C 0x37
125 75 %
1.000 8 3 2 2 1 0x16 0x04 0x13
0.500 20 8 6 5 1 O0x0A OxOE 0x4B
100 75 %
0.833333 12 5 3 3 1 0x12 0x08 0x25
ATMEL 261
7522C-AUTO-09/06 I ©

ATMEL

Table 97. Examples of CAN Baud Rate Settings for Commonly Frequencies (Continued)
CAN Description Segments Registers
feik, Baud ; o A A _
(MHz) Rate Samp ing TQ Thit Tprs Tphl Tph2 Tsjw CANBT1 | CANBT2 | CANBT3
(Kbps) Point (us) (TQ | (Q | (@ | (TQ) | (TQ)
X ---no data- - -
1000 75 %
0.125 8 3 2 2 1 0x00 0x04 0x13
0.125 16 7 4 4 1 0x00 0ox0C 0x37
500 75 %
0.250 8 3 2 2 1 0x02 0x04 0x13
0.250 16 7 4 4 1 0x02 0ox0C 0x37
250 75 %
0.500 8 3 2 2 1 0x06 0x04 0x13
8.000
0.250 20 8 6 5 1 0x02 Ox0E 0x4B
200 75 %
0.625 8 3 2 2 1 0x08 0x04 0x13
0.500 16 7 4 4 1 0x06 0ox0C 0x37
125 75 %
1.000 8 3 2 2 1 0Ox0E 0x04 0x13
0.625 16 7 4 4 1 0x08 ox0C 0x37
100 75 %
1.250 8 3 2 2 1 0x12 0x04 0x13
1000 ---not applicable- - -
0.166666 12 5 ‘ 3 3 ‘ 1 ‘ 0x00 0x08 0x25
500 75 %
X ---no data- - -
0.333333 12 5 3 3 1 0x02 0x08 0x25
250 75 %
0.500 8 3 2 2 1 0x04 0x04 0x13
6.000 0.333333 15 7 4 3 1 0x02 0x0C 0x35
200 80 %
0.500 10 4 3 2 1 0x04 0x06 0x23
0.500 16 7 4 4 1 0x04 0ox0C 0x37
125 75 %
1.000 8 3 2 2 1 0Ox0A 0x04 0x13
0.500 20 8 6 5 1 0x04 Ox0E 0x4B
100 75 %
0.833333 12 5 3 3 1 0x08 0x08 0x25
1000 ---not applicable- - -
X ---no data- - -
500 75 %
0.250 8 3 2 2 1 0x00 0x04 0x13
0.250 16 7 4 4 1 0x00 0ox0C 0x37
250 75 %
0.500 8 3 2 2 1 0x02 0x04 0x13
4.000 0.250 20 8 6 5 1 0x00 Ox0E 0x4B
200 75 %
X ---no data- - -
0.500 16 7 4 4 1 0x02 0ox0C 0x37
125 75 %
1.000 8 3 2 2 1 0x06 0x04 0x13
0.500 20 8 6 5 1 0x02 0Ox0E 0x4B
100 75 %
1.250 8 3 2 2 1 0x08 0x04 0x13
262 ATIOCANI128 AULO m————

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Analog Comparator

Overview

Analog Comparator
Register Description

ADC Control and Status
Register B — ADCSRB

Analog Comparator Control
and Status Register — ACSR

7522C-AUTO-09/06

The Analog Comparator compares the input values on the positive pin AINO and nega-
tive pin AINL1.

When the voltage on the positive pin AINO is higher than the voltage on the negative pin
AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set
to trigger the Timer/Counterl Input Capture function. In addition, the comparator can
trigger a separate interrupt, exclusive to the Analog Comparator. The user can select
Interrupt triggering on comparator output rise, fall or toggle. A block diagram of the com-
parator and its surrounding logic is shown in Figure 126.

Figure 126. Analog Comparator Block Diagram®®

BANDGAP

REFERENCE VvCC
ACBG l
ACD —>
ACIE
AINO 1
A ANALOG
INTERRUPT COMPARATOR
SELECT INTERRUPT
ACl

ACIS1 ACISO AcIC

.

T/C1 INPUT CAPTURE

ACO o

ADC
MULTIPLEXER
OuUTPUT

Notes: 1. ADC multiplexer output: see Table 99 on page 265.
2. Refer to Figure 2 on page 4 and Table 42 on page 79 for Analog Comparator pin

placement.
Bit 7 6 5 4 3 2 1 0

| ADHsMm | AcmE = = = ADTS2 | ADTS1 | ADTSO | ADCSRB
Read/Write R/W R/IW R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 6 — ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is
zero), the ADC multiplexer selects the negative input to the Analog Comparator. When
this bit is written logic zero, AIN1 is applied to the negative input of the Analog Compar-
ator. For a detailed description of this bit, see “Analog Comparator Multiplexed Input” on
page 265.

Bit 7 6 5 4 3 2 1 0
| Aco ACBG ACO ACI ACIE ACIC ACIS1 | AcCIso | ACSR
Read/Write R/W R/W R R/W R/W R/W R/W R/W
Initial Value 0 0 N/A 0 0 0 0 0
ATMEL 263
Y F)

264

ATMEL

» Bit 7 - ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off.
This bit can be set at any time to turn off the Analog Comparator. This will reduce power
consumption in Active and Idle mode. When changing the ACD bit, the Analog Compar-
ator Interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt
can occur when the bit is changed.

» Bit 6 — ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the
Analog Comparator. When this bit is cleared, AINO is applied to the positive input of the
Analog Comparator. See “Internal Voltage Reference” on page 53

» Bit 5—- ACO: Analog Comparator Output

The output of the Analog Comparator is synchronized and then directly connected to
ACO. The synchronization introduces a delay of 1 - 2 clock cycles.

» Bit4 - ACIl: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode
defined by ACIS1 and ACISO. The Analog Comparator interrupt routine is executed if
the ACIE bit is set and the I-bit in SREG is set. ACl is cleared by hardware when execut-
ing the corresponding interrupt handling vector. Alternatively, AClI is cleared by writing a
logic one to the flag.

» Bit 3 - ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Ana-
log Comparator interrupt is activated. When written logic zero, the interrupt is disabled.

» Bit 2 - ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counterl to
be triggered by the Analog Comparator. The comparator output is in this case directly
connected to the input capture front-end logic, making the comparator utilize the noise
canceler and edge select features of the Timer/Counterl Input Capture interrupt. When
written logic zero, no connection between the Analog Comparator and the input capture
function exists. To make the comparator trigger the Timer/Counterl Input Capture inter-
rupt, the ICIE1 bit in the Timer Interrupt Mask Register (TIMSK1) must be set.

e Bits 1, 0— ACIS1, ACISO: Analog Comparator Interrupt Mode Select

These bits determine which comparator events that trigger the Analog Comparator inter-
rupt. The different settings are shown in Table 98.

Table 98. ACIS1/ACISO Settings

ACIS1 ACISO Interrupt Mode
0 0 Comparator Interrupt on Output Toggle.
0 1 Reserved
1 0 Comparator Interrupt on Falling Output Edge.
1 1 Comparator Interrupt on Rising Output Edge.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Analog Comparator
Multiplexed Input

Digital Input Disable
Register 1 — DIDR1

7522C-AUTO-09/06

When changing the ACIS1/ACISO bits, the Analog Comparator Interrupt must be dis-
abled by clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt
can occur when the bits are changed.

It is possible to select any of the ADC7..0 pins to replace the negative input to the Ana-
log Comparator. The ADC multiplexer is used to select this input, and consequently, the
ADC must be switched off to utilize this feature. If the Analog Comparator Multiplexer
Enable bit (ACME in ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is
zero), MUX2..0 in ADMUX select the input pin to replace the negative input to the Ana-
log Comparator, as shown in Table 99. If ACME is cleared or ADEN is set, AIN1 is
applied to the negative input to the Analog Comparator.

Table 99. Analog Comparator Multiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input

0 X XXX AIN1

1 1 XXX AIN1

1 0 000 ADCO

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7
Bit 7 6 5 4 3 2 1 0

[- — - - - - AINID | AINOD | DIDR1

Read/Write R R R R R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 1, 0—- AIN1D, AINOD: AIN1, AINO Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled.
The corresponding PIN Register bit will always read as zero when this bit is set. When
an analog signal is applied to the AIN1/0 pin and the digital input from this pin is not
needed, this bit should be written logic one to reduce power consumption in the digital
input buffer.

AIMEL 265

I)

ATMEL

Analog to Digital Converter - ADC

Features

10-bit Resolution

0.5 LSB Integral Non-linearity

+ 2 LSB Absolute Accuracy

65 - 260 us Conversion Time

Up to 15 kSPS at Maximum Resolution

Eight Multiplexed Single Ended Input Channels
Seven Differential input channels

Optional Left Adjustment for ADC Result Readout
0 - Vcc ADC Input Voltage Range

Selectable 2.56 V ADC Reference Voltage

Free Running or Single Conversion Mode

ADC Start Conversion by Auto Triggering on Interrupt Sources
Interrupt on ADC Conversion Complete

Sleep Mode Noise Canceler

The AT90CAN128 features a 10-bit successive approximation ADC. The ADC is con-
nected to an 8-channel Analog Multiplexer which allows eight single-ended voltage
inputs constructed from the pins of Port F. The single-ended voltage inputs refer to OV
(GND).

The device also supports 16 differential voltage input combinations. Two of the differen-
tial inputs (ADC1, ADCO and ADC3, ADC2) are equipped with a programmable gain
stage, providing amplification steps of 0 dB (1x), 20 dB (10x), or 46 dB (200x) on the dif-
ferential input voltage before the A/D conversion. Seven differential analog input
channels share a common negative terminal (ADC1), while any other ADC input can be
selected as the positive input terminal. If 1x or 10x gain is used, 8-bit resolution can be
expected. If 200x gain is used, 7-bit resolution can be expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the
ADC is held at a constant level during conversion. A block diagram of the ADC is shown
in Figure 127.

The ADC has a separate analog supply voltage pin, AVsc. AV must not differ more
than = 0.3V from V. See the paragraph “ADC Noise Canceler” on page 273 on how to
connect this pin.

Internal reference voltages of nominally 2.56V or AV are provided On-chip. The volt-
age reference may be externally decoupled at the AREF pin by a capacitor for better
noise performance.

266 ATOOCANI28 AULO m——

7522C-AUTO-09/06

Figure 127. Analog to Digital Converter Block Schematic

7522C-AUTO-09/06

aee[f———

AREF

ADC6

ADC5

ADC4

ADC3

ADC2

ADCAH

ADCO

AT90CAN128 Auto

ADC CONVERSION
COMPLETE IRQ

INTERRUPT
FLAGS
ADTS[2:0]
- 8-BIT DATA BUS =
<« A A
w|w
Y EE 15 0
ADC MULTIPLEXER ADC CTRL. & STATUS ADC DATA REGISTER
SELECT (ADMUX) REGISTER (ADCSRA) (ADCH/ADCL)
Bl 8 5 %[%381 % 885 238 AA 4 A
bl b g =5[22 2 =2 <33 992 5
g
»| TRIGGER g
»| SELECT <
Y
MUX DECODER Y Y VY
PRESCALER |«
START
Y ¢ A,

INTERNAL
REFERENCE

GAIN SELECTION

CHANNEL SELECTION

CONVERSION LOGIC

[}

BANDGAP
REFERENCE

POS.

N

SAMPLE & HOLD
COMPARATOR

10-BIT DAC)

SINGLE ENDED / DIFFERENTIAL SELECTION

+

ADHSM

ADC MULTIPLEXER

INPUT
MUX

HI]]

NEG.
INPUT

MUX

A

» OUTPUT

DIFFERENTIAL

MPLIFIER

>

AIMEL

I)

267

Operation

Starting a Conversion

ATMEL

The ADC converts an analog input voltage to a 10-bit digital value through successive
approximation. The minimum value represents GND and the maximum value represents
the voltage on the AREF pin minus 1 LSB. Optionally, AV or an internal 2.56V refer-
ence voltage may be connected to the AREF pin by writing to the REFSn bits in the
ADMUX Register. The internal voltage reference may thus be decoupled by an external
capacitor at the AREF pin to improve noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in
ADMUX. Any of the ADC input pins, as well as GND and a fixed bandgap voltage refer-
ence, can be selected as single ended inputs to the ADC. A selection of ADC input pins
can be selected as positive and negative inputs to the differential amplifier.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage refer-
ence and input channel selections will not go into effect until ADEN is set. The ADC
does not consume power when ADEN is cleared, so it is recommended to switch off the
ADC before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers,
ADCH and ADCL. By default, the result is presented right adjusted, but can optionally
be presented left adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to
read ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content
of the Data Registers belongs to the same conversion. Once ADCL is read, ADC access
to Data Registers is blocked. This means that if ADCL has been read, and a conversion
completes before ADCH is read, neither register is updated and the result from the con-
version is lost. When ADCH is read, ADC access to the ADCH and ADCL Registers is
re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes.
The ADC access to the Data Registers is prohibited between reading of ADCH and
ADCL, the interrupt will trigger even if the result is lost.

A single conversion is started by writing a logical one to the ADC Start Conversion bit,
ADSC. This bit stays high as long as the conversion is in progress and will be cleared by
hardware when the conversion is completed. If a different data channel is selected while
a conversion is in progress, the ADC will finish the current conversion before performing
the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Trig-
gering is enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The
trigger source is selected by setting the ADC Trigger Select bits, ADTS in ADCSRB
(See description of the ADTS bits for a list of the trigger sources). When a positive edge
occurs on the selected trigger signal, the ADC prescaler is reset and a conversion is
started. This provides a method of starting conversions at fixed intervals. If the trigger
signal is still set when the conversion completes, a new conversion will not be started. If
another positive edge occurs on the trigger signal during conversion, the edge will be
ignored. Note that an interrupt flag will be set even if the specific interrupt is disabled or
the Global Interrupt Enable bit in SREG is cleared. A conversion can thus be triggered
without causing an interrupt. However, the interrupt flag must be cleared in order to trig-
ger a new conversion at the next interrupt event.

268 ATOOCANI28 AULO m——

7522C-AUTO-09/06

AT90CAN128 Auto

Figure 128. ADC Auto Trigger Logic

ADTS[2:0]
PRESCALER
START CLK, 0

ADIF ADATE
SOURCE 1 t

5 } CONVERSION

LOGIC
: EDGE

SOURCE n DETECTOR

ADSC

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion
as soon as the ongoing conversion has finished. The ADC then operates in Free Run-
ning mode, constantly sampling and updating the ADC Data Register. The first
conversion must be started by writing a logical one to the ADSC bit in ADCSRA. In this
mode the ADC will perform successive conversions independently of whether the ADC
Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in
ADCSRA to one. ADSC can also be used to determine if a conversion is in progress.
The ADSC bit will be read as one during a conversion, independently of how the conver-
sion was started.

Prescaling and Figure 129. ADC Prescaler

Conversion Timing
ADEN
START E—' Reset
7-BIT ADC PRESCALER

CK —»]

CK/2
CK/4
CKI/8
CK/16
CK/32
CK/64
CK/128

<
<

Yy V. V

<-
<
<

A

i

ADPSO
ADPS1
ADPS2

ADC CLOCK SOURCE

By default, the successive approximation circuitry requires an input clock frequency
between 50 kHz and 200 kHz to get maximum resolution. If a lower resolution than 10
bits is needed, the input clock frequency to the ADC can be higher than 200 kHz to get a
higher sample rate. Alternatively, setting the ADHSM bit in ADCSRB allows an
increased ADC clock frequency at the expense of higher power consumption.

The ADC module contains a prescaler, which generates an acceptable ADC clock fre-
guency from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits
in ADCSRA. The prescaler starts counting from the moment the ADC is switched on by
setting the ADEN bit in ADCSRA. The prescaler keeps running for as long as the ADEN
bit is set, and is continuously reset when ADEN is low.

Alm L 269

7522C-AUTO-09/06 I ©

ATMEL

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the con-
version starts at the following rising edge of the ADC clock cycle. See “Differential
Channels” on page 271 for details on differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is
switched on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize
the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal
conversion and 13.5 ADC clock cycles after the start of an first conversion. When a con-
version is complete, the result is written to the ADC Data Registers, and ADIF is set. In
Single Conversion mode, ADSC is cleared simultaneously. The software may then set
ADSC again, and a new conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This
assures a fixed delay from the trigger event to the start of conversion. In this mode, the
sample-and-hold takes place two ADC clock cycles after the rising edge on the trigger
source signal. Three additional CPU clock cycles are used for synchronization logic.

In Free Running mode, a new conversion will be started immediately after the conver-
sion completes, while ADSC remains high. For a summary of conversion times, see
Table 100.

Figure 130. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Next

First Conversion Conversion

o B -
ADSC /% I w g
e Rl -
ADCH T [T T /> Sign and MSB of Result
NS/////// /‘ 7L 7 777 T7ITTTTIK__ tsb o Resu

' ' ' ' MUX
MUX and REFS Conversion and REFS
Sample & Hold

Update Complete Update

Figure 131. ADC Timing Diagram, Single Conversion

One Conversion Next Conversion
<

1 1 1 1
Cycle Number | 2] 2] 3| 4| 5| 6| 7| 8] of 1] 11| 12| 13| | +] 2] 3

ADC Clock $ 1 $ $

ADIF | | ||7
soen ZZTTIII T T T T T T TTT T TT T T T TTTTTTT S ani st of e
wocr T T T T T T T T T T T T s o e

|
T T 1 T
Sample & Hold Conversion MUX and REFS

MUX and REFS Complete Update
Update

270 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Figure 132. ADC Timing Diagram, Auto Triggered Conversion

One Conversion . Next Conversion

LI | | |
Cycle Number v g s 4] s e 7] 8| of o 1| 12| 13| ot o2

ADC Clock 2222222222222223 § 1 gZZZZZZZZZZZ

somee)T ! iy

ADATE r ! ! !

Ao L Y

ADCH WWWWWNM‘

woce T[TV T T T 7T T T T T T 79K 68 of Resu
Pr /> 4\ 4_\ Sample & Conversion /" <\ Prescaler
escaler Hold Complete Reset

Reset
MUX and REFS

Update

Figure 133. ADC Timing Diagram, Free Running Conversion

One Conversion Next Conversion
<

| |
Cycle Number lll 12| 13' ll |2| Sl 4|

ADC Clock $ 1

ADSC ! !
1 1

ADIF |

ADCH /////// X Sign gnd MSB of Result
ADCL X LSB of Result
I T
" 4\Sam le & Hold
e/ N\
Update
Table 100. ADC Conversion Time
. First Normi_al Auto Triggered
Condition . Conversion, .
Conversion - Convertion
Single Ended
Sample & Hold 14.5 1.5 2
(Cycles from Start of Convertion)
Conversion Time o5 13 135
(Cycles)
Differential Channels When using differential channels, certain aspects of the conversion need to be taken

into consideration.

Differential conversions are synchronized to the internal clock CK,p, equal to half the
ADC clock frequency. This synchronization is done automatically by the ADC interface
in such a way that the sample-and-hold occurs at a specific phase of CKpe,. A conver-
sion initiated by the user (i.e., all single conversions, and the first free running
conversion) when CKppe, is low will take the same amount of time as a single ended
conversion (13 ADC clock cycles from the next prescaled clock cycle). A conversion ini-
tiated by the user when CK,pe, is high will take 14 ADC clock cycles due to the
synchronization mechanism. In Free Running mode, a new conversion is initiated imme-

AIMEL 271

7522C-AUTO-09/06 I ©

Changing Channel or
Reference Selection

ATMEL

diately after the previous conversion completes, and since CK,p, is high at this time, all
automatically started (i.e., all but the first) Free Running conversions will take 14 ADC
clock cycles.

If differential channels are used and conversions are started by Auto Triggering, the
ADC must be switched off between conversions. When Auto Triggering is used, the
ADC prescaler is reset before the conversion is started. Since the stage is dependent of
a stable ADC clock prior to the conversion, this conversion will not be valid. By disabling
and then re-enabling the ADC between each conversion (writing ADEN in ADCSRA to
“0” then to “1"), only extended conversions are performed. The result from the extended
conversions will be valid. See “Prescaling and Conversion Timing” on page 269 for tim-
ing details.

The gain stage is optimized for a bandwidth of 4 kHz at all gain settings. Higher frequen-
cies may be subjected to non-linear amplification. An external low-pass filter should be
used if the input signal contains higher frequency components than the gain stage band-
width. Note that the ADC clock frequency is independent of the gain stage bandwidth
limitation. E.g. the ADC clock period may be 6 us, allowing a channel to be sampled at
12 kSPS, regardless of the bandwidth of this channel.

The MUXn and REFS1.:0 bits in the ADMUX Register are single buffered through a tem-
porary register to which the CPU has random access. This ensures that the channels
and reference selection only takes place at a safe point during the conversion. The
channel and reference selection is continuously updated until a conversion is started.
Once the conversion starts, the channel and reference selection is locked to ensure a
sufficient sampling time for the ADC. Continuous updating resumes in the last ADC
clock cycle before the conversion completes (ADIF in ADCSRA is set). Note that the
conversion starts on the following rising ADC clock edge after ADSC is written. The user
is thus advised not to write new channel or reference selection values to ADMUX until
one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic.
Special care must be taken when updating the ADMUX Register, in order to control
which conversion will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If
the ADMUX Register is changed in this period, the user cannot tell if the next conversion
is based on the old or the new settings. ADMUX can be safely updated in the following
ways:

1. When ADATE or ADEN is cleared.

2. During conversion, minimum one ADC clock cycle after the trigger event.

3. After a conversion, before the interrupt flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next
ADC conversion.

Special care should be taken when changing differential channels. Once a differential
channel has been selected, the stage may take as much as 125 ps to stabilize to the
new value. Thus conversions should not be started within the first 125 us after selecting
a new differential channel. Alternatively, conversion results obtained within this period
should be discarded.

The same settling time should be observed for the first differential conversion after
changing ADC reference (by changing the REFS1:0 bits in ADMUX).

The settling time and gain stage bandwidth is independent of the ADHSM bit setting.

272 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

ADC Input Channels

ADC Voltage Reference

ADC Noise Canceler

7522C-AUTO-09/06

When changing channel selections, the user should observe the following guidelines to
ensure that the correct channel is selected:

* In Single Conversion mode, always select the channel before starting the
conversion. The channel selection may be changed one ADC clock cycle after
writing one to ADSC. However, the simplest method is to wait for the conversion to
complete before changing the channel selection.

* In Free Running mode, always select the channel before starting the first
conversion. The channel selection may be changed one ADC clock cycle after
writing one to ADSC. However, the simplest method is to wait for the first conversion
to complete, and then change the channel selection. Since the next conversion has
already started automatically, the next result will reflect the previous channel
selection. Subsequent conversions will reflect the new channel selection.

When switching to a differential gain channel, the first conversion result may have a
poor accuracy due to the required settling time for the automatic offset cancellation cir-
cuitry. The user should preferably disregard the first conversion result.

The reference voltage for the ADC (Vggg) indicates the conversion range for the ADC.
Single ended channels that exceed Vgge Will result in codes close to Ox3FF. Vggr can be
selected as either AV, internal 2.56V reference, or external AREF pin.

AV is connected to the ADC through a passive switch. The internal 2.56V reference is
generated from the internal bandgap reference (Vgg) through an internal amplifier. In
either case, the external AREF pin is directly connected to the ADC, and the reference
voltage can be made more immune to noise by connecting a capacitor between the
AREF pin and ground. Vg can also be measured at the AREF pin with a high impedant
voltmeter. Note that Ve is a high impedant source, and only a capacitive load should
be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use
the other reference voltage options in the application, as they will be shorted to the
external voltage. If no external voltage is applied to the AREF pin, the user may switch
between AV and 2.56V as reference selection. The first ADC conversion result after
switching reference voltage source may be inaccurate, and the user is advised to dis-
card this result.

If differential channels are used, the selected reference should not be closer to AV¢
than indicated in Table 141 on page 364.

The ADC features a noise canceler that enables conversion during sleep mode to
reduce noise induced from the CPU core and other I/O peripherals. The noise canceler
can be used with ADC Noise Reduction and Idle mode. To make use of this feature, the
following procedure should be used:

1. Make sure that the ADC is enabled and is not busy converting. Single Con-
version mode must be selected and the ADC conversion complete interrupt
must be enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a con-
version once the CPU has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC
interrupt will wake up the CPU and execute the ADC Conversion Complete
interrupt routine. If another interrupt wakes up the CPU before the ADC con-
version is complete, that interrupt will be executed, and an ADC Conversion
Complete interrupt request will be generated when the ADC conversion

AIMEL 273

I)

Analog Input Circuitry

Analog Noise Canceling
Techniques

ATMEL

completes. The CPU will remain in active mode until a new sleep command
is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes
than Idle mode and ADC Noise Reduction mode. The user is advised to write zero to
ADEN before entering such sleep modes to avoid excessive power consumption.

If the ADC is enabled in such sleep modes and the user wants to perform differential
conversions, the user is advised to switch the ADC off and on after waking up from
sleep to prompt an extended conversion to get a valid result.

The analog input circuitry for single ended channels is illustrated in Figure 134. An ana-
log source applied to ADCn is subjected to the pin capacitance and input leakage of that
pin, regardless of whether that channel is selected as input for the ADC. When the chan-
nel is selected, the source must drive the S/H capacitor through the series resistance
(combined resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately
10 kQ or less. If such a source is used, the sampling time will be negligible. If a source
with higher impedance is used, the sampling time will depend on how long time the
source needs to charge the S/H capacitor, with can vary widely. The user is recom-
mended to only use low impedant sources with slowly varying signals, since this
minimizes the required charge transfer to the S/H capacitor.

If differential gain channels are used, the input circuitry looks somewhat different,
although source impedances of a few hundred kQ or less is recommended.

Signal components higher than the Nyquist frequency (fapc/2) should not be present for
either kind of channels, to avoid distortion from unpredictable signal convolution. The
user is advised to remove high frequency components with a low-pass filter before
applying the signals as inputs to the ADC.

Figure 134. Analog Input Circuitry

liH

ADCn D AN
1..100 kQ l
Cop= 14 pF
e T
L Veel2

Digital circuitry inside and outside the device generates EMI which might affect the
accuracy of analog measurements. If conversion accuracy is critical, the noise level can
be reduced by applying the following techniques:

1. Keep analog signal paths as short as possible. Make sure analog tracks run
over the analog ground plane, and keep them well away from high-speed
switching digital tracks.

2. The AV pin on the device should be connected to the digital V¢ supply
voltage via an LC network as shown in Figure 135.

3. Use the ADC noise canceler function to reduce induced noise from the CPU.

4. If any ADC port pins are used as digital outputs, it is essential that these do
not switch while a conversion is in progress.

274 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Offset Compensation
Schemes

ADC Accuracy Definitions

7522C-AUTO-09/06

Figure 135. ADC Power Connections

(ADO) PAO E
VCC E

(ADC7) PF7 [54]
(ADCS) PF6 55|
(ADCS) PF5 56|
(ADC4) PF4 [57|
(ADC3) PF3 58|
(ADC2) PF2 59|
(ADC1) PF1 [0
(ADCO) PFO E

3 10uH AREF [62]

lﬂ@

AVCC E Q”
:f100nF T

The gain stage has a built-in offset cancellation circuitry that nulls the offset of differen-
tial measurements as much as possible. The remaining offset in the analog path can be
measured directly by selecting the same channel for both differential inputs. This offset
residue can be then subtracted in software from the measurement results. Using this
kind of software based offset correction, offset on any channel can be reduced below
one LSB.

An n-bit single-ended ADC converts a voltage linearly between GND and Vggg in 2"
steps (LSBs). The lowest code is read as 0, and the highest code is read as 2"-1.

Several parameters describe the deviation from the ideal behavior:

AIMEL 275

I)

ATMEL

» Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal
transition (at 0.5 LSB). Ideal value: 0 LSB.

Figure 136. Offset Error

Output Codeh

————— Ideal ADC
Actual ADC

Offset_
<“ Error”

[y

Vgrer Input Voltage

» Gain Error: After adjusting for offset, the Gain Error is found as the deviation of the
last transition (OX3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below
maximum). Ideal value: 0 LSB

Figure 137. Gain Error

Output Code A Gain
Error

————— Ideal ADC
Actual ADC

[y

Vgrer Input Voltage

276 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

» Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the
maximum deviation of an actual transition compared to an ideal transition for any
code. Ideal value: 0 LSB.

Figure 138. Integral Non-linearity (INL)
Output Code A

NI

----- Ideal ADC
Actual ADC

[

Vree InputVoltage

» Differential Non-linearity (DNL): The maximum deviation of the actual code width
(the interval between two adjacent transitions) from the ideal code width (1 LSB).
Ideal value: O LSB.

Figure 139. Differential Non-linearity (DNL)

Output Code A
Ox3FF
| T
_,iLsB
- !
| I‘_DNL_’
0x000
0 Vree Input Voltage

* Quantization Error: Due to the quantization of the input voltage into a finite number
of codes, a range of input voltages (1 LSB wide) will code to the same value. Always
+ 0.5 LSB.

» Absolute Accuracy: The maximum deviation of an actual (unadjusted) transition
compared to an ideal transition for any code. This is the compound effect of offset,
gain error, differential error, non-linearity, and quantization error. Ideal value: + 0.5

Alm L 277

7522C-AUTO-09/06 I ©

ADC Conversion Result

278 AT90CAN128 Auto

ATMEL

After the conversion is complete (ADIF is high), the conversion result can be found in
the ADC Result Registers (ADCL, ADCH).

For single ended conversion, the result is:

V1023
ADC = NV 77
Veer

where V) is the voltage on the selected input pin and Vgge the selected voltage refer-
ence (see Table 102 on page 280 and Table 103 on page 281). 0x000 represents
analog ground, and Ox3FF represents the selected reference voltage minus one LSB.

If differential channels are used, the result is:

Vorro— Vi) - GAIN - 512
ADC = —POS” VNEG

VREF

where Vpqq is the voltage on the positive input pin, Vg the voltage on the negative
input pin, GAIN the selected gain factor and Vgg the selected voltage reference. The
result is presented in two’s complement form, from 0x200 (-512d) through Ox1FF
(+511d). Note that if the user wants to perform a quick polarity check of the result, it is
sufficient to read the MSB of the result (ADC9 in ADCH). If the bit is one, the result is
negative, and if this bit is zero, the result is positive. Figure 140 shows the decoding of
the differential input range.

Table 82 shows the resulting output codes if the differential input channel pair (ADCn -
ADCm) is selected with a reference voltage of Viggp.

Figure 140. Differential Measurement Range
A

Output Code

Ox1FF

) I
]

N
N—
- _I
0x000
[[[[()() [[IX [[[[()() [[[>
Y 0 Differential Input
REF Ox3FF _ Ver Voltage (Volts)

((

0x200

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

Table 101. Correlation Between Input Voltage and Output Codes

Vapen Read code Corresponding decimal value
Vaoem + Vree /GAIN Ox1FF 511

Vapcm + 0.999 Ve IGAIN Ox1FF 511

Vapcm + 0.998 Ve IGAIN Ox1FE 510

Vapem + 0.001 Ve IGAIN 0x001 1

Vabem 0x000 0

Vapem - 0.001 Ve /GAIN Ox3FF -1

Vapbcm - 0.999 Vger /GAIN 0x201 -511

Vaoem - Vrer /GAIN 0x200 -512

Example 1:

— ADMUX = OxED (ADC3 - ADC2, 10x gain, 2.56V reference, left adjusted result)
— Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.
— ADCR =512 * 10 * (300 - 500) / 2560 = -400 = 0x270

— ADCL will thus read 0x00, and ADCH will read 0x9C.
Writing zero to ADLAR right adjusts the result: ADCL = 0x70, ADCH = 0x02.

Example 2:

— ADMUX = 0xFB (ADC3 - ADC2, 1x gain, 2.56V reference, left adjusted result)
— Voltage on ADC3 is 300 mV, voltage on ADC2 is 500 mV.
— ADCR =512 * 1 *(300 - 500) / 2560 = -41 = 0x029.

— ADCL will thus read 0x40, and ADCH will read Ox0A.
Writing zero to ADLAR right adjusts the result: ADCL = 0x00, ADCH = 0x29.

AIMEL

I)

279

ADC Register Description

ADC Multiplexer Selection
Register - ADMUX

ATMEL

Bit 7 6 5 4 3 2 1 0

I REFS1 REFSO ADLAR MUX4 MUX3 MUX2 MUX1 MUXO0 I ADMUX
Read/Write R/IW R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7:6 — REFS1:0: Reference Selection Bits

These bits select the voltage reference for the ADC, as shown in Table 102. If these bits
are changed during a conversion, the change will not go in effect until this conversion is
complete (ADIF in ADCSRA is set). The internal voltage reference options may not be
used if an external reference voltage is being applied to the AREF pin.

Table 102. Voltage Reference Selections for ADC

REFS1 | REFSO | Voltage Reference Selection
0 0 AREF, Internal Vref turned off
0 1 AV ¢ with external capacitor on AREF pin
1 0 Reserved
1 1 Internal 2.56V Voltage Reference with external capacitor on AREF pin

 Bit5—-ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data
Register. Write one to ADLAR to left adjust the result. Otherwise, the result is right
adjusted. Changing the ADLAR bit will affect the ADC Data Register immediately,
regardless of any ongoing conversions. For a complete description of this bit, see “The
ADC Data Register — ADCL and ADCH” on page 283.

» Bits 4:0 — MUX4:0: Analog Channel Selection Bits

The value of these bits selects which combination of analog inputs are connected to the
ADC. These bits also select the gain for the differential channels. See Table 103 for
details. If these bits are changed during a conversion, the change will not go in effect
until this conversion is complete (ADIF in ADCSRA is set).

280 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Table 103. Input Channel and Gain Selections

7522C-AUTO-09/06

I)

Single Ended Positive Differential Negative Differential
MUX4..0 | Input Input Input Gain
00000 ADCO
00001 ADC1
00010 ADC2
00011 ADC3
N/A
00100 ADC4
00101 ADC5
00110 ADC6
00111 ADC7
01000 (ADCO / ADCO / 10x)
01001 ADC1 ‘ ADCO 10x
01010 (ADCO / ADCO / 200x)
01011 ADC1 ‘ ADCO 200x
01100 (Reserved - ADC2 / ADC2 / 10x)
01101 ADC3 ‘ ADC2 10x
01110 (ADC2 / ADC2 / 200x)
01111 ADC3 ADC2 200x
10000 ADCO ADC1 1x
10001 (ADC1/ADC1/ 1x)
10010 ADC2 ADC1 1x
N/A
10011 ADC3 ADC1 1x
10100 ADC4 ADC1 1x
10101 ADC5 ADC1 1x
10110 ADC6 ADC1 1x
10111 ADC7 ADC1 1x
11000 ADCO ADC2 1x
11001 ADC1 ADC2 1x
11010 (ADC2 / ADC2 / 1x)
11011 ADC3 ADC2 1x
11100 ADC4 ADC2 1x
11101 ADC5 ADC2 1x
11110 1.1V (Vgand Gap) A
11111 0V (GND)
AIMEL 281

ADC Control and Status
Register A — ADCSRA

ATMEL

Bit 7 6 5 4 3 2 1 0

I ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPSO I ADCSRA
Read/Write R/IW R/W R/W R/IW R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bit 7—- ADEN: ADC Enable

Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turn-
ing the ADC off while a conversion is in progress, will terminate this conversion.

* Bit 6 — ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Run-
ning mode, write this bit to one to start the first conversion. The first conversion after
ADSC has been written after the ADC has been enabled, or if ADSC is written at the
same time as the ADC is enabled, will take 25 ADC clock cycles instead of the normal
13. This first conversion performs initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is
complete, it returns to zero. Writing zero to this bit has no effect.

» Bit 5— ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start
a conversion on a positive edge of the selected trigger signal. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB.

» Bit 4 - ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated.
The ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in
SREG are set. ADIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, ADIF is cleared by writing a logical one to the flag.
Beware that if doing a Read-Modify-Write on ADCSRA, a pending interrupt can be dis-
abled. This also applies if the SBI and CBI instructions are used.

» Bit 3- ADIE: ADC Interrupt Enable

When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Com-
plete Interrupt is activated.

282 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

* Bits 2:0 — ADPS2:0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input
clock to the ADC.

Table 104. ADC Prescaler Selections

ADPS2 ADPS1 ADPSO Division Factor
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128
The ADC Data Register —
ADCL and ADCH
ADLAR =0
Bit 15 14 13 12 11 10 9 8
- - - - - - ADC9 ADC8 ADCH
ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADCO ADCL
Bit 7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
ADLAR =1
Bit 15 14 13 12 11 10 9 8
ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH
ADC1 ADCO - - - ADCL
Bit 7 6 5 4 3 2 1 0
Read/Write R R R R R R R R
R R R R R R R R
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

When an ADC conversion is complete, the result is found in these two registers. If differ-
ential channels are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Conse-
qguently, if the result is left adjusted and no more than 8-bit precision (7 bit + sign bit for
differential input channels) is required, it is sufficient to read ADCH. Otherwise, ADCL
must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is
read from the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared

(default), the result is right adjusted.

7522C-AUTO-09/06

ATMEL

I)

283

ADC Control and Status
Register B — ADCSRB

Digital Input Disable

Register 0 — DIDRO

ATMEL

 ADC9:0: ADC Conversion Result

These bits represent the result from the conversion, as detailed in “ADC Conversion
Result” on page 278.

Bit 7 6 5 4 3 2 1 0
| AbHsm | AcmE = = = ADTS2 | ADTS1 | ADTSO | ADCSRB

Read/Write R/W R/W R R R R/W R/W R/IW

Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - ADHSM: ADC High Speed Mode

Writing this bit to one enables the ADC High Speed mode. This mode enables higher
conversion rate at the expense of higher power consumption.

» Bit 2:0 - ADTS2:0: ADC Auto Trigger Source

If ADATE in ADCSRA is written to one, the value of these bits selects which source will
trigger an ADC conversion. If ADATE is cleared, the ADTS2:0 settings will have no
effect. A conversion will be triggered by the rising edge of the selected interrupt flag.
Note that switching from a trigger source that is cleared to a trigger source that is set,
will generate a positive edge on the trigger signal. If ADEN in ADCSRA is set, this will
start a conversion. Switching to Free Running mode (ADTS[2:0]=0) will not cause a trig-
ger event, even if the ADC Interrupt Flag is set.

Table 105. ADC Auto Trigger Source Selections
ADTS2 ADTS1 ADTSO Trigger Source

0 0 0 Free Running mode

Analog Comparator

External Interrupt Request 0

Timer/Counter0 Compare Match

Timer/Counter0 Overflow

Timer/Counterl Compare Match B

Timer/Counterl Overflow

0 0
0 1
0 1
1 0
1 0
1 1
1 1

P |lOoO|lRr|lO|lRr|O|F

Timer/Counterl Capture Event

Bit 7 6 5 4 3 2 1 0

I ADC7D ADC6D ADC5D ADC4D ADC3D | ADC2D | ADCI1D ADCOD I DIDRO
Read/Write R/IW R/W R/W R/W R/W R/W RIW R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7:0 - ADC7D..ADCOD: ADC7:0 Digital Input Disable

When this bit is written logic one, the digital input buffer on the corresponding ADC pin is
disabled. The corresponding PIN Register bit will always read as zero when this bit is
set. When an analog signal is applied to the ADC7..0 pin and the digital input from this
pin is not needed, this bit should be written logic one to reduce power consumption in
the digital input buffer.

284 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

JTAG Interface and On-chip Debug System

Features

Overview

Test Access Port — TAP

7522C-AUTO-09/06

JTAG (IEEE std. 1149.1 Compliant) Interface
Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
* Debugger Access to:

— All Internal Peripheral Units

— Internal and External RAM

— The Internal Register File

— Program Counter

— EEPROM and Flash Memories
* Extensive On-chip Debug Support for Break Conditions, Including

— AVR Break Instruction

— Break on Change of Program Memory Flow

— Single Step Break

— Program Memory Break Points on Single Address or Address Range

— Data Memory Break Points on Single Address or Address Range
* Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
On-chip Debugging Supported by AVR Studio®

The AVR IEEE std. 1149.1 compliant JTAG interface can be used for:
» Testing PCBs by using the JTAG Boundary-scan capability

* Programming the non-volatile memories, Fuses and Lock bits

* On-chip debugging

A brief description is given in the following sections. Detailed descriptions for Program-
ming via the JTAG interface, and using the Boundary-scan Chain can be found in the
sections “JTAG Programming Overview” on page 343 and “Boundary-scan IEEE 1149.1
(JTAG)” on page 291, respectively. The On-chip Debug support is considered being pri-
vate JTAG instructions, and distributed within ATMEL and to selected third party
vendors only.

Figure 141 shows a block diagram of the JTAG interface and the On-chip Debug sys-
tem. The TAP Controller is a state machine controlled by the TCK and TMS signals. The
TAP Controller selects either the JTAG Instruction Register or one of several Data Reg-
isters as the scan chain (Shift Register) between the TDI — input and TDO - output. The
Instruction Register holds JTAG instructions controlling the behavior of a Data Register.

The ID-Register (IDentifier Register), Bypass Register, and the Boundary-scan Chain
are the Data Registers used for board-level testing. The JTAG Programming Interface
(actually consisting of several physical and virtual Data Registers) is used for serial pro-
gramming via the JTAG interface. The Internal Scan Chain and Break Point Scan Chain
are used for On-chip debugging only.

The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology,
these pins constitute the Test Access Port — TAP. These pins are:

« TMS: Test mode select. This pin is used for navigating through the TAP-controller
state machine.

* TCK: Test Clock. JTAG operation is synchronous to TCK.

» TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data
Register (Scan Chains).

« TDO: Test Data Out. Serial output data from Instruction Register or Data Register
(Scan Chains).

Alm L 285

I)

Figure 141. Block Diagram

TDI

ATMEL

The IEEE std. 1149.1 also specifies an optional TAP signal; TRST — Test ReSeT —
which is not provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins
and the TAP controller is in reset. When programmed and the JTD bit in MCUCR is
cleared, the TAP input signals are internally pulled high and the JTAG is enabled for
Boundary-scan and programming. In this case, the TAP output pin (TDO) is left floating
in states where the JTAG TAP controller is not shifting data, and must therefore be con
nected to a pull-up resistor or other hardware having pull-ups (for instance the TDI-input
of the next device in the scan chain). The device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is
monitored by the debugger to be able to detect external reset sources. The debugger
can also pull the RESET pin low to reset the whole system, assuming only open collec-
tors on the reset line are used in the application.

TDO <

TCK

T™MS

286

1/0 PORT 0O . . o
A
DEVICE BOUNDARY Y
|
> BOUNDARY SCAN CHAIN
I
1 »| JTAG PROGRAMMING
1 TAP INTERFACE
» | CONTROLLER Y
» 1
-1
1
_ INTERNAL |
FLASH Address [« scan |€ PC
INSTRUCTION MEMORY Data > CHAIN Instruction
REGISTER
AVR CPU
D
REGISTER BREAKPOINT < >
UNIT
M [—>| FLOW CONTROL[| "
BYPASS @
= U \ A UNIT 5
X REGISTER DIGITAL ANALOG g
< 4 PN £
< PERJZ'I"TESRAL ™ €| PERIPHERIAL < 3
< < UNITS S
BREAKPOINT <
SCAN CHAIN
\4— A v JTAG / AVR CORE "
ADDRESS h 4 COMMUNICATION 8
DECODER > OCD STATUS < | INTERFACE %
AND CONTROL [” k]
O
3
< < ©
£
o
¢ 3]
|
A
Yy
L] L] .
1/0 PORT n

ATOOC AN 128 /A U T O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 142. TAP Controller State Diagram

1 C; Test-Logic-Reset

0

0 C Run-Test/ldle

Select-DR Scan

0

Capture-DR

Shift-DR

Exit1-DR

Select-IR Scan

0

Capture-IR

Shift-IR

Pause-DR

Exit2-DR

1

Update-DR

Exit1-IR

Pause-IR

Exit2-IR

1

J 1 0

Update-IR

A

TAP Controller

1 0

The TAP controller is a 16-state finite state machine that controls the operation of the

Boundary-scan circuitry, JTAG programming circuitry, or On-chip Debug system. The
state transitions depicted in Figure 142 depend on the signal present on TMS (shown
adjacent to each state transition) at the time of the rising edge at TCK. The initial state
after a Power-on Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.

Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG inter-

face is:

« At the TMS input, apply the sequence 1, 1, 0, O at the rising edges of TCK to enter
the Shift Instruction Register — Shift-IR state. While in this state, shift the four bits of
the JTAG instructions into the JTAG Instruction Register from the TDI input at the
rising edge of TCK. The TMS input must be held low during input of the 3 LSBs in
order to remain in the Shift-IR state. The MSB of the instruction is shifted in when
this state is left by setting TMS high. While the instruction is shifted in from the TDI
pin, the captured IR-state 0x01 is shifted out on the TDO pin. The JTAG Instruction
selects a particular Data Register as path between TDI and TDO and controls the
circuitry surrounding the selected Data Register.

ATMEL

7522C-AUTO-09/06 I ©

287

Using the Boundary-
scan Chain

Using the On-chip Debug
System

ATMEL

* Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction
is latched onto the parallel output from the Shift Register path in the Update-IR
state. The Exit-IR, Pause-IR, and Exit2-IR states are only used for navigating the
state machine.

» Atthe TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the
Shift Data Register — Shift-DR state. While in this state, upload the selected data
register (selected by the present JTAG instruction in the JTAG Instruction Register)
from the TDI input at the rising edge of TCK. In order to remain in the Shift-DR state,
the TMS input must be held low during input of all bits except the MSB. The MSB of
the data is shifted in when this state is left by setting TMS high. While the data
register is shifted in from the TDI pin, the parallel inputs to the data register captured
in the Capture-DR state is shifted out on the TDO pin.

» Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected
data register has a latched parallel-output, the latching takes place in the Update-
DR state. The Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating
the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between
selecting JTAG instruction and using data registers, and some JTAG instructions may
select certain functions to be performed in the Run-Test/Idle, making it unsuitable as an
Idle state.

Note: Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can
always be entered by holding TMS high for five TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in “Bibli-
ography” on page 290.

A complete description of the Boundary-scan capabilities are given in the section
“Boundary-scan IEEE 1149.1 (JTAG)” on page 291.

As shown in Figure 141, the hardware support for On-chip Debugging consists mainly of

* A scan chain on the interface between the internal AVR CPU and the internal
peripheral units.

* Break Point unit.

» Communication interface between the CPU and JTAG system.

All read or modify/write operations needed for implementing the Debugger are done by
applying AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the

result to an I/O memory mapped location which is part of the communication interface
between the CPU and the JTAG system.

The Break Point Unit implements Break on Change of Program Flow, Single Step
Break, two Program Memory Break Points, and two combined Break Points. Together,
the four Break Points can be configured as either:

* 4 single Program Memory Break Points.
» 3single Program Memory Break Points + 1 single Data Memory Break Point.
» 2 single Program Memory Break Points + 2 single Data Memory Break Points.

» 2 single Program Memory Break Points + 1 Program Memory Break Point with mask
(“range Break Point”).

288 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

On-chip Debug Specific
JTAG Instructions

PRIVATEO (0x8)
PRIVATE1 (0x9)
PRIVATE2 (OXA)

PRIVATE3 (0xB)

On-chip Debug Related
Register in 1/0 Memory

On-chip Debug Register —
OCDR

7522C-AUTO-09/06

» 2 single Program Memory Break Points + 1 Data Memory Break Point with mask
(“range Break Point”).

A debugger, like the AVR Studio, may however use one or more of these resources for
its internal purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in “On-chip Debug Spe-
cific JTAG Instructions” on page 289.

The JTAGEN Fuse must be programmed to enable the JTAG Test Access Port. In addi-
tion, the OCDEN Fuse must be programmed and no Lock bits must be set for the On-
chip debug system to work. As a security feature, the On-chip debug system is disabled
when either of the LB1 or LB2 Lock bits are set. Otherwise, the On-chip debug system
would have provided a back-door into a secured device.

The AVR Studio enables the user to fully control execution of programs on an AVR
device with On-chip Debug capability, AVR In-Circuit Emulator, or the built-in AVR
Instruction Set Simulator. AVR Studio® supports source level execution of Assembly
programs assembled with Atmel Corporation’s AVR Assembler and C programs com-
piled with third party vendors’ compilers.

AVR Studio runs under Microsoft® Windows® 95/98/2000/NT/XP.

For a full description of the AVR Studio, please refer to the AVR Studio User Guide.
Only highlights are presented in this document.

All necessary execution commands are available in AVR Studio, both on source level
and on disassembly level. The user can execute the program, single step through the
code either by tracing into or stepping over functions, step out of functions, place the
cursor on a statement and execute until the statement is reached, stop the execution,
and reset the execution target. In addition, the user can have an unlimited nhumber of
code Break Points (using the BREAK instruction) and up to two data memory Break
Points, alternatively combined as a mask (range) Break Point.

The On-chip debug support is considered being private JTAG instructions, and distrib-
uted within ATMEL and to selected third party vendors only. Instruction opcodes are
listed for reference.

Private JTAG instruction for accessing On-chip debug system.

Private JTAG instruction for accessing On-chip debug system.

Private JTAG instruction for accessing On-chip debug system.

Private JTAG instruction for accessing On-chip debug system.

Bit 7 6 5 4 3 2 1 0
I IDRD/OCDR7 | OCDR6 | OCDR5 | OCDR4 | OCDR3 | OCDR2 | OCDR1 | OCDRO I OCDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
Alm L 289
——————— [0

Using the JTAG
Programming
Capabilities

Bibliography

ATMEL

The OCDR Register provides a communication channel from the running program in the
microcontroller to the debugger. The CPU can transfer a byte to the debugger by writing
to this location. At the same time, an internal flag; 1/0 Debug Register Dirty — IDRD —is
set to indicate to the debugger that the register has been written. When the CPU reads
the OCDR Register the 7 LSB will be from the OCDR Register, while the MSB is the
IDRD bit. The debugger clears the IDRD bit when it has read the information.

In some AVR devices, this register is shared with a standard 1/O location. In this case,
the OCDR Register can only be accessed if the OCDEN Fuse is programmed, and the
debugger enables access to the OCDR Register. In all other cases, the standard 1/0
location is accessed.

Refer to the debugger documentation for further information on how to use this register.

Programming of AVR parts via JTAG is performed via the 4-pin JTAG port, TCK, TMS,
TDI, and TDO. These are the only pins that need to be controlled/observed to perform
JTAG programming (in addition to power pins). It is not required to apply 12V externally.
The JTAGEN Fuse must be programmed and the JTD bit in the MCUCR Register must
be cleared to enable the JTAG Test Access Port.

The JTAG programming capability supports:

* Flash programming and verifying.

« EEPROM programming and verifying.

* Fuse programming and verifying.

* Lock bit programming and verifying.

The Lock bit security is exactly as in parallel programming mode. If the Lock bits LB1 or
LB2 are programmed, the OCDEN Fuse cannot be programmed unless first doing a

chip erase. This is a security feature that ensures no back-door exists for reading out the
content of a secured device.

The details on programming through the JTAG interface and programming specific
JTAG instructions are given in the section “JTAG Programming Overview” on page 343.

For more information about general Boundary-scan, the following literature can be
consulted:

 |EEE: IEEE Std 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan
Architecture, IEEE, 1993.

» Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-
Wesley, 1992.

290 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Boundary-scan IEEE 1149.1 (JTAG)

Features

System Overview

Data Registers

Bypass Register

7522C-AUTO-09/06

JTAG (IEEE std. 1149.1 compliant) Interface

Boundary-scan Capabilities According to the JTAG Standard

Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
Supports the Optional IDCODE Instruction

Additional Public AVR_RESET Instruction to Reset the AVR

The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connections. At system level, all ICs having JTAG capabilities
are connected serially by the TDI/TDO signals to form a long Shift Register. An external
controller sets up the devices to drive values at their output pins, and observe the input
values received from other devices. The controller compares the received data with the
expected result. In this way, Boundary-scan provides a mechanism for testing intercon-
nections and integrity of components on Printed Circuits Boards by using the four TAP
signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAM-
PLE/PRELOAD, and EXTEST, as well as the AVR specific public JTAG instruction
AVR_RESET can be used for testing the Printed Circuit Board. Initial scanning of the
data register path will show the ID-Code of the device, since IDCODE is the default
JTAG instruction. It may be desirable to have the AVR device in reset during test mode.
If not reset, inputs to the device may be determined by the scan operations, and the
internal software may be in an undetermined state when exiting the test mode. Entering
reset, the outputs of any port pin will instantly enter the high impedance state, making
the HIGHZ instruction redundant. If needed, the BYPASS instruction can be issued to
make the shortest possible scan chain through the device. The device can be set in the
reset state either by pulling the external RESET pin low, or issuing the AVR_RESET
instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with
data. The data from the output latch will be driven out on the pins as soon as the
EXTEST instruction is loaded into the JTAG IR-Register. Therefore, the SAMPLE/PRE-
LOAD should also be used for setting initial values to the scan ring, to avoid damaging
the board when issuing the EXTEST instruction for the first time. SAMPLE/PRELOAD
can also be used for taking a snapshot of the external pins during normal operation of
the part.

The JTAGEN Fuse must be programmed and the JTD bit in the I/O Register MCUCR
must be cleared to enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency
higher than the internal chip frequency is possible. The chip clock is not required to run.

The data registers relevant for Boundary-scan operations are:
* Bypass Register

» Device Identification Register

* Reset Register

* Boundary-scan Chain

The Bypass Register consists of a single Shift Register stage. When the Bypass Regis-
ter is selected as path between TDI and TDO, the register is reset to 0 when leaving the

Alm L 201

I)

Device Identification Register

Version

Part Number

Manufacturer ID

Device ID

Reset Register

ATMEL

Capture-DR controller state. The Bypass Register may be used to shorten the scan
chain on a system when the other devices are to be tested.

Figure 143 shows the structure of the Device Identification Register.

Figure 143. The Format of the Device Identification Register

MSB LSB
Bit 31 28 27 12 11 1 0
Device ID | Version | Part Number | Manufacturer ID | 1 |
4 bits 16 bits 11 bits 1-bit

Version is a 4-bit number identifying the revision of the component. The relevant version
number is shown in Table 106.

Table 106. JTAG Version Numbers
Version JTAG Version Number (Hex)
AT90CAN128 revision A 0x0

The part number is a 16-bit code identifying the component. The JTAG Part Number for
AT90CAN128 is listed in Table 107.

Table 107. AVR JTAG Part Number
Part Number JTAG Part Number (Hex)
AT90CAN128 0x9781

The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufac-
turer ID for ATMEL is listed in Table 108.

Table 108. Manufacturer ID
Manufacturer JTAG Manufactor ID (Hex)

ATMEL Ox01F

The full Device ID is listed in Table 109 following the AT90CAN128 version.

Table 109. Device ID
Version JTAG Device ID (Hex)
AT90CAN128 revision A 0x0978103F

The Reset Register is a test data register used to reset the part. Since the AVR tri-states
Port Pins when reset, the Reset Register can also replace the function of the unimple-
mented optional JTAG instruction HIGHZ.

A high value in the Reset Register corresponds to pulling the external Reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the fuse settings for the clock options, the part will remain reset for a reset time-out
period (refer to “System Clock” on page 35) after releasing the Reset Register. The out-

292 ATOOCANI28 AULO m——

7522C-AUTO-09/06

Boundary-scan Chain

Boundary-scan Specific
JTAG Instructions

EXTEST (0x0)

IDCODE (0x 1)

7522C-AUTO-09/06

AT90CAN128 Auto

put from this data register is not latched, so the reset will take place immediately, as
shown in Figure 144.

Figure 144. Reset Register

From Other Internal and ~
External Reset Sources Internal reset

From TDI »—D Q To TDO

-

ClockDR - AVR_RESET

The Boundary-scan Chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connections.

See “Boundary-scan Chain” on page 295 for a complete description.

The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are
the JTAG instructions useful for Boundary-scan operation. Note that the optional HIGHZ
instruction is not implemented, but all outputs with tri-state capability can be set in high-
impedant state by using the AVR_RESET instruction, since the initial state for all port
pins is tri-state.

As a definition in this datasheet, the LSB is shifted in and out first for all Shift Registers.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which data register is selected as path between TDI and TDO for
each instruction.

Mandatory JTAG instruction for selecting the Boundary-scan Chain as data register for
testing circuitry external to the AVR package. For port-pins, Pull-up Disable, Output
Control, Output Data, and Input Data are all accessible in the scan chain. For Analog cir-
cuits having off-chip connections, the interface between the analog and the digital logic
is in the scan chain. The contents of the latched outputs of the Boundary-scan chain is
driven out as soon as the JTAG IR-Register is loaded with the EXTEST instruction.

The active states are:

» Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
» Shift-DR: The Internal Scan Chain is shifted by the TCK input.

» Update-DR: Data from the scan chain is applied to output pins.

Optional JTAG instruction selecting the 32 bit ID-Register as data register. The ID-Reg-
ister consists of a version number, a device number and the manufacturer code chosen
by JEDEC. This is the default instruction after power-up.

The active states are:

» Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan
Chain.

» Shift-DR: The IDCODE scan chain is shifted by the TCK input.

Alm L 293

I)

SAMPLE_PRELOAD (0x2)

AVR_RESET (0xC)

BYPASS (0xF)

Boundary-scan Related
Register in 1/0 Memory

MCU Control Register —
MCUCR

ATMEL

Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of
the input/output pins without affecting the system operation. However, the output latches
are not connected to the pins. The Boundary-scan Chain is selected as data register.
The active states are:

» Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
» Shift-DR: The Boundary-scan Chain is shifted by the TCK input.

* Update-DR: Data from the Boundary-scan chain is applied to the output latches.
However, the output latches are not connected to the pins.

The AVR specific public JTAG instruction for forcing the AVR device into the Reset
mode or releasing the JTAG reset source. The TAP controller is not reset by this instruc-
tion. The one bit Reset Register is selected as data register.

Note that the reset will be active as long as there is a logic “one” in the Reset Chain.
The output from this chain is not latched.

The active states are:
» Shift-DR: The Reset Register is shifted by the TCK input.

Mandatory JTAG instruction selecting the Bypass Register for data register.

The active states are:
» Capture-DR: Loads a logic “0” into the Bypass Register.
» Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

The MCU Control Register contains control bits for general MCU functions.

Bit 7 6 5 4 3 2 1 0

| oo | - | - | pob | - | - | wseL | wcE | Mcucr
Read/Write R/W R R R/W R R R/W R/W
Initial Value 0 0 0 0 0 0 0 0

* Bits 7 —-JTD: JTAG Interface Disable

When this bit is zero, the JTAG interface is enabled if the JTAGEN Fuse is programmed.
If this bit is one, the JTAG interface is disabled. In order to avoid unintentional disabling
or enabling of the JTAG interface, a timed sequence must be followed when changing
this bit: The application software must write this bit to the desired value twice within four
cycles to change its value. Note that this bit must not be altered when using the On-chip
Debug system.

If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be
set to one. The reason for this is to avoid static current at the TDO pin in the JTAG
interface.

204 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

MCU Status Register —
MCUSR

Boundary-scan Chain

Scanning the Digital Port Pins

7522C-AUTO-09/06

The MCU Status Register provides information on which reset source caused an MCU
reset.

Bit 7 6 5 4 3 2 1 0

|l - | - | - | Jre | wWorRF | BORF | EXTRF | PORF | Mcusr
Read/Write R R R RIW RIW RIW RIW RIW
Initial Value 0 0 0 See Bit Description

* Bit4-JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register
selected by the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or
by writing a logic zero to the flag.

The Boundary-scan chain has the capability of driving and observing the logic levels on
the digital I/O pins, as well as the boundary between digital and analog logic for analog
circuitry having off-chip connection.

Figure 145 shows the Boundary-scan Cell for a bi-directional port pin with pull-up func-
tion. The cell consists of a standard Boundary-scan cell for the Pull-up Enable — PUEXxn
— function, and a bi-directional pin cell that combines the three signals Output Control —
OCxn, Output Data — ODxn, and Input Data — IDxn, into only a two-stage Shift Register.
The port and pin indexes are not used in the following description

The Boundary-scan logic is not included in the figures in the datasheet. Figure 146
shows a simple digital port pin as described in the section “I/O-Ports” on page 62. The
Boundary-scan details from Figure 145 replaces the dashed box in Figure 146.

When no alternate port function is present, the Input Data — ID — corresponds to the
PINxn Register value (but ID has no synchronizer), Output Data corresponds to the
PORT Register, Output Control corresponds to the Data Direction — DD Register, and
the Pull-up Enable — PUExn — corresponds to logic expression PUD - DDxn - PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 146 to
make the scan chain read the actual pin value. For Analog function, there is a direct
connection from the external pin to the analog circuit, and a scan chain is inserted on
the interface between the digital logic and the analog circuitry.

AIMEL 295

I)

ATMEL

Figure 145. Boundary-scan Cell for Bi-directional Port Pin with Pull-up Function.

ShiftDR To Next Cell EXTEST Vce
Pullup Enable (PUE) o
I FF2 LD2 1 E E
0
D Q D Q
1
(— —1G
Output Control (OC) - [
FF1 LD1 0
0
D Q D Q 1
1
v G
Output Data (OD) |

_n
3
o
-
o]
o
Port Pin (PXn

Input Data (ID)

From Last Cell ClockDR UpdateDR

206 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Boundary-scan and the Two-
wire Interface

7522C-AUTO-09/06

Figure 146. General Port Pin Schematic Diagram

See Boundary-scan
Description for Details!

C T T T T I
| :II i PUEXxn B PUD
I —
| | s
| | Qe
| RESET Wox
| | OCxn
3 e RDx
| 7 | B
| | 0
| Pxn d | Q D a
| ~ | ODxn PORTXN |<_:
S S <
IDxn WPx o
RESET
p—— - SLEEP C RRx
SYNCHRONIZER RP
—————— X
== |
|_ _____ f CLK o
PUD: PULLUP DISABLE WDx: WRITE DDRx v
PUEXn: PULLUP ENABLE for pin Pxn RDx: READ DDRx
OoCxn: OUTPUT CONTROL for pin Pxn WPX: WRITE PORTX
ODxn: OUTPUT DATA to pin Pxn RRx: READ PORTx REGISTER
IDxn: INPUT DATA from pin Pxn RPx: READ PORTX PIN
SLEEP: SLEEP CONTROL CLK 0 1/0 CLOCK

The two Two-wire Interface pins SCL and SDA have one additional control signal in the
scan-chain; Two-wire Interface Enable — TWIEN. As shown in Figure 147, the TWIEN
signal enables a tri-state buffer with slew-rate control in parallel with the ordinary digital
port pins. A general scan cell as shown in Figure 151 is attached to the TWIEN signal.

Notes: 1. A separate scan chain for the 50 ns spike filter on the input is not provided. The ordi-
nary scan support for digital port pins suffice for connectivity tests. The only reason
for having TWIEN in the scan path, is to be able to disconnect the slew-rate control
buffer when doing boundary-scan.

2. Make sure the OC and TWIEN signals are not asserted simultaneously, as this will
lead to drive contention.

AIMEL 207

I)

Scanning the RESET Pin

Scanning the Clock Pins

ATMEL

Figure 147. Additional Scan Signal for the Two-wire Interface

b o<} PUEXN

J/‘— OCxn
ODxn

~

—

Slew-rate limited

Pxn

TWIEN

IDXn

The RESET pin accepts 3V or 5V active low logic for standard reset operation, and 12V
active high logic for High Voltage Parallel programming. An observe-only cell as shown
in Figure 148 is inserted both for the 3V or 5V reset signal - RSTT, and the 12V reset
signal - RSTHV.

Figure 148. Observe-only Cell for RESET pin
To

Next
ShiftDR Cell

From System Pin - { J To System Logic

From ClockDR
Previous
Cell

The AVR devices have many clock options selectable by fuses. These are: Internal RC
Oscillator, External Clock, (High Frequency) Crystal Oscillator, Low-frequency Crystal
Oscillator, and Ceramic Resonator.

Figure 149 shows how each oscillator with external connection is supported in the scan
chain. The Enable signal is supported with a general Boundary-scan cell, while the
Oscillator/clock output is attached to an observe-only cell. In addition to the main clock,
the Timer2 Oscillator is scanned in the same way. The output from the internal RC
Oscillator is not scanned, as this oscillator does not have external connections.

208 ATOOCANI28 AULO m——

7522C-AUTO-09/06

AT90CAN128 Auto

Figure 149. Boundary-scan Cells for Oscillators and Clock Options

XTAL1/TOSC1 XTAL2 / TOSC2

To
Next H To
ShiftDR Cell EXTEST OSCI”ator Next
[ShiftDR Cell
From Digital Logic 0 I T

ENABLE OUTPUT ’ To System Logic
1
FF1
D Qf+—D Q
Jﬁ a D Q
From ClockDR UpdateDR Jﬁ

Previous From ClockDR
Cell Previous
Cell

Table 110 summaries the scan registers for the external clock pin XTAL1, oscillators
with XTAL1/XTAL2 connections as well as external Timer2 clock pin TOSC1 and 32kHz
Timer2 Oscillator.

Scanning the Analog
Comparator

7522C-AUTO-09/06

Table 110. Scan Signals for the Oscillators®Y®?)®)

Scanned Clock Scanned Clock Line

Enable Signal Line Clock Option when not Used
EXTCLKEN EXTCLK (XTAL1) External Main Clock 0

External Crystal 1
OSCON OSCCK .

External Ceramic Resonator
OSC32EN 0SC32CK Low Freq. External Crystal 1
TOSKON TOSCK 32 kHz Timer2 Oscillator 1

Notes: 1. Do not enable more than one clock source as clock at a time.

2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift
between the internal Oscillator and the JTAG TCK clock. If possible, scanning an
external clock is preferred.

3. The main clock configuration is programmed by fuses. As a fuse is not changed run-
time, the main clock configuration is considered fixed for a given application. The
user is advised to scan the same clock option as to be used in the final system. The
enable signals are supported in the scan chain because the system logic can disable
clock options in sleep modes, thereby disconnecting the Oscillator pins from the scan
path if not provided.

The relevant Comparator signals regarding Boundary-scan are shown in Figure 150.
The Boundary-scan cell from Figure 151 is attached to each of these signals. The sig-
nals are described in Table 111.

The Comparator need not be used for pure connectivity testing, since all analog inputs
are shared with a digital port pin as well.

AIMEL 299

I)

ATMEL

Figure 150. Analog Comparator

BANDGAP
REFERENCE VCC
ACBG
ACD —>» .
AINO >
+
ACO
>
AC_IDLE
ACME =
ADCEN 44
ADC MULTIPLEXER
OUTPUT

P

Figure 151. General Boundary-scan cell Used for Signals for Comparator and ADC

To
Next
ShiftDR Cell EXTEST
From Digital Logic/ R
From Analog Ciruitry 0 To Analog Circuitry/
1 To Digital Logic
D Ql+D Q
Jﬁ — G
From ClockDR UpdateDR
Previous
Cell
Table 111. Boundary-scan Signals for the Analog Comparator
Direction as Recommended | Output Values when
Signal Seen fromthe Inputwhen Not | Recommended
Name Comparator Description in Use Inputs are Used
AC_IDLE | input Turns off Analog 1 Depends upon uC
Comparator when code being executed
true
ACO output Analog Will become 0
Comparator Output | inputto uC
code being
executed
ACME input Uses output signal 0 Depends upon uC
from ADC mux code being executed
when true
ACBG input Bandgap 0 Depends upon uC
Reference enable code being executed

300 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Scanning the ADC Figure 152 shows a block diagram of the ADC with all relevant control and observe sig-
nals. The Boundary-scan cell from Figure 151 is attached to each of these signals. The
ADC need not be used for pure connectivity testing, since all analog inputs are shared

with a digital port pin as well.

Figure 152. Analog to Digital Converter

—> To Comparator

VCCREN

AREF

IREFEN

PASSEN
ADC_7 J J
MUXEN_6
Abc 6,
MUXEN_5
Abc s,
MUXEN_4 ADCBGEN
SCTEST
AT g sereet—— oo
EXTCH s PRECH pocon
MUXEN_3
ADC_3 :j/ AREF
MUXEN_2 DACOUT
e orc 0.0 [N
MUXEN_1 P 10-bit DAC " >°“"—P> s
abc 1, > -l ol
- G10 0
MUXEN_O ADCEN -
—
o < 0 I
10x L

NEGSEL_O :

ADC_0

7522C-AUTO-09/06

ST» /I

ACLK

AMPEN

The signals are described briefly in Table 112.

Table 112. Boundary-scan Signals for the ADC®)

Direction Recommen- | Output Values when
as Seen ded Input Recommended Inputs
Signal from the when not are Used, and CPU is
Name ADC Description in Use not Using the ADC
COMP Output Comparator Output 0 0
ACLK Input Clock signal to gain 0 0
stages implemented
as Switch-cap filters
ACTEN Input Enable path from gain 0 0
stages to the
comparator

AIMEL

I)

301

302

Table 112. Boundary-scan Signals for the ADCY (Continued)

ATMEL

input to comparator
when true

Direction Recommen- | Output Values when
as Seen ded Input Recommended Inputs

Signal from the when not are Used, and CPU is

Name ADC Description in Use not Using the ADC

ADHSM Input Increases speed of 0 0
comparator at the
sacrifice of higher
power consumption

ADCBGEN | Input Enable Band-gap 0 0
reference as negative
input to comparator

ADCEN Input Power-on signal to the 0 0
ADC

AMPEN Input Power-on signal to the 0 0
gain stages

DAC_9 Input Bit 9 of digital value to 1 1
DAC

DAC_8 Input Bit 8 of digital value to 0 0
DAC

DAC_7 Input Bit 7 of digital value to 0 0
DAC

DAC_6 Input Bit 6 of digital value to 0 0
DAC

DAC_5 Input Bit 5 of digital value to 0 0
DAC

DAC_4 Input Bit 4 of digital value to 0 0
DAC

DAC_3 Input Bit 3 of digital value to 0 0
DAC

DAC_2 Input Bit 2 of digital value to 0 0
DAC

DAC_1 Input Bit 1 of digital value to 0 0
DAC

DAC_0 Input Bit O of digital value to 0 0
DAC

EXTCH Input Connect ADC 1 1
channels 0 - 3 to by-
pass path around gain
stages

G10 Input Enable 10x gain 0 0

G20 Input Enable 20x gain 0 0

GNDEN Input Ground the negative 0 0

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Table 112. Boundary-scan Signals for the ADCY (Continued)

Direction Recommen- | Output Values when
as Seen ded Input Recommended Inputs

Signal from the when not are Used, and CPU is
Name ADC Description in Use not Using the ADC
HOLD Input Sample & Hold signal. 1 1

Sample analog signal

when low. Hold signal

when high. If gain

stages are used, this

signal must go active

when ACLK is high.
IREFEN Input Enables Band-gap 0 0

reference as AREF

signal to DAC
MUXEN_7 Input Input Mux bit 7 0 0
MUXEN_6 Input Input Mux bit 6 0 0
MUXEN_5 Input Input Mux bit 5 0 0
MUXEN_4 Input Input Mux bit 4 0 0
MUXEN_3 Input Input Mux bit 3 0 0
MUXEN_2 Input Input Mux bit 2 0 0
MUXEN_1 Input Input Mux bit 1 0 0
MUXEN_O Input Input Mux bit 0 1 1
NEGSEL_2 | Input Input Mux for negative 0 0

input for differential

signal, bit 2
NEGSEL_1 | Input Input Mux for negative 0 0

input for differential

signal, bit 1
NEGSEL_O | Input Input Mux for negative 0 0

input for differential

signal, bit 0
PASSEN Input Enable pass-gate of 1 1

gain stages.
PRECH Input Precharge output latch 1 1

of comparator. (Active

low)

AIMEL 303

7522C-AUTO-09/06 I ©

ATMEL

Table 112. Boundary-scan Signals for the ADCY (Continued)

Direction Recommen- | Output Values when

as Seen ded Input Recommended Inputs
Signal from the when not are Used, and CPU is
Name ADC Description in Use not Using the ADC
SCTEST Input Switch-cap TEST 0 0

enable. Output from
x10 gain stage send
out to Port Pin having
ADC_4

ST Input Output of gain stages 0 0
will settle faster if this
signal is high first two
ACLK periods after
AMPEN goes high.

VCCREN Input Selects Vcc as the 0 0
ACC reference
voltage.

Note: 1. Incorrect setting of the switches in Figure 152 will make signal contention and may
damage the part. There are several input choices to the S&H circuitry on the negative
input of the output comparator in Figure 152. Make sure only one path is selected
from either one ADC pin, Bandgap reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from Table 112
should be used. The user is recommended not to use the Differential Gain stages dur-
ing scan. Switch-Cap based gain stages require fast operation and accurate timing
which is difficult to obtain when used in a scan chain. Details concerning operations of
the differential gain stage is therefore not provided. For the same reason, the ADC High
Speed mode (ADHSM) bit does not make any sense during boundary-scan operation.

The AVR ADC is based on the analog circuitry shown in Figure 152 with a successive
approximation algorithm implemented in the digital logic. When used in Boundary-scan,
the problem is usually to ensure that an applied analog voltage is measured within some
limits. This can easily be done without running a successive approximation algorithm:
apply the lower limit on the digital DAC[9:0] lines, make sure the output from the com-
parator is low, then apply the upper limit on the digital DAC[9:0] lines, and verify the
output from the comparator to be high.

The ADC need not be used for pure connectivity testing, since all analog inputs are
shared with a digital port pin as well.

When using the ADC, remember the following

» The port pin for the ADC channel in use must be configured to be an input with pull-
up disabled to avoid signal contention.

* In Normal mode, a dummy conversion (consisting of 10 comparisons) is performed
when enabling the ADC. The user is advised to wait at least 200ns after enabling
the ADC before controlling/observing any ADC signal, or perform a dummy
conversion before using the first result.

» The DAC values must be stable at the midpoint value 0x200 when having the HOLD
signal low (Sample mode).

304 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

As an example, consider the task of verifying a 1.5V + 5% input signal at ADC channel 3
when the power supply is 5.0V and AREF is externally connected to V.

The lower limit is:

The upper limit is:

[1024-1,5V-0,95/5V] = 291 = 0x123
[1024 - 1,5/ -1,05/5)] = 323 = 0x143

The recommended values from Table 112 are used unless other values are given in the
algorithm in Table 113. Only the DAC and port pin values of the Scan Chain are shown.
The column “Actions” describes what JTAG instruction to be used before filling the
Boundary-scan Register with the succeeding columns. The verification should be done
on the data scanned out when scanning in the data on the same row in the table.

Table 113. Algorithm for Using the ADC

PA3.
PA3. | PAS. Pullup_
Step | Actions ADCEN | DAC MUXEN | HOLD | PRECH | Data | Control | Enable
SAMPLE_
1 PRELOAD 1 0x200 0x08 1 1 0 0 0
2 EXTEST 1 0x200 0x08 0 1 0 0 0
3 1 0x200 0x08 1 1 0 0 0
4 1 0x123 0x08 1 1 0 0 0
5 1 0x123 0x08 1 0 0 0 0
Verify the
6 COMP bit 1 | 0x200 | 0x08 1 1 0 0 0
scanned
out to be 0
7 1 0x200 0x08 0 1 0 0 0
8 1 0x200 0x08 1 1 0 0 0
9 1 0x143 0x08 1 1 0 0 0
10 1 0x143 0x08 1 0 0 0 0
Verify the
11 | COMPbOI 1 | 0x200 | 0x08 1 1 0 0 0
scanned
out to be 1

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock
frequency. As the algorithm keeps HOLD high for five steps, the TCK clock frequency
has to be at least five times the number of scan bits divided by the maximum hold time,

thold,max

7522C-AUTO-09/06

AIMEL

I)

305

ATMEL

AT90CAN128 Boundary- Table 114 shows the Scan order between TDI and TDO when the Boundary-scan chain

scan Order is selected as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit
scanned out. The scan order follows the pin-out order as far as possible. Therefore, the
bits of Port A is scanned in the opposite bit order of the other ports. Exceptions from the
rules are the Scan chains for the analog circuits, which constitute the most significant
bits of the scan chain regardless of which physical pin they are connected to. In Figure
145, PXn. Data corresponds to FFO, PXn. Control corresponds to FF1, and PXn.
Pullup_enable corresponds to FF2. Bit 2, 3, 4, and 5 of Port C is not in the scan chain,
since these pins constitute the TAP pins when the JTAG is enabled.

Table 114. AT90CAN128 Boundary-scan Order

Bit Number | Signal Name Comment Module
200 AC_IDLE Comparator
199 ACO

198 ACME
197 AINBG
196 COMP ADC
195 ACLK

194 ACTEN
193 ADHSM
192 ADCBGEN
191 ADCEN
190 AMPEN
189 DAC_9
188 DAC_8
187 DAC_7
186 DAC_6
185 DAC_5
184 DAC_4
183 DAC_3
182 DAC_2
181 DAC_1
180 DAC_0
179 EXTCH
178 G10

177 G20

176 GNDEN
175 HOLD

174 IREFEN
173 MUXEN_7
172 MUXEN_6
171 MUXEN_5
170 MUXEN_4

306 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

Table 114. AT90CAN128 Boundary-scan Order (Continued)

Bit Number | Signal Name Comment Module

169 MUXEN_3 ADC

168 MUXEN_2

167 MUXEN_1

166 MUXEN_O

165 NEGSEL_2

164 NEGSEL_1

163 NEGSEL_O

162 PASSEN

161 PRECH

160 SCTEST

159 ST

158 VCCREN

157 PEO.Data Port E

156 PEO.Control

155 PEO.Pullup_Enable

154 PE1.Data

153 PE1.Control

152 PE1.Pullup_Enable

151 PE2.Data

150 PE2.Control

149 PE2.Pullup_Enable

148 PE3.Data

147 PE3.Control

146 PE3.Pullup_Enable

145 PE4.Data

144 PE4.Control

143 PE4.Pullup_Enable

142 PES.Data

141 PES5.Control

140 PES5.Pullup_Enable

139 PEG6.Data

138 PEG6.Control

137 PE6.Pullup_Enable

136 PE7.Data

135 PE7.Control

134 PE7.Pullup_Enable

133 PBO.Data Port B

132 PBO0.Control
ATET
— ———— —[3)

308

Table 114. AT90CAN128 Boundary-scan Order (Continued)

ATMEL

Bit Number | Signal Name Comment Module
131 PBO.Pullup_Enable Port B
130 PB1.Data

129 PB1.Control

128 PB1.Pullup_Enable

127 PB2.Data

126 PB2.Control

125 PB2.Pullup_Enable

124 PB3.Data

123 PB3.Control

122 PB3.Pullup_Enable

121 PB4.Data

120 PB4.Control

119 PB4.Pullup_Enable

118 PB5.Data

117 PB5.Control

116 PB5.Pullup_Enable

115 PB6.Data

114 PB6.Control

113 PB6.Pullup_Enable

112 PB7.Data

111 PB7.Control

110 PB7.Pullup_Enable

109 PG3.Data Port G
108 PG3.Control

107 PG3.Pullup_Enable

106 PG4.Data

105 PG4.Control

104 PG4.Pullup_Enable

103 - (Private Signal)

102 RSTT (Observe Only) RESET Logic
101 RSTHV

100 EXTCLKEN Oscillators
99 OSCON

98 OSC32EN

97 TOSKON

96 EXTCLK (XTAL1)

95 OSCCK

94 OSC32CK

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

Table 114. AT90CAN128 Boundary-scan Order (Continued)

Bit Number | Signal Name Comment Module

93 TOSK Oscillators

92 PDO.Data Port D

91 PDO.Control

90 PDO.Pullup_Enable

89 PD1.Data

88 PD1.Control

87 PD1.Pullup_Enable

86 PD2.Data

85 PD2.Control

84 PD2.Pullup_Enable

83 PD3.Data

82 PD3.Control

81 PD3.Pullup_Enable

80 PD4.Data

79 PD4.Control

78 PD4.Pullup_Enable

77 PD5.Data

76 PD5.Control

75 PD5.Pullup_Enable

74 PD6.Data

73 PD6.Control

72 PD6.Pullup_Enable

71 PD7.Data

70 PD7.Control

69 PD7.Pullup_Enable

68 PGO.Data Port G

67 PGO.Control

66 PGO.Pullup_Enable

65 PG1.Data

64 PG1.Control

63 PG1.Pullup_Enable

62 PCO.Data Port C

61 PCO0.Control

60 PCO.Pullup_Enable

59 PC1.Data

58 PC1.Control

57 PC1.Pullup_Enable

56 PC2.Data
ATET
— ———— —[3)

310

Table 114. AT90CAN128 Boundary-scan Order (Continued)

ATMEL

Bit Number | Signal Name Comment Module
55 PC2.Control Port C
54 PC2.Pullup_Enable

53 PC3.Data

52 PC3.Control

51 PC3.Pullup_Enable

50 PC4.Data

49 PC4.Control

48 PC4.Pullup_Enable

47 PC5.Data

46 PC5.Control

45 PC5.Pullup_Enable

44 PC6.Data

43 PCé6.Control

42 PC6.Pullup_Enable

41 PC7.Data

40 PC7.Control

39 PC7.Pullup_Enable

38 PG2.Data Port G
37 PG2.Control

36 PG2.Pullup_Enable

35 PA7.Data Port A
34 PA7.Control

33 PA7.Pullup_Enable

32 PAG6.Data

31 PA6.Control

30 PAG6.Pullup_Enable

29 PA5.Data

28 PAS5.Control

27 PA5.Pullup_Enable

26 PA4.Data

25 PA4.Control

24 PA4.Pullup_Enable

23 PA3.Data

22 PA3.Control

21 PA3.Pullup_Enable

20 PA2.Data

19 PA2.Control

18 PA2.Pullup_Enable

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Boundary-scan
Description Language

Files

7522C-AUTO-09/06

Table 114. AT90CAN128 Boundary-scan Order (Continued)

Bit Number | Signal Name Comment Module
17 PAl.Data Port A
16 PA1.Control

15 PA1.Pullup_Enable

14 PAO.Data

13 PAO.Control

12 PAO.Pullup_Enable

11 PF3.Data Port F
10 PF3.Control

9 PF3.Pullup_Enable

8 PF2.Data

7 PF2.Control

6 PF2.Pullup_Enable

5 PF1.Data

4 PF1.Control

3 PF1.Pullup_Enable

2 PFO.Data

1 PF0.Control

0 PFO.Pullup_Enable

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable
devices in a standard format used by automated test-generation software. The order
and function of bits in the Boundary-scan Data Register are included in this description.
A BSDL file for AT90CAN128 is available.

AIMEL

I)

311

ATMEL

Boot Loader Support — Read-While-Write Self-Programming

Features

Application and Boot
Loader Flash Sections

AS - Application Section

BLS — Boot Loader Section

Read-While-Write and No
Read-While-Write Flash
Sections

The Boot Loader Support provides a real Read-While-Write Self-Programming mecha-
nism for downloading and uploading program code by the MCU itself. This feature
allows flexible application software updates controlled by the MCU using a Flash-resi-
dent Boot Loader program. The Boot Loader program can use any available data
interface and associated protocol to read code and write (program) that code into the
Flash memory, or read the code from the program memory. The program code within
the Boot Loader section has the capability to write into the entire Flash, including the
Boot Loader memory. The Boot Loader can thus even modify itself, and it can also
erase itself from the code if the feature is not needed anymore. The size of the Boot
Loader memory is configurable with fuses and the Boot Loader has two separate sets of
Boot Lock bits which can be set independently. This gives the user a unique flexibility to
select different levels of protection.

Read-While-Write Self-Programming

Flexible Boot Memory Size

High Security (Separate Boot Lock Bits for a Flexible Protection)
Separate Fuse to Select Reset Vector

Optimized Page® Size

Code Efficient Algorithm

Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 132 on page
331) used during programming. The page organization does not affect normal
operation.

The Flash memory is organized in two main sections, the Application section and the
Boot Loader section (see Figure 154). The size of the different sections is configured by
the BOOTSZ Fuses as shown in Table 120 on page 324 and Figure 154. These two
sections can have different level of protection since they have different sets of Lock bits.

The Application section is the section of the Flash that is used for storing the application
code. The protection level for the Application section can be selected by the application
Boot Lock bits (BLB02 and BLBO1 bits), see Table 116 on page 316. The Application
section can never store any Boot Loader code since the SPM instruction is disabled
when executed from the Application section.

While the Application section is used for storing the application code, the The Boot
Loader software must be located in the BLS since the SPM instruction can initiate a pro-
gramming when executing from the BLS only. The SPM instruction can access the
entire Flash, including the BLS itself. The protection level for the Boot Loader section
can be selected by the Boot Loader Lock bits (BLB12 and BLB11 bhits), see Table 117
on page 316.

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot
Loader software update is dependent on which address that is being programmed. In
addition to the two sections that are configurable by the BOOTSZ Fuses as described
above, the Flash is also divided into two fixed sections, the Read-While-Write (RWW)
section and the No Read-While-Write (NRWW) section. The limit between the RWW-
and NRWW sections is given in Table 121 on page 324 and Figure 154 on page 315.
The main difference between the two sections is:

312 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

RWW — Read-While-Write
Section

NRWW — No Read-While-Write
Section

7522C-AUTO-09/06

» When erasing or writing a page located inside the RWW section, the NRWW section
can be read during the operation.

» When erasing or writing a page located inside the NRWW section, the CPU is halted
during the entire operation.

Note that the user software can never read any code that is located inside the RWW
section during a Boot Loader software operation. The syntax “Read-While-Write sec-
tion” refers to which section that is being programmed (erased or written), not which
section that actually is being read during a Boot Loader software update.

If a Boot Loader software update is programming a page inside the RWW section, it is
possible to read code from the Flash, but only code that is located in the NRWW sec-
tion. During an on-going programming, the software must ensure that the RWW section
never is being read. If the user software is trying to read code that is located inside the
RWW section (i.e., by a call/jmp/lpm or an interrupt) during programming, the software
might end up in an unknown state. To avoid this, the interrupts should either be disabled
or moved to the Boot Loader section. The Boot Loader section is always located in the
NRWW section. The RWW Section Busy bit (RWWSB) in the Store Program Memory
Control and Status Register (SPMCSR) will be read as logical one as long as the RWW
section is blocked for reading. After a programming is completed, the RWWSB must be
cleared by software before reading code located in the RWW section. See “Store Pro-
gram Memory Control and Status Register - SPMCSR” on page 317 for details on how
to clear RWWSB.

The code located in the NRWW section can be read when the Boot Loader software is
updating a page in the RWW section. When the Boot Loader code updates the NRWW
section, the CPU is halted during the entire Page Erase or Page Write operation.

Table 115. Read-While-Write Features

Which Section does the Z- Which Section Can
pointer Address During the be Read During Isthe CPU | Read-While-Write
Programming? Programming? Halted? Supported?
RWW Section NRWW Section No Yes
NRWW Section None Yes No

AIMEL 313

I)

ATMEL

Figure 153. Read-While-Write vs. No Read-While-Write

Read-While-Write
(RWW) Section

- - - - - - - - Z-pointer
Addresses NRWW
Z-pointer Section
Addresses RWW No Read-While-Write
Section (NRWW) Section
CPU is Halted
f During the Operation
Code Located in
NRWW Section

Can be Read During
the Operation

314 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 154. Memory Sections

Read-While-Write

No Read-While-Write

Read-While-Write

No Read-While-Write

Boot Loader Lock Bits

7522C-AUTO-09/06

Section

Section

Section

Section

Program Memory
BOOTSZ ='11'

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Program Memory
BOOTSZ ='01'

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Note:

0x0000

End RWW _
Start NRWW

End Application
Start Boot Loader
Flashend

0x0000

End RWW _
Start NRWW

End Application
Start Boot Loader

Flashend

Read-While-Write

No Read-While-Write

Read-While-Write

No Read-While-Write

Section

Section

Section

Section

Program Memory
BOOTSZ = '10'

Application Flash Section

Application Flash Section

Boot Loader Flash Section

Program Memory
BOOTSZ = '00'

Application Flash Section

Boot Loader Flash Section

0x0000

End RWW _
Start NRWW

End Application
Start Boot Loader

Flashend

0x0000

End RWW, End Application
Start NRWW, Start Boot Loader

Flashend

1. The parameters in the figure above are given in Table 120 on page 324.

If no Boot Loader capability is needed, the entire Flash is available for application code.

The Boot Loader has two separate sets of Boot Lock bits which can be set indepen-
dently. This gives the user a unique flexibility to select different levels of protection.

The user can select:
» To protect the entire Flash from a software update by the MCU.
» To protect only the Boot Loader Flash section from a software update by the MCU.

» To protect only the Application Flash section from a software update by the MCU.
» Allow software update in the entire Flash.

ATMEL

I)

315

Entering the Boot Loader

Program

ATMEL

See Table 116 and Table 117 for further details. The Boot Lock bits can be set in soft-
ware and in Serial or Parallel Programming mode, but they can be cleared by a Chip
Erase command only. The general Write Lock (Lock Bit mode 2) does not control the
programming of the Flash memory by SPM instruction. Similarly, the general
Read/Write Lock (Lock Bit mode 1) does not control reading nor writing by LPM/SPM
(Load Program Memory / Store Program Memory) instructions, if it is attempted.

Table 116. Boot Lock Bit0 Protection Modes (Application Section)®

Lock Bit
Mode

BLBO02

BLBO1

Protection

1

1

1

No restrictions for SPM or LPM accessing the Application
section.

SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and
LPM executing from the Boot Loader section is not allowed
to read from the Application section. If Interrupt Vectors are
placed in the Boot Loader section, interrupts are disabled
while executing from the Application section.

LPM executing from the Boot Loader section is not allowed
to read from the Application section. If Interrupt Vectors are
placed in the Boot Loader section, interrupts are disabled
while executing from the Application section.

Note: 1.

“1” means unprogrammed, “0” means programmed

Table 117. Boot Lock Bitl Protection Modes (Boot Loader Section)®

Lock Bit
Mode

BLB12

BLB11

Protection

1

1

1

No restrictions for SPM or LPM accessing the Boot Loader
section.

SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section, and
LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled
while executing from the Boot Loader section.

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled
while executing from the Boot Loader section.

Note: 1.

“1” means unprogrammed, “0” means programmed

Entering the Boot Loader takes place by a jump or call from the application program.
This may be initiated by a trigger such as a command received via USART, or SPI inter-
face. Alternatively, the Boot Reset Fuse can be programmed so that the Reset Vector is
pointing to the Boot Flash start address after a reset. In this case, the Boot Loader is
started after a reset. After the application code is loaded, the program can start execut-
ing the application code. Note that the fuses cannot be changed by the MCU itself. This
means that once the Boot Reset Fuse is programmed, the Reset Vector will always

316 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Store Program Memory
Control and Status Register —
SPMCSR

7522C-AUTO-09/06

point to the Boot Loader Reset and the fuse can only be changed through the serial or
parallel programming interface.

Table 118. Boot Reset Fuse)
BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 120 on page 324)

Note: 1. “1” means unprogrammed, “0” means programmed

The Store Program Memory Control and Status Register contains the control bits
needed to control the Boot Loader operations.

Bit 7 6 5 4 3 2 1 0

| sPmiE | RwwsB | - | RWWSRE | BLBSET | PGWRT | PGERS | SPMEN | sPmcSR
Read/Write R/W R R R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

» Bit 7 - SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the
SPM ready interrupt will be enabled. The SPM ready Interrupt will be executed as long
as the SPMEN bit in the SPMCSR Register is cleared.

» Bit 6 - RWWSB: Read-While-Write Section Busy

When a Self-Programming (Page Erase or Page Write) operation to the RWW section is
initiated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the
RWW section cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit
is written to one after a Self-Programming operation is completed. Alternatively the
RWWSB bit will automatically be cleared if a page load operation is initiated.

* Bit5 - Res: Reserved Bit
This bit is a reserved bit in the AT90CAN128 and always read as zero.

* Bit 4 - RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section
is blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW
section, the user software must wait until the programming is completed (SPMEN will be
cleared). Then, if the RWWSRE bit is written to one at the same time as SPMEN, the
next SPM instruction within four clock cycles re-enables the RWW section. The RWW
section cannot be re-enabled while the Flash is busy with a Page Erase or a Page Write
(SPMEN is set). If the RWWSRE bit is written while the Flash is being loaded, the Flash
load operation will abort and the data loaded will be lost.

» Bit 3—-BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles sets Boot Lock bits, according to the data in RO. The data in R1 and
the address in the Z-pointer/RAMPZ are ignored. The BLBSET bit will automatically be
cleared upon completion of the Lock bit set, or if no SPM instruction is executed within
four clock cycles.

An LPM instruction within three cycles after BLBSET and SPMEN are set in the
SPMCSR Register, will read either the Lock bits or the Fuse bits (depending on Z0 in

Alm L 317

I)

Addressing the Flash
During Self-
Programming

ATMEL

the Z-pointer) into the destination register. See “Reading the Fuse and Lock Bits from
Software” on page 321 for details.

* Bit 2 - PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes Page Write, with the data stored in the temporary buffer. The
page address is taken from the high part of the Z-pointer and the low part of RAMPZ.
The data in R1 and RO are ignored. The PGWRT bit will auto-clear upon completion of a
Page Write, or if no SPM instruction is executed within four clock cycles. The CPU is
halted during the entire Page Write operation if the NRWW section is addressed.

» Bit 1 - PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within
four clock cycles executes Page Erase. The page address is taken from the high part of
the Z-pointer and the low part of RAMPZ. The data in R1 and RO are ignhored. The
PGERS bit will auto-clear upon completion of a Page Erase, or if no SPM instruction is
executed within four clock cycles. The CPU is halted during the entire Page Write oper-
ation if the NRWW section is addressed.

» Bit 0 — SPMEN: Store Program Memory Enable

This bit enables the SPM instruction for the next four clock cycles. If written to one
together with either RWWSRE, BLBSET, PGWRT’ or PGERS, the following SPM
instruction will have a special meaning, see description above. If only SPMEN is written,
the following SPM instruction will store the value in R1:R0 in the temporary page buffer
addressed by the Z-pointer/RAMPZ. The LSB of the Z-pointer is ignored. The SPMEN
bit will auto-clear upon completion of an SPM instruction, or if no SPM instruction is exe-
cuted within four clock cycles. During Page Erase and Page Write, the SPMEN bit
remains high until the operation is completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011" or “00001” in the
lower five bits will have no effect.

The Z-pointer together with RAMPZ are used to address the SPM commands. For
details on how to use the RAMPZ, see “RAM Page Z Select Register - RAMPZ” on
page 13.

Bit 15 14 13 12 11 10 9 8
ZH (R31) Z15 Z14 Z13 712 Z11 Z10 Z9 z8
ZL (R30) z7 Z6 Z5 Z4 Z3 z2 Z1 Z0

7 6 5 4 3 2 1 0

Since the Flash is organized in pages (see Table 132 on page 331), the program
counter can be treated as having two different sections. One section, consisting of the
least significant bits, is addressing the words within a page, while the most significant
bits are addressing the pages. This is shown in Figure 155. Note that the page erase
and page write operations are addressed independently. Therefore it is of major impor-
tance that the Boot Loader software addresses the same page in both the page erase
and page write operation. Once a programming operation is initiated, the address is
latched and the Z-pointer/RAMPZ can be used for other operations.

The only SPM operation that does not use the Z-pointer/RAMPZ is setting the Boot
Loader Lock bits. The content of the Z-pointer/RAMPZ is ignored and will have no effect
on the operation. The (E)LPM instruction does also use the Z-pointer/RAMPZ to store

318 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

the address. Since this instruction addresses the Flash byte by byte, also the LSB (bit
Z0) of the Z-pointer is used.

Figure 155. Addressing the Flash During SPM®

ZPCMSB ZPAGEMSB
RAMPZ - REGISTER | | 0| z-ReGisTER
7 1,0 15 110
PCMSB PAGEMSB
PROGRAM
COUNTER PCPAGE PCWORD |
15 0
PAGE address WORD address
within the FLASH within a PAGE
PROGRAM MEMORY PAGE PCWORD [PAGEMSB0]:
PAGE | INSTRUCTION WORD 00
\
\ o1
\
! 02
\

< |

\ |

\ |

\ |

\ |

\ |

| |

\ |

Vo Ly :

\ N

\ PAGEEND
\

Self-Programming the
Flash

7522C-AUTO-09/06

Note: 1. The different variables used in Figure 155 are listed in Table 122 on page 325.

The program memory is updated in a page by page fashion. Before programming a
page with the data stored in the temporary page buffer, the page must be erased. The
temporary page buffer is filled one word at a time using SPM and the buffer can be filled
either before the Page Erase command or between a Page Erase and a Page Write
operation:

Alternative 1: fill the buffer before a Page Erase

« Fill temporary page buffer

* Perform a Page Erase

» Perform a Page Write

Alternative 2: fill the buffer after Page Erase
* Perform a Page Erase

» Fill temporary page buffer

* Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for
example in the temporary page buffer) before the erase, and then be rewritten. When
using alternative 1, the Boot Loader provides an effective Read-Modify-Write feature
which allows the user software to first read the page, do the necessary changes, and
then write back the modified data. If alternative 2 is used, it is not possible to read the
old data while loading since the page is already erased. The temporary page buffer can
be accessed in a random sequence. It is essential that the page address used in both

Alm L 319

I)

Performing Page Erase by
SPM

Filling the Temporary Buffer
(Page Loading)

Performing a Page Write

Using the SPM Interrupt

Consideration While Updating
BLS

Prevent Reading the RWW
Section During Self-
Programming

320

ATMEL

the Page Erase and Page Write operation is addressing the same page. See “Simple
Assembly Code Example for a Boot Loader” on page 322 for an assembly code
example.

To execute Page Erase, set up the address in the Z-pointer/RAMPZ, write “X0000011"
to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data
in R1 and RO is ignored. The page address must be written to PCPAGE in the Z-register
and RAMPZ. Other bits in the Z-pointer must be written zero during this operation.

» Page Erase to the RWW section: The NRWW section can be read during the page
erase.

» Page Erase to the NRWW section: The CPU is halted during the operation.

To write an instruction word, set up the address in the Z-pointer/RAMPZ and data in
R1:R0, write “00000001” to SPMCSR and execute SPM within four clock cycles after
writing SPMCSR. The content of PCWORD in the Z-register is used to address the data
in the temporary buffer. The temporary buffer will auto-erase after a Page Write opera-
tion or by writing the RWWSRE bit in SPMCSR. It is also erased after a system reset.
Note that it is not possible to write more than one time to each address without erasing
the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded
will be lost.

To execute Page Write, set up the address in the Z-pointer/RAMPZ, write “X0000101” to
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The data in
R1 and RO is ignored. The page address must be written to PCPAGE. Other bits in the
Z-pointer will be ignored during this operation.

» Page Write to the RWW section: The NRWW section can be read during the Page
Write.

» Page Write to the NRWW section: The CPU is halted during the operation.

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt
when the SPMEN bit in SPMCSR is cleared. This means that the interrupt can be used
instead of polling the SPMCSR Register in software. When using the SPM interrupt, the
Interrupt Vectors should be moved to the BLS section to avoid that an interrupt is
accessing the RWW section when it is blocked for reading. How to move the interrupts
is described in “Interrupts” on page 57.

Special care must be taken if the user allows the Boot Loader section to be updated by
leaving Boot Lock bitl1l unprogrammed. An accidental write to the Boot Loader itself can
corrupt the entire Boot Loader, and further software updates might be impossible. If it is
not necessary to change the Boot Loader software itself, it is recommended to program
the Boot Lock bitll to protect the Boot Loader software from any internal software
changes.

During Self-Programming (either Page Erase or Page Write), the RWW section is
always blocked for reading. The user software itself must prevent that this section is
addressed during the self programming operation. The RWWSB in the SPMCSR will be
set as long as the RWW section is busy. During Self-Programming the Interrupt Vector
table should be moved to the BLS as described in “Interrupts” on page 57, or the inter-
rupts must be disabled. Before addressing the RWW section after the programming is
completed, the user software must clear the RWWSB by writing the RWWSRE. See
“Simple Assembly Code Example for a Boot Loader” on page 322 for an example.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Setting the Boot Loader Lock
Bits by SPM

EEPROM Write Prevents
Writing to SPMCSR

Reading the Fuse and Lock
Bits from Software

7522C-AUTO-09/06

To set the Boot Loader Lock bits, write the desired data to RO, write “X0001001” to
SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The only
accessible Lock bits are the Boot Lock bits that may prevent the Application and Boot
Loader section from any software update by the MCU.

Bit 7 6 5 4 3 2 1 0

RO |l + | 1 [sBB12 | BB1 | BBO2 | BLBO1 | 1 | 1 |

See Table 116 and Table 117 for how the different settings of the Boot Loader bits affect
the Flash access.

If bits 5..2 in RO are cleared (zero), the corresponding Boot Lock bit will be programmed
if an SPM instruction is executed within four cycles after BLBSET and SPMEN are set in
SPMCSR. The Z-pointer is don’t care during this operation, but for future compatibility it
is recommended to load the Z-pointer with 0x0001 (same as used for reading the Lock
bits). For future compatibility it is also recommended to set bits 7, 6, 1, and 0 in RO to “1”
when writing the Lock bits. When programming the Lock bits the entire Flash can be
read during the operation.

Note that an EEPROM write operation will block all software programming to Flash.
Reading the Fuses and Lock bits from software will also be prevented during the
EEPROM write operation. It is recommended that the user checks the status bit (EEWE)
in the EECR Register and verifies that the bit is cleared before writing to the SPMCSR
Register.

It is possible to read both the Fuse and Lock bits from software. To read the Lock bits,
load the Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR.
When an LPM instruction is executed within three CPU cycles after the BLBSET and
SPMEN bits are set in SPMCSR, the value of the Lock bits will be loaded in the destina-
tion register. The BLBSET and SPMEN bits will auto-clear upon completion of reading
the Lock bits or if no LPM instruction is executed within three CPU cycles or no SPM
instruction is executed within four CPU cycles. When BLBSET and SPMEN are cleared,
LPM will work as described in the Instruction set Manual.

Bit 7 6 5 4 3 2 1 0

Rd(z=0x0001) | - | - [BLB12 | BLB11 | BLBO2 | BLBO1 | B2 | LBl |

The algorithm for reading the Fuse Low byte is similar to the one described above for
reading the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and
set the BLBSET and SPMEN bits in SPMCSR. When an LPM instruction is executed
within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the value
of the Fuse Low byte (FLB) will be loaded in the destination register as shown below.
Refer to Table 127 on page 328 for a detailed description and mapping of the Fuse Low

byte.
Bit 7 6 5 4 3 2 1 0
Rd (z=0x0000) | FLB7 | FLB6 | FLB5 | FLB4 | FLB3 | FLB2 | FB1 | FLBO |

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in
the SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination
register as shown below. Refer to Table 126 on page 327 for detailed description and
mapping of the Fuse High byte.

Bit 7 6 5 4 3 2 1 0

Rd (z=0x0003) | FHB7 | FHB6 | FHB5 | FHB4 | FHB3 | FHB2 | FHB1 | FHBO |

Alm L 321

I)

ATMEL

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in
the SPMCSR, the value of the Extended Fuse byte (EFB) will be loaded in the destina-
tion register as shown below. Refer to Table 125 on page 327 for detailed description
and mapping of the Extended Fuse byte.

Bit 7 6 5 4 3 2 1 0

Rd(z=0x0002) | - | - | - | - | ErB3 | EFB2 | EFB1 | EFBO |

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that
are unprogrammed, will be read as one.

Preventing Flash Corruption During periods of low V¢, the Flash program can be corrupted because the supply volt-
age is too low for the CPU and the Flash to operate properly. These issues are the same
as for board level systems using the Flash, and the same design solutions should be
applied.

A Flash program corruption can be caused by two situations when the voltage is too low.

» First, a regular write sequence to the Flash requires a minimum voltage to operate
correctly.

» Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage
for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one

is sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot
Loader Lock bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply
voltage. This can be done by enabling the internal Brown-out Detector (BOD) if
the operating voltage matches the detection level. If not, an external low V¢
reset protection circuit can be used. If a reset occurs while a write operation is in
progress, the write operation will be completed provided that the power supply
voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low V. This
will prevent the CPU from attempting to decode and execute instructions, effec-
tively protecting the SPMCSR Register and thus the Flash from unintentional
writes.

Programming Time for Flash The calibrated RC Oscillator is used to time Flash accesses. Table 119 shows the typi-
when Using SPM cal programming time for Flash accesses from the CPU.

Table 119. SPM Programming Time

Symbol Min Programming Time | Max Programming Time

Flash write (Page Erase, Page Write,

. - 3.7ms 4.5ms
and write Lock bits by SPM)
Simple Assembly Code ;- the routine writes one page of data from RAM to Flash
Example for a Boot Loader ; the first data location in RAM is pointed to by the Y-pointer

; the first data location in Flash is pointed to by the Z-pointer
;- error handling is not included
;- the routine must be placed inside the Boot space
(at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;- registers used: r0, rl, templ (rle), temp2 (rl7), looplo (r24),

322 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

; loophi (r25), spmcsrval (r20)

; storing and restoring of registers is not included in the routine

; register usage can be optimized at the expense of code size

;- 1t i1s assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words
.0org SMALLBOOTSTART

Write page:
; Page Erase
1di spmcsrval, (1<<PGERS) | (1<<SPMEN)
call Do_spm

; re-enable the RWW section
1di spmecsrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; transfer data from RAM to Flash page buffer

1di looplo, low (PAGESIZEB) ;init loop variable
1di loophi, high (PAGESIZEB) ;not required for PAGESIZEB<=256
Wrloop:

1d r0, Y+

1d rl, Y+

1di spmcsrval, (1<<SPMEN)

call Do_spm

adiw ZH:2ZL, 2

sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write

subi ZL, low(PAGESIZER) ;restore pointer
sbci ZH, high (PAGESIZEB) ;not required for PAGESIZEB<=256
1di spmcsrval, (1<<PGWRT) | (1<<SPMEN)

call Do_spm

; re-enable the RWW section

1di spmecsrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm

; read back and check, optional

1di looplo, low (PAGESIZEB) ;init loop variable
1di loophi, high (PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZER) ;restore pointer

sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
1d rl, Y+
cpse r0, rl
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in templ, SPMCSR
sbrs templ, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret

; re-enable the RWW section

Alm L 323

7522C-AUTO-09/06 I ©

ATMEL

1di spmecsrval, (1<<RWWSRE) | (1<<SPMEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete
Wait_ spm:
in templ, SPMCSR
sbrc templ, SPMEN
rjmp Wait_ spm
; input: spmcsrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present
Wait_ee:
sbic EECR, EEWE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcsrval
spm
; restore SREG (to enable interrupts i1f originally enabled)
out SREG, temp2

ret
AT90CAN128 Boot Loader In Table 120 through Table 122, the parameters used in the description of the Self-Pro-
Parameters gramming are given.

Table 120. Boot Size Configuration (Word Addresses)®)

-l o Boot Reset
AR Boot Address
516 Loader End (Start Boot
O | O| Boot Application Flash Application Loader
e Size Pages Flash Section | Section Section Section)
512 0x0000 - OxFEOQO -
1 words 4 OXFDFF OXFFFF OXFDFF OXFEQO
1024 0x0000 - OxFCO00 -
00 words 8 OXFBFF OXFFFF OxFBFF OxFC00
2048 0x0000 - OxF800 -
Ol 1| words 161 oxF7FF OXFFFF OXF7FF OxF800
4096 0x0000 - OxF000 -
01 O words 32| oxEFFF OXFFFF OXEFFF OxF000
Note: 1. The different BOOTSZ Fuse configurations are shown in Figure 154
Table 121. Read-While-Write Limit (Word Addresses)®)
Section Pages Address
Read-While-Write section (RWW) 480 0x0000 - OXEFFF
No Read-While-Write section (NRWW) 32 0xF000 - OxFFFF

Note: 1. For details about these two section, see “NRWW — No Read-While-Write Section” on
page 313 and “RWW — Read-While-Write Section” on page 313.

324 ATOOCANI28 AULO m——

7522C-AUTO-09/06

Table 122. Explanation of Different Variables Used in Figure 155 and the Mapping to

the Z-Pointer/RAMPZ®)

Corresponding
Variable Z-value Description®
Most significant bit in the program counter.
PCMSB 15 (The program counter is 16 bits PC[15:0])
Most significant bit which is used to address the
PAGEMSB 6 words within one page (128 words in a page
requires 7 bits PC [6:0]).
Bit in Z-register that is mapped to PCMSB.
ZPCMSB z16W Because Z0 is not used, the ZPCMSB equals
PCMSB + 1.
Bit in Z-register that is mapped to PAGEMSB.
ZPAGEMSB z7 Because Z0 is not used, the ZPAGEMSB
equals PAGEMSB + 1.
Program counter page address: Page select,
. (2)-
PCPAGE PC[15:7] 216727 for Page Erase and Page Write.
Program counter word address: Word select,
PCWORD PC[6:0] 2721 for filling temporary buffer (must be zero during
PAGE WRITE operation).
Notes: 1. The Z-register is only 16 bits wide. Bit 16 is located in the RAMPZ register in the I/O
map.
2. Z0: should be zero for all SPM commands, byte select for the (E)LPM instruction.
3. See “Addressing the Flash During Self-Programming” on page 318 for details about

the use of Z-pointer/RAMPZ during self-programming.

AIMEL

I)

325

ATMEL

Memory Programming

Program and Data The AT90CAN128 provides six Lock bits which can be left unprogrammed (“1”) or can
Memory Lock Bits be programmed (“0”) to obtain the additional features listed in Table 124. The Lock bits
can only be erased to “1” with the Chip Erase command.

Table 123. Lock Bit Byte®

Lock Bit Byte Bit No Description Default Value

7 - 1 (unprogrammed)

6 - 1 (unprogrammed)
BLB12 5 Boot Lock bit 1 (unprogrammed)
BLB11 4 Boot Lock bit 1 (unprogrammed)
BLB02 3 Boot Lock bit 1 (unprogrammed)
BLBO1 2 Boot Lock bit 1 (unprogrammed)
LB2 1 Lock bit 1 (unprogrammed)
LB1 0 Lock bit 1 (unprogrammed)

Note: 1. “1” means unprogrammed, “0” means programmed

Table 124. Lock Bit Protection Modes®®

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

Further programming of the Flash and EEPROM is disabled
2 1 0 in Parallel and Serial Programming mode. The Fuse bits are
locked in both Serial and Parallel Programming mode.®

Further programming and verification of the Flash and
EEPROM is disabled in Parallel and Serial Programming
mode. The Boot Lock bits and Fuse bits are locked in both
Serial and Parallel Programming mode."

BLBO Mode | BLB02 | BLBO1

No restrictions for SPM (Store Program Memory) or LPM
(Load Program Memory) accessing the Application section.

2 1 0 SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and
LPM executing from the Boot Loader section is not allowed
3 0 0 to read from the Application section. If Interrupt Vectors are
placed in the Boot Loader section, interrupts are disabled
while executing from the Application section.

LPM executing from the Boot Loader section is not allowed
to read from the Application section. If Interrupt Vectors are
placed in the Boot Loader section, interrupts are disabled
while executing from the Application section.

BLB1 Mode | BLB12 | BLB11

No restrictions for SPM or LPM accessing the Boot Loader
section.

326 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Table 124. Lock Bit Protection Modes?® (Continued)

Memory Lock Bits Protection Type

2 1 0 SPM is not allowed to write to the Boot Loader section.

SPM is not allowed to write to the Boot Loader section, and
LPM executing from the Application section is not allowed to
3 0 0 read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled
while executing from the Boot Loader section.

LPM executing from the Application section is not allowed to
read from the Boot Loader section. If Interrupt Vectors are
placed in the Application section, interrupts are disabled
while executing from the Boot Loader section.

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.
2. “1” means unprogrammed, “0” means programmed

Fuse Bits The AT90CAN128 has three Fuse bytes. Table 125, Table 126 and Table 127 describe
briefly the functionality of all the fuses and how they are mapped into the Fuse bytes.
Note that the fuses are read as logical zero, “0”, if they are programmed.

Table 125. Extended Fuse Byte

FuseExtended | Bit

Byte No | Description Default Value

- 7 - 1

- 6 - 1

- 5 - 1

- 4 - 1

BODLEVEL2® 3 Brown-out Detector trigger level 1 (unprogrammed)
BODLEVEL1® 2 Brown-out Detector trigger level 1 (unprogrammed)
BODLEVELOW 1 Brown-out Detector trigger level 1 (unprogrammed)
TAOSEL 0 (Reserved for factory tests) 1 (unprogrammed)

Notes: 1. See Table 21 on page 51 for BODLEVEL Fuse decoding.

Table 126. Fuse High Byte
FuseHigh | Bit

Byte No | Description Default Value
OCDEN® 7 | Enable OCD 1 (unprogrammed, OCD disabled)
JTAGEN® | 6 | Enable JTAG 0 (programmed, JTAG enabled)

Enable Serial Program and Data

@
SPIEN 5 Downloading 0 (programmed, SPI prog. enabled)
WDTON® | 4 | watchdog Timer always on 1 (unprogrammed)
EESAVE 3 EEPROM memory is preserved 1 (unprogrammed, EEPROM not

through the Chip Erase preserved)

AIMEL 321

7522C-AUTO-09/06 I ©

ATMEL

Table 126. Fuse High Byte (Continued)
FuseHigh | Bit
Byte No | Description Default Value
Select Boot Size
2
BOOTSZ1 2 (see Table 120 for details) 0 (programmed)
Select Boot Size
2
BOOTSZ0 L (see Table 120 for details) 0 (programmed)
BOOTRST 0 Select Reset Vector 1 (unprogrammed)
Note: 1. The SPIEN Fuse is not accessible in serial programming mode.
2. The default value of BOOTSZ1..0 results in maximum Boot Size. See Table 120 on
page 324 for details.
3. See “Watchdog Timer Control Register - WDTCR” on page 55 for details.
4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of
Lock bits and JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of
the clock system to be running in all sleep modes. This may increase the power
consumption.
5. If the JTAG interface is left unconnected, the JTAGEN fuse should if possible be dis-
abled. This to avoid static current at the TDO pin in the JTAG interface.
Table 127. Fuse Low Byte
FuseLow | Bit
Byte No | Description Default Value
CKDIV8® 7 | Divide clock by 8 0 (programmed)
CcKouT® 6 | Clock output 1 (unprogrammed)
SUT1 5 | Select start-up time 1 (unprogrammed)®
SUTO 4 | Select start-up time 0 (programmed)®
CKSEL3 3 | Select Clock source 0 (programmed)®
CKSEL2 2 | Select Clock source 0 (programmed)®
CKSEL1 1 | Select Clock source 1 (unprogrammed)®
CKSELO 0 | Select Clock source 0 (programmed)®
Note: 1. The default value of SUT1..0 results in maximum start-up time for the default clock
source. See Table 13 on page 40 for details.
2. The default setting of CKSEL3..0 results in internal RC Oscillator @ 8 MHz. See
Table 6 on page 36 for details.
3. The CKOUT Fuse allow the system clock to be output on Port PC7. See “Clock Out-
put Buffer” on page 41 for details.
4. See “System Clock Prescaler” on page 42 for details.
The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are
locked if Lock bitl (LB1) is programmed. Program the Fuse bits before programming the
Lock bits.
Latching of Fuses The fuse values are latched when the device enters programming mode and changes of

the fuse values will have no effect until the part leaves Programming mode. This does
not apply to the EESAVE Fuse which will take effect once it is programmed. The fuses
are also latched on Power-up in Normal mode.

28 ATI90CAN128 Auto

|
7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Signature Bytes All' Atmel microcontrollers have a three-byte signature code which identifies the device.
This code can be read in both serial and parallel mode, also when the device is locked.
The three bytes reside in a separate address space.
For the AT90CAN128 the signature bytes are:
1. 0x000: Ox1E (indicates manufactured by Atmel).
2. 0x001: 0x97 (indicates 128KB Flash memory).
3. 0x002: 0x81 (indicates AT90CAN128 device when 0x001 is 0x97).

Calibration Byte The AT90CAN128 has a byte calibration value for the internal RC Oscillator. This byte
resides in the high byte of address 0x000 in the signature address space. During reset,
this byte is automatically written into the OSCCAL Register to ensure correct frequency
of the calibrated RC Oscillator.

AIMEL 329

7522C-AUTO-09/06 I ©

ATMEL

Parallel Programming This section describes how to parallel program and verify Flash Program memory,
Overview EEPROM Data memory, Memory Lock bits, and Fuse bits in the AT90CAN128. Pulses
are assumed to be at least 250 ns unless otherwise noted.

Signal Names In this section, some pins of the AT90CAN128 are referenced by signal names describ-
ing their functionality during parallel programming, see Figure 156 and Table 128. Pins
not described in the following table are referenced by pin names.

The XA1/XAO0 pins determine the action executed when the XTALL1 pin is given a posi-
tive pulse. The bit coding is shown in Table 130.

When pulsing WR or OE, the command loaded determines the action executed. The dif-
ferent Commands are shown in Table 131.

Figure 156. Parallel Programming

RDY/BSY €«—

OE ——>|
WR ———>
BS1 ———
XAQD ——»
XAl ——>
PAGEL ———»
+12V ——»

BS2 ——

PD1

PD2

PD3

PD4

PDS5

PD6

PD7

RESET

PAO

XTAL1

GND

+2.7 - +5.5V

VCC
+2.7 - +5.5V

AVCC

PB7 - PBO [«—>» DATA

L

Pin Mapping
Table 128. Pin Name Mapping
Signal Name in
Programming Mode | Pin Name | I/O | Function
RDY/BSY PD1 o 0 Dev!ce is busy programming,
1: Device is ready for new command.
OE PD2 I Output Enable (Active low).
WR PD3 | Write Pulse (Active low).
Byte Select 1
BS1 PD4 ! (“0” selects low byte, “1” selects high byte).
XA0 PD5 I XTAL Action Bit 0
XAl PD6 I XTAL Action Bit 1
PAGEL PD7 I Program Memory and EEPROM data Page Load.
Byte Select 2
BS2 PAD l (“0” selects low byte, “1” selects 2'nd high byte).
DATA PB7-0 I/O | Bi-directional Data bus (Output when OE is low).

330 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Commands
Table 129. Pin Values Used to Enter Programming Mode
Pin Symbol Value
PAGEL Prog_enable[3] 0
XAl Prog_enable[2] 0
XAO0 Prog_enable[1] 0
BS1 Prog_enable[0] 0
Table 130. XAl and XAOQ Coding
XAl XAO0 Action when XTALL1 is Pulsed
0 0 Load Flash or EEPROM Address (High or low address byte
determined by BS1).
0 1 Load Data (High or Low data byte for Flash determined by BS1).
1 0 Load Command
1 1 No Action, Idle
Table 131. Command Byte Bit Coding
Command Byte Command Executed
1000 0000 Chip Erase
0100 0000 Write Fuse bits
0010 0000 Write Lock bits
0001 0000 Write Flash
0001 0001 Write EEPROM
0000 1000 Read Signature bytes and Calibration byte
0000 0100 Read Fuse and Lock bits
0000 0010 Read Flash
0000 0011 Read EEPROM
Parameters

Table 132. No. of Words in a Page and No. of Pages in the Flash

Flash Size
64K words (128K bytes)

Page Size | PCWORD | No.of Pages | PCPAGE | PCMSB
128 words PCI[6:0] 512 PC[15:7] 15

Table 133. No. of Words in a Page and No. of Pages in the EEPROM

EEPROM Size Page Size PCWORD No. of Pages PCPAGE EEAMSB
4K bytes 8 bytes EEA[2:0] 512 EEA[11:3] 11
AIMEL 331
7522C-AUTO-09/06 I ®

Parallel Programming

Enter Programming Mode

Considerations for
Efficient Programming

Chip Erase

Programming the Flash

ATMEL

The following algorithm puts the device in parallel programming mode:
1. Apply 4.5 - 5.5V between V¢ and GND.
2. Set RESET to “0” and toggle XTALL1 at least six times.

3. Setthe Prog_enable pins listed in Table 129 on page 331 to “0000” and wait at
least 100 ns.

4. Apply 11.5 - 12.5V to RESET. Any activity on Prog_enable pins within 100 ns
after +12V has been applied to RESET, will cause the device to fail entering pro-
gramming mode.

5. Wait at least 50 us before sending a new command.

The loaded command and address are retained in the device during programming. For
efficient programming, the following should be considered.

» The command needs only be loaded once when writing or reading multiple memory
locations.

» Skip writing the data value OxFF, that is the contents of the entire EEPROM (unless
the EESAVE Fuse is programmed) and Flash after a Chip Erase.

» Address high byte needs only be loaded before programming or reading a new 256
word window in Flash or 256 byte EEPROM. This consideration also applies to
Signature bytes reading.

The Chip Erase will erase the Flash and EEPROM® memories plus Lock bits. The Lock
bits are not reset until the program memory has been completely erased. The Fuse bits
are not changed. A Chip Erase must be performed before the Flash and/or EEPROM
are reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is
programmed.

Load Command “Chip Erase”

Set XAl, XAO0 to “10". This enables command loading.

Set BS1 to “0".

Set DATA to “1000 0000". This is the command for Chip Erase.

Give XTALL1 a positive pulse. This loads the command.

Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
Wait until RDY/BSY goes high before loading a new command.

o0k~ whRE

The Flash is organized in pages, see Table 132 on page 331. When programming the
Flash, the program data is latched into a page buffer. This allows one page of program
data to be programmed simultaneously. The following procedure describes how to pro-
gram the entire Flash memory:

A. Load Command “Write Flash”

1. Set XAl, XAO to “10". This enables command loading.

2. SetBS1to“0".

3. Set DATA to “0001 0000". This is the command for Write Flash.

4. Give XTALL1 a positive pulse. This loads the command.
B

. Load Address Low byte

332 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Set XAl, XAO0 to “00". This enables address loading.

Set BS1 to “0”. This selects low address.

Set DATA = Address low byte (0x00 - OXFF).

Give XTALL1 a positive pulse. This loads the address low byte.

1

2

3

4

C. Load Data Low Byte

1. Set XAl, XAO to “01". This enables data loading.

2. Set DATA = Data low byte (0x00 - OxFF).

3. Give XTAL1 a positive pulse. This loads the data byte.
D. Load Data High Byte

1. SetBS1to“l". This selects high data byte.

2. Set XAl, XAO0 to “01". This enables data loading.

3. Set DATA = Data high byte (0x00 - OxFF).

4. Give XTAL1 a positive pulse. This loads the data byte.
E
1
2

. Latch Data
Set BS1 to “1”. This selects high data byte.
Give PAGEL a positive pulse. This latches the data bytes. (See Figure 158 for
signal waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is
loaded.

While the lower bits in the address are mapped to words within the page, the higher bits
address the pages within the FLASH. This is illustrated in Figure 157 on page 334. Note
that if less than eight bits are required to address words in the page (pagesize < 256),
the most significant bit(s) in the address low byte are used to address the page when
performing a Page Write.

G. Load Address High byte

1. Set XAl, XAO to “00". This enables address loading.

2. SetBS1to “1". This selects high address.

3. Set DATA = Address high byte (0x00 - OxFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H

1

. Program Page

Give WR a negative pulse. This starts programming of the entire page of data.
RDY/BSYgoes low.

2. Wait until RDY/BSY goes high (See Figure 158 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1.Set XAl, XAO to “10". This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write sig-
nals are reset.

AIMEL 333

7522C-AUTO-09/06 I ©

RDY/BSY

RESET +12Vv

Programming the EEPROM

ATMEL

Figure 157. Addressing the Flash Which is Organized in Pages®¥

PCMSB PAGEMSB
PROGRAM
COUNTER PCPAGE PCWORD |
15 0
PAGE address WORD address
within the FLASH within a PAGE
PROGRAM MEMORY PAGE PCWORD [PAGEMSB:0]:
PAGE | INSTRUCTION WORD 00
\
! 01
\
! 02
\

< |

\ |

\ |

\ |

\ |

\ |

\ |

\ |

Vo Ly :

\ .

\ PAGEEND
\

Note: 1. PCPAGE and PCWORD are listed in Table 132 on page 331.
Figure 158. Programming the Flash Waveforms®

=

A
' N
A B C D E B C D E G H
X__oxi0 X AppR. Low X DaTA Low X DATA HIGH X xx X ADDR. Low X DATA Low X DATAHIGH X xx X ADDR. HiGHY XX
/ \ / \
A N \
_ /O /N /\
_/
-/

Note: 1. “XX"is don't care. The letters refer to the programming description above.

The EEPROM is organized in pages, see Table 133 on page 331. When programming
the EEPROM, the program data is latched into a page buffer. This allows one page of
data to be programmed simultaneously. The programming algorithm for the EEPROM
data memory is as follows (refer to “Programming the Flash” on page 332 for details on
Command, Address and Data loading):

1. A:Load Command “0001 0001".
2. G: Load Address High Byte (0x00 - OxFF).

334 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

B: Load Address Low Byte (0x00 - OXFF).
C: Load Data (0x00 - OXFF).
E: Latch data (give PAGEL a positive pulse).

: Repeat 3 through 5 until the entire buffer is filled.
: Program EEPROM page

Set BS1 to “0”".

Give WR a negative pulse. This starts programming of the EEPROM page.
RDY/BSY goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure
159 for signal waveforms).

NPT OB

Figure 159. Programming the EEPROM Waveforms

K

A G B C E B C E L
DATA X oxi1 XAoDR. HiGH X ADDR.LowX DATA X xx_ X ADDR.LowX pata X XX
xar —/ \
xA0 / ___/ \

Bst ____ / \
wa /N S _/ /\

WR —/
RDY/BSY \—/—
PAGEL / \ / \
Reading the Flash The algorithm for reading the Flash memory is as follows (refer to “Programming the

Flash” on page 332 for details on Command and Address loading):
1. A:Load Command “0000 0010".

2. G: Load Address High Byte (0x00 - OxFF).

3. B: Load Address Low Byte (0x00 - OxFF).
4

Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at
DATA.

Set BS1to “1". The Flash word high byte can now be read at DATA.
6. Set OE to “1".

o

AIMEL 335

7522C-AUTO-09/06 I ©

ATMEL

Reading the EEPROM The algorithm for reading the EEPROM memory is as follows (refer to “Programming the

Flash” on page 332 for details on Command and Address loading):
1. A:Load Command “0000 0011".

2. G: Load Address High Byte (0x00 - OXFF).

3. B: Load Address Low Byte (0x00 - OxFF).
4

Set OE to “0”, and BS1 to “0”". The EEPROM Data byte can now be read at
DATA.

5. Set OE to “1".

Programming the The algorithm for programming the Fuse Low bits is as follows (refer to “Programming
Fuse Low Bits the Flash” on page 332 for details on Command and Data loading):

1. A:Load Command “0100 0000".
2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. Give WR a negative pulse and wait for RDY/BSY to go high.

Programming the The algorithm for programming the Fuse High bits is as follows (refer to “Programming
Fuse High Bits the Flash” on page 332 for details on Command and Data loading):

1. A:Load Command “0100 0000".

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. SetBS1to“1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. SetBS1to “0”". This selects low data byte.

Programming the The algorithm for programming the Extended Fuse bits is as follows (refer to “Program-
Extended Fuse Bits ming the Flash” on page 332 for details on Command and Data loading):

336

1. A:Load Command “0100 0000".

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
3. SetBS1to“0” and BS2 to “1". This selects extended data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. SetBS2to “0". This selects low data byte.

Figure 160. Programming the FUSES Waveforms

Write Fuse Low byte Write Fuse high byte Write Extended Fuse byte
A c (—H A c /—H A c /—H
oata _ K_oao Y om X XX X oo X o X xx X oo ¥ o X XX
w0\ [\ [\
XA0
BS1 [\
BS2 /A
o /AR /S
WA _/ \/ _/
RDY/BSY _/ L/ _F

RESET +12V

OE

PAGEL

A TO0CA N 128 A Uit O

sy A\ TOOCAN128 Auto

Programming the Lock Bits

Reading the Fuse and
Lock Bits

Reading the Signature Bytes

Reading the Calibration Byte

7522C-AUTO-09/06

The algorithm for programming the Lock bits is as follows (refer to “Programming the
Flash” on page 332 for details on Command and Data loading):

1. A:Load Command “0010 0000".

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is pro-
grammed (LB1 and LB2 is programmed), it is not possible to program the Boot
Lock bits by any External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming
the Flash” on page 332 for details on Command loading):

1. A:Load Command “0000 0100".

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can
now be read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can
now be read at DATA (“0” means programmed).

4. Set OE to “0”, BS2to “1”, and BS1 to “0". The status fo the Extended Fuse bits
can now be read at DATA (“0” means programmed).

5. SetOE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be
read at DATA (“0” means programmed).

6. Set OE to “1”".

Figure 161. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

BS2 DATA

BS1
BS2

The algorithm for reading the Signature bytes is as follows (refer to “Programming the
Flash” on page 332 for details on Command and Address loading):

1. A:Load Command “0000 1000".

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS1 to “0". The selected Signature byte can now be read at DATA.
4. SetOEto*“l".

The algorithm for reading the Calibration byte is as follows (refer to “Programming the
Flash” on page 332 for details on Command and Address loading):

1. A:Load Command “0000 1000".

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.
4. SetOEto*“l".

Alm L 337

I)

SPI Serial Programming
Overview

Signal Names

ATMEL

This section describes how to serial program and verify Flash Program memory,
EEPROM Data memory, Memory Lock bits, and Fuse bits in the AT90CAN128.

Both the Flash and EEPROM memory arrays can be programmed using the serial SPI
bus while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI
(input) and MISO (output). After RESET is set low, the Programming Enable instruction
needs to be executed first before program/erase operations can be executed. NOTE, in
Table 134 on page 339, the pin mapping for SPI programming is listed. Not all parts use
the SPI pins dedicated for the internal SPI interface. Note that throughout the descrip-
tion about Serial downloading, MOSI and MISO are used to describe the serial data in
and serial data out respectively. For AT90CAN128 these pins are mapped to PDI (PEOQ)
and PDO (PE1).

Figure 162. Serial Programming and Verify®

+2.7 - +5.5V

vce
PDI ——>{ PEO 2.7 S5V
PDO «—— PE1 AvCC

SCK —»| PB1

— > XTALL

—»| RESET

I =

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock
source to the XTAL1 pin.

When programming the EEPROM, an auto-erase cycle is built into the self-timed pro-
gramming operation (in the Serial mode ONLY) and there is no need to first execute the
Chip Erase instruction. The Chip Erase operation turns the content of every memory
location in both the Program and EEPROM arrays into OxFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and
high periods for the serial clock (SCK) input are defined as follows:

Low: > 2 CPU clock cycles for f, < 12 MHz, 3 CPU clock cycles for fy > 12 MHz
High: > 2 CPU clock cycles for fy <12 MHz, 3 CPU clock cycles for fy = 12 MHz

338 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Pin Mapping

Parameters

SPI Serial Programming

7522C-AUTO-09/06

Table 134. Pin Mapping Serial Programming

Symbol Pins 110 Description
MOSI (PDI) PEO I Serial Data in
MISO (PDO) PE1 (0] Serial Data out

SCK PB1 | Serial Clock

The Flash parameters are given in Table 132 on page 331 and the EEPROM parame-
ters in Table 133 on page 331.

When writing serial data to the AT90CAN128, data is clocked on the rising edge of SCK.
When reading data from the AT90CAN128, data is clocked on the falling edge of SCK.

To program and verify the AT90CAN128 in the serial programming mode, the following
sequence is recommended (See four byte instruction formats in Table 136):

1.

Power-up sequence:

Apply power between V. and GND while RESET and SCK are set to “0”. In some
systems, the programmer can not guarantee that SCK is held low during power-up.
In this case, RESET must be given a positive pulse of at least two CPU clock cycles
duration after SCK has been set to “0”.

Wait for at least 20 ms and enable serial programming by sending the Programming
Enable serial instruction to pin MOSI.

The serial programming instructions will not work if the communication is out of syn-
chronization. When in sync. the second byte (0x53), will echo back when issuing the
third byte of the Programming Enable instruction. Whether the echo is correct or
not, all four bytes of the instruction must be transmitted. If the 0x53 did not echo
back, give RESET a positive pulse and issue a new Programming Enable
command.

The Flash is programmed one page at a time. The memory page is loaded one byte
at a time by supplying the 7 LSB of the address and data together with the Load
Program Memory Page instruction. To ensure correct loading of the page, the data
low byte must be loaded before data high byte is applied for a given address. The
Program Memory Page is stored by loading the Write Program Memory Page
instruction with the 9 MSB of the address. If polling is not used, the user must wait at
least typ rLasy before issuing the next page. (See Table 135.) Accessing the serial
programming interface before the Flash write operation completes can result in
incorrect programming.

The EEPROM array is programmed one byte at a time by supplying the address
and data together with the appropriate Write instruction. An EEPROM memory loca-
tion is first automatically erased before new data is written. If polling is not used, the
user must wait at least typ geprom PefoOre issuing the next byte. (See Table 135.) In
a chip erased device, no 0xFFs in the data file(s) need to be programmed.

Any memory location can be verified by using the Read instruction which returns the
content at the selected address at serial output MISO.

At the end of the programming session, RESET can be set high to commence nor-
mal operation.

Power-off sequence (if needed):
Set RESET to “1".
Turn V¢ power off.

Alm L 339

I)

Data Polling Flash

Data Polling EEPROM

ATMEL

When a page is being programmed into the Flash, reading an address location within
the page being programmed will give the value OxFF. At the time the device is ready for
a new page, the programmed value will read correctly. This is used to determine when
the next page can be written. Note that the entire page is written simultaneously and any
address within the page can be used for polling. Data polling of the Flash will not work
for the value OxXFF, so when programming this value, the user will have to wait for at
least typ g asy before programming the next page. As a chip-erased device contains
OxFF in all locations, programming of addresses that are meant to contain OxFF, can be
skipped. See Table 135 for typ r asn Value.

When a new byte has been written and is being programmed into EEPROM, reading the
address location being programmed will give the value OXFF. At the time the device is
ready for a new byte, the programmed value will read correctly. This is used to deter-
mine when the next byte can be written. This will not work for the value OxFF, but the
user should have the following in mind: As a chip-erased device contains OxFF in all
locations, programming of addresses that are meant to contain OxFF, can be skipped.
This does not apply if the EEPROM is re-programmed without chip erasing the device.
In this case, data polling cannot be used for the value OxFF, and the user will have to
wait at least typ zeprom Defore programming the next byte. See Table 135 for

twp_eeprom Value.

Table 135. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay
twp_ruse 4.5 ms
tWD_FL/-\SH 4.5 ms
two_EEPROM 9.0 ms
twp_erAsE 9.0ms

Figure 163. Serial Programming Waveforms
eomane /v XX
o /XX
sswwooengy [[T LT LT

R A N A S A N

LSB

D G G G SEA
D G G G S

LSB

340 ATOOCANI28 AULO m——

7522C-AUTO-09/06

Table 136. Serial Programming Instruction Set

Instruction Format
Instruction Byte 1 Byte 2 Byte 3 Byte4 Operation
Programming Enable Serial Programming after RESET goes
1010 1100 0101 0011 XXXX XXXX | XXXX XXXX
Enable low.
Chip Erase 1010 1100 | 100x xXxXXX | XXxXX xXXxX | xxxx xxxx | Chip Erase EEPROM and Flash.
Read Program 0010 H000 | aaaa aaaa | bbbb bbbb | 6000 6000 Read H (high or low) data o from Program
Memory memory at word address a:b.
Write H (high or low) data i to Program Memory
Load Program | page atword address b. Data low byte must be
Memory Page 0100 H000 | 000x xxxx | xbbb bbbb | 1iii iiii loaded before Data high byte is applied within the
same address.
Write Program . .
0100 1100 | aaaa aaaa | bxxx xxxx | xxxx xxxx | Write Program Memory Page at address a:b.
Memory Page
Read EEPROM 1010 0000 | 000x aaaa | bbbb bbbb | 6000 6006 Read data o from EEPROM memory at address
Memory ab.
\I\//IvtglrtsolnyPROM 1100 0000 | 000x aaaa | bbbb bbbb | iiii iiii | Write data i to EEPROM memory at address a:b.
Load EEPROM |Loaddataito EEPROM memory page buffer.
Memory Page 1100 0001 | 0000 0000 | 0000 Obbb | iiii iiii .
After data is loaded, program EEPROM page.
(page access)
Write EEPROM
Memory Page 1100 0010 | 00xx aaaa | bbbb b000 | xxxx xxxx | Write EEPROM page at address a:b.
(page access)
Read Lock bits.
Read Lock bits 0101 1000 | 0000 0000 | xXXxXX XXXX | Xxo0o0 oooo | “0"=programmed, “1” = unprogrammed.
See Table 123 on page 326 for details.
Write Lock bits 1010 1100 | 111 1144 idiid Write Lock bits. Set bits = “0” to program Lock
S T AL pits. See Table 123 on page 326 for details.
Estaed Signature 0011 0000 | 000x xxxx | xxxX xxXbb | ocooo oooo | Read Signhature Byte o at address b.
. | Setbits="0"to program, “1” to unprogram. See
Write Fuse Low bits | 1010 1100 | 1010 0000 | xxxx xxxx | iiii iiii Table 127 on page 328 for details.
. : | Setbits="0"to program, “1” to unprogram. See
Write Fuse High bits | 1010 1100 | 1010 1000 | xxxx xxxx | iiii iiii Table 126 on page 327 for details.
Write Extended 1010 1100 | 1010 0100 | Setbits ="0"to program, “1” to unprogram. See
Fuse Bits HAH OO AKX AL Table 125 on page 327 for details.
Read Fuse bits. “0” = programmed, “1” =
Read Fuse Low bits | 0101 0000 | 0000 0000 | XXxXX XXXX | oooo oooo | unprogrammed. See Table 127 on page 328 for
details.
Read Fuse High bits. “0” = pro-grammed, “1” =
Read Fuse High bits | 0101 1000 | 0000 1000 | XxXxXX XXXX | oooo oooo | unprogrammed. See Table 126 on page 327 for
details.

7522C-AUTO-09/06

AIMEL

I)

341

ATMEL

Table 136. Serial Programming Instruction Set (Continued)

Instruction Format

Instruction Byte 1 Byte 2 Byte 3 Byte4 Operation
Read Extended Read Extended Fuse bits. “0” = pro-grammed, “1”
. 0101 0000 | 0000 1000 | xXxXX XXXX | oooo oooo | =unprogrammed. See Table 125 on page 327 for

Fuse Bits :

details.
Estaed Calibration 0011 1000 | 000x xxxx | 0000 0000 | oooo oooo | Read Calibration Byte

If o =“1”, a programming operation is still busy.
Poll RDY/BSY 1111 0000 | 0000 0000 | xxxx xXxX | xxxx xxxo | Wait until this bit returns to “0” before applying

another command.

Note: a = address high bits
b = address low bits
H =0 - Low byte, 1 - High Byte

0 = data out
i =data in
x = don't care

342 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

JTAG Programming
Overview

Programming Specific JTAG
Instructions

7522C-AUTO-09/06

Programming through the JTAG interface requires control of the four JTAG specific
pins: TCK, TMS, TDI, and TDO. Control of the reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The
device is default shipped with the fuse programmed. In addition, the JTD bit in MCUCR
must be cleared. Alternatively, if the JTD bit is set, the external reset can be forced low.
Then, the JTD bit will be cleared after two chip clocks, and the JTAG pins are available
for programming. This provides a means of using the JTAG pins as normal port pins in
Running mode while still allowing In-System Programming via the JTAG interface. Note
that this technique can not be used when using the JTAG pins for Boundary-scan or On-
chip Debug. In these cases the JTAG pins must be dedicated for this purpose.

During programming the clock frequency of the TCK Input must be less than the maxi-
mum frequency of the chip. The System Clock Prescaler can not be used to divide the
TCK Clock Input into a sufficiently low frequency.

As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers.
The instruction register is 4-bit wide, supporting up to 16 instructions. The JTAG instruc-
tions useful for programming are listed below.

The OPCODE for each instruction is shown behind the instruction name in hex format.
The text describes which data register is selected as path between TDI and TDO for
each instruction.

The Run-Test/ldle state of the TAP controller is used to generate internal clocks. It can
also be used as an idle state between JTAG sequences. The state machine sequence
for changing the instruction word is shown in Figure 164.

AIMEL 343

I)

AVR_RESET (0xC)

PROG_ENABLE (0x4)

PROG_COMMANDS (0x5)

ATMEL

Figure 164. State Machine Sequence for Changing the Instruction Word

1 : Test-Logic-Reset M
0
OC; Run-Test/Idle L — Select-DR Scan ! P Select-IR Scan I
10 0
o : 1
Capture-DR —1 Capture-IR
0 0
R Shift-DR § \‘,‘ 0 Shift-IR :) 0
1 1
7777777777 1 . 1
Exit1-DR LREEEE L Exit1-IR
0 0
,,,,,,,,,,,,,,,,,, y
Pause-DR 0 Pause-IR D 0
1 1
777777777777777777 v
777777 0. Exite-DR 0 Exit2-IR
1 1
777777777777777777 A
Update-DR i€----! Update-IR |«
777777 1 o 1 0

The AVR specific public JTAG instruction for setting the AVR device in the Reset mode
or taking the device out from the Reset mode. The TAP controller is not reset by this
instruction. The one bit Reset Register is selected as data register. Note that the reset
will be active as long as there is a logic “one” in the Reset Chain. The output from this
chain is not latched.

The active states are:
« Shift-DR: The Reset Register is shifted by the TCK input.

The AVR specific public JTAG instruction for enabling programming via the JTAG port.
The 16-bit Programming Enable Register is selected as data register. The active states
are the following:

« Shift-DR: The programming enable signature is shifted into the data register.

» Update-DR: The programming enable signature is compared to the correct value,
and Programming mode is entered if the signature is valid.

The AVR specific public JTAG instruction for entering programming commands via the
JTAG port. The 15-bit Programming Command Register is selected as data register.
The active states are the following:

344 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

PROG_PAGELOAD (0x6)

PROG_PAGEREAD (0x7)

Data Registers

Reset Register

7522C-AUTO-09/06

» Capture-DR: The result of the previous command is loaded into the data register.

» Shift-DR: The data register is shifted by the TCK input, shifting out the result of the
previous command and shifting in the new command.

» Update-DR: The programming command is applied to the Flash inputs

* Run-Test/Idle: One clock cycle is generated, executing the applied command (not
always required, see Table 137 below).

The AVR specific public JTAG instruction to directly load the Flash data page via the
JTAG port. An 8-bit Flash Data Byte Register is selected as the data register. This is
physically the 8 LSBs of the Programming Command Register. The active states are the
following:

» Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

» Update-DR: The content of the Flash Data Byte Register is copied into a temporary
register. A write sequence is initiated that within 11 TCK cycles loads the content of
the temporary register into the Flash page buffer. The AVR automatically alternates
between writing the low and the high byte for each new Update-DR state, starting
with the low byte for the first Update-DR encountered after entering the
PROG_PAGELOAD command. The Program Counter is pre-incremented before
writing the low byte, except for the first written byte. This ensures that the first data
is written to the address set up by PROG_COMMANDS, and loading the last
location in the page buffer does not make the program counter increment into the
next page.

The AVR specific public JTAG instruction to directly capture the Flash content via the

JTAG port. An 8-bit Flash Data Byte Register is selected as the data register. This is

physically the 8 LSBs of the Programming Command Register. The active states are the

following:

» Capture-DR: The content of the selected Flash byte is captured into the Flash Data
Byte Register. The AVR automatically alternates between reading the low and the
high byte for each new Capture-DR state, starting with the low byte for the first
Capture-DR encountered after entering the PROG_PAGEREAD command. The
Program Counter is post-incremented after reading each high byte, including the
first read byte. This ensures that the first data is captured from the first address set
up by PROG_COMMANDS, and reading the last location in the page makes the
program counter increment into the next page.

« Shift-DR: The Flash Data Byte Register is shifted by the TCK input.

The data registers are selected by the JTAG instruction registers described in section
“Programming Specific JTAG Instructions” on page 343. The data registers relevant for
programming operations are:

* Reset Register

* Programming Enable Register

* Programming Command Register
* Flash Data Byte Register

The Reset Register is a Test Data Register used to reset the part during programming. It
is required to reset the part before entering Programming mode.

A high value in the Reset Register corresponds to pulling the external reset low. The
part is reset as long as there is a high value present in the Reset Register. Depending
on the Fuse settings for the clock options, the part will remain reset for a Reset Time-out

Alm L 345

I)

Programming Enable Register

Programming Command
Register

ATMEL

period (refer to “Clock Sources” on page 36) after releasing the Reset Register. The out-
put from this data register is not latched, so the reset will take place immediately, as
shown in Figure 144 on page 293.

The Programming Enable Register is a 16-bit register. The contents of this register is
compared to the programming enable signature, binary code
0b1010 0011 0111 0000. When the contents of the register is equal to the program-
ming enable signature, programming via the JTAG port is enabled. The register is reset
to 0 on Power-on Reset, and should always be reset when leaving Programming mode.

Figure 165. Programming Enable Register

TDI

I

0xA370

= D Q—» Programming Enable

-

ClockDR & PROG_ENABLE

> - >0

TDO

The Programming Command Register is a 15-bit register. This register is used to seri-
ally shift in programming commands, and to serially shift out the result of the previous
command, if any. The JTAG Programming Instruction Set is shown in Table 137. The
state sequence when shifting in the programming commands is illustrated in Figure 167.

346 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

Figure 166. Programming Command Register

TDI

I

OmwOoOIH®

\ 4

>—<4>»0~0®nmMmMmIMO O >

A

F ¥

v

Flash
EEPROM
Fuses
Lock Bits

TDO

ATMEL

347

Table 137. JTAG Programming Instruction

ATMEL

Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don’t care

Instruction TDI Sequence TDO Sequence Notes

la. Chip Erase 0100011_10000000 XXXXXXX_XXXXXXXX
0110001_10000000 XXXXXXX_XXXXXXXX
0110011_10000000 XXXXXXX_XXXXXXXX
0110011_10000000 XXXXXXX_XXXXXXXX

1b. Poll for Chip Erase Complete 0110011_10000000 XXXXXOX_ XXXXXXXX @

2a. Enter Flash Write 0100011_00010000 XXXXXXX_XXXXXXXX

2b. Load Address High Byte 0000111 _aaaaaaaa XXXXXXX_XXXXXXXX ©)

2c. Load Address Low Byte 0000011_bbbbbbbb XXXXXXX_XXXXXXXX

2d. Load Data Low Byte 0010011 _iiiiiiii XXXXXXX_XXXXXXXX

2e. Load Data High Byte 0010112 _iiiiiiii XXXXXXX_XXXXXXXX

2f. Latch Data 0110111_00000000 XHXXXXXK_ XXXXKXXX @
1110111_00000000 XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX

2g. Write Flash Page 0110111_00000000 XHXXXXXK_ XXXXKXXX @
0110101_00000000 XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX
0110111_00000000 XXXXXXX_XXXXXXXX

2h. Poll for Page Write Complete 0110111_00000000 XXXXXOX_ XXXXXXXX @

3a. Enter Flash Read 0100011_00000010 XXXXXXK_XXXXXXXX

3b. Load Address High Byte 0000111 _aaaaaaaa XXXXXXX_XXXXXXXX ©)

3c. Load Address Low Byte 0000011_bbbbbbbb XXXXXXX_XXXXXXXX

3d. Read Data Low and High Byte 0110010_00000000 XXXXXXX_XXXXXXXX
0110110_00000000 XXXXXXX_00000000 Low byte
0110111_00000000 XXXXXXX_00000000 High byte

4a. Enter EEPROM Write

0100011_00010001

XXXXXXX_XXXXXXXX

4b. Load Address High Byte

0000111_aaaaaaaa

XXXXXXX_XXXXXXXX

©)

4c. Load Address Low Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

4d. Load Data Byte

XXXXXXX_XXXXXXXX

4e. Latch Data

0110111_00000000
1110111_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XUXXXXXX_XXXXXXXX

()]

4f. Write EEPROM Page

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

()]

4g. Poll for Page Write Complete

0110011_00000000

XXXXXOX_XXXXXXXX

@

5a. Enter EEPROM Read

0100011_00000011

XXXXXXX_XXXXXXXX

5b. Load Address High Byte

0000111_aaaaaaaa

XXXXXXX_XXXXXXXX

©)

348 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Table 137. JTAG Programming Instruction (Continued)
Set (Continued) a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don't care

Instruction

TDI Sequence

TDO Sequence

Notes

5c. Load Address Low Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

5d. Read Data Byte

0110011_bbbbbbbb
0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_00000000

6a. Enter Fuse Write

0100011_01000000

XXXXXXX _XXXXXXXX

6b. Load Data Low Byte®

XXXXXXX_XXXXXXXX

(©)

6¢. Write Fuse Extended Byte

0111011_00000000
0111001_00000000
0111011_00000000
0111011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

()]

6d. Poll for Fuse Write Complete

0110111 00000000

XXXXXOX_XXXXXXXX

@

6e. Load Data Low Byte(”

XXXXXXX_XXXXXXXX

(©)

6f. Write Fuse High Byte

0110111 00000000
0110101_00000000
0110111_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

()]

6g. Poll for Fuse Write Complete

0110111 00000000

XXXXXOX_XXXXXXXX

@

6h. Load Data Low Byte(”

XXXXXXX_XXXXXXXX

(©)

6i. Write Fuse Low Byte

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

()]

6j. Poll for Fuse Write Complete

0110011_00000000

XXXXXOX_XXXXXXXX

@

7a. Enter Lock Bit Write

0100011_00100000

XXXXXXX _XXXXXXXX

7b. Load Data Byte®®

XXXXXXX_XXXXXXXX

4)

7c. Write Lock Bits

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XUXXXXXX_XXXXXXXX
XUXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

()]

7d. Poll for Lock Bit Write complete

0110011_00000000

XXXXXOX_XXXXXXXX

@

8a. Enter Fuse/Lock Bit Read

0100011_00000100

XXXXXXX_XXXXXXXX

8b. Read Extended Fuse Byte(®

0111010_00000000
0111011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

8c. Read Fuse High Byte(”

0111110_00000000
0111111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

8d. Read Fuse Low Byte®

0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

8e. Read Lock Bits®

0110110_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XX000000

®)

7522C-AUTO-09/06

AIMEL

I)

349

ATMEL

Table 137. JTAG Programming Instruction (Continued)
Set (Continued) a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don't care

Instruction

TDI Sequence

TDO Sequence

Notes

8f. Read Fuses and Lock Bits

0111010_00000000
0111110_00000000
0110010_00000000
0110110_00000000
0110111_00000000

XXXXXXX_XXXXXXXX

XXXXXXX_00000000
XXXXXXX_00000000
XXXXXXX_00000000
XXXXXXX_00000000

(5)

Fuse Ext. byte
Fuse High byte
Fuse Low byte
Lock bits

9a. Enter Signature Byte Read

0100011_00001000

XXXXXXX_XXXXXXXX

9b. Load Address Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

9c. Read Signature Byte

0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

10a. Enter Calibration Byte Read

0100011_00001000

XXXXXXX_XXXXXXXX

10b. Load Address Byte

0000011_bbbbbbbb

XXXXXXX_XXXXXXXX

10c. Read Calibration Byte

0110110_00000000
0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

11a. Load No Operation Command

0100011_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is

normally the case).
Repeat until o = “1".

©CoOoNOO~WN

Set bits to “0” to program the corresponding Fuse, “1” to unprogram the Fuse.

Set bits to “0” to program the corresponding Lock bit, “1” to leave the Lock bit unchanged.
“0” = programmed, “1” = unprogrammed.
The bit mapping for Fuses Extended byte is listed in Table 125 on page 327
The bit mapping for Fuses High byte is listed in Table 126 on page 327

The bit mapping for Fuses Low byte is listed in Table 127 on page 328

The bit mapping for Lock bits byte is listed in Table 123 on page 326

10 Address bits exceeding PCMSB and EEAMSB (Table 132 and Table 133) are don't care

11. All TDI and TDO sequnces are represented by binary digits (Ob...).

350 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 167. State Machine Sequence for Changing/Reading the Data Word

1 ! Test-Logic-Reset 77
0
0 C Run-Test/ldle | ~ Select-DR Scan |+ i Select-IR Scan r1
0 1o
1 1 - -----------------
— Capture-DR sl Capture-IR
0 0
»| Shift-DR D 0 --i-pi ShiftlR | 0
1 : 1
4 . A
. 1 Lo . i1
P Exit1-DR e Exit1-IR
0 ! 0
Pause-DR D o i PauselR | 0]
1 3 1
0 Exit2-DR - 0. Exit2-IR
1 P
Update-DR ! Update-R ie----!
J 1 0 YT
Flash Data Byte Register The Flash Data Byte Register provides an efficient way to load the entire Flash page

buffer before executing Page Write, or to read out/verify the content of the Flash. A state
machine sets up the control signals to the Flash and senses the strobe signals from the
Flash, thus only the data words need to be shifted in/out.

The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit tempo-
rary register. During page load, the Update-DR state copies the content of the scan
chain over to the temporary register and initiates a write sequence that within 11 TCK
cycles loads the content of the temporary register into the Flash page buffer. The AVR
automatically alternates between writing the low and the high byte for each new Update-
DR state, starting with the low byte for the first Update-DR encountered after entering
the PROG_PAGELOAD command. The Program Counter is pre-incremented before
writing the low byte, except for the first written byte. This ensures that the first data is
written to the address set up by PROG_COMMANDS, and loading the last location in
the page buffer does not make the Program Counter increment into the next page.

During Page Read, the content of the selected Flash byte is captured into the Flash
Data Byte Register during the Capture-DR state. The AVR automatically alternates
between reading the low and the high byte for each new Capture-DR state, starting with
the low byte for the first Capture-DR encountered after entering the PROG_PAGEREAD
command. The Program Counter is post-incremented after reading each high byte,

Alm L 351

7522C-AUTO-09/06 I ©

Programming Algorithm

Entering Programming Mode

Leaving Programming Mode

Performing Chip Erase

ATMEL

including the first read byte. This ensures that the first data is captured from the first
address set up by PROG_COMMANDS, and reading the last location in the page
makes the program counter increment into the next page.

Figure 168. Flash Data Byte Register

__ STROBES

<

A 4

State
Machine
ADDRESS

v

TDI

Flash
EEPROM
Fuses
Lock Bits

A
\ 4

> —4>0

TDO

The state machine controlling the Flash Data Byte Register is clocked by TCK. During
normal operation in which eight bits are shifted for each Flash byte, the clock cycles
needed to navigate through the TAP controller automatically feeds the state machine for
the Flash Data Byte Register with sufficient number of clock pulses to complete its oper-
ation transparently for the user. However, if too few bits are shifted between each
Update-DR state during page load, the TAP controller should stay in the Run-Test/Idle
state for some TCK cycles to ensure that there are at least 11 TCK cycles between each
Update-DR state.

All references below of type “1a”, “1b”, and so on, refer to Table 137.

=

Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

Enter instruction PROG_ENABLE and shift 0b1010_0011_0111 0000 in the Pro-
gramming Enable Register.

Enter JTAG instruction PROG_COMMANDS.
Disable all programming instructions by using no operation instruction 11a.

Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the
programming Enable Register.

Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

Enter JTAG instruction PROG_COMMANDS.
Start Chip Erase using programming instruction la.

Poll for Chip Erase complete using programming instruction 1b, or wait for
twirn ce (refer to Table 151 on page 373).

352 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Programming the Flash 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load address High byte using programming instruction 2b.

4. Load address Low byte using programming instruction 2c.

5. Load data using programming instructions 2d, 2e and 2f.

6. Repeat steps 4 and 5 for all instruction words in the page.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for t,y, gy
(referto).

9. Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD

instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash write using programming instruction 2a.

3. Load the page address using programming instructions 2b and 2c. PCWORD
(refer to Table 132 on page 331) is used to address within one page and must be
written as 0.

4. Enter JTAG instruction PROG_PAGELOAD.

5. Load the entire page by shifting in all instruction words in the page byte-by-byte,
starting with the LSB of the first instruction in the page and ending with the MSB
of the last instruction in the page. Use Update-DR to copy the contents of the
Flash Data Byte Register into the Flash page location and to auto-increment the
Program Counter before each new word.

6. Enter JTAG instruction PROG_COMMANDS.

7. Write the page using programming instruction 2g.

8. Poll for Flash write complete using programming instruction 2h, or wait for ty, gy
(refer to Table 151 on page 373).

9. Repeat steps 3 to 8 until all data have been programmed.

Reading the Flash 1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load address using programming instructions 3b and 3c.

4. Read data using programming instruction 3d.

5. Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD

instruction:

1. Enter JTAG instruction PROG_COMMANDS.

2. Enable Flash read using programming instruction 3a.

3. Load the page address using programming instructions 3b and 3c. PCWORD
(refer to Table 132 on page 331) is used to address within one page and must be
written as 0.

4. Enter JTAG instruction PROG_PAGEREAD.

5. Read the entire page (or Flash) by shifting out all instruction words in the page

7522C-AUTO-09/06

(or Flash), starting with the LSB of the first instruction in the page (Flash) and
ending with the MSB of the last instruction in the page (Flash). The Capture-DR
state both captures the data from the Flash, and also auto-increments the pro-

Alm L 353

I)

ATMEL

gram counter after each word is read. Note that Capture-DR comes before the
shift-DR state. Hence, the first byte which is shifted out contains valid data.

6. Enter JTAG instruction PROG_COMMANDS.
7. Repeat steps 3 to 6 until all data have been read.
Programming the EEPROM 1. Enter JTAG instruction PROG_COMMANDS.
2. Enable EEPROM write using programming instruction 4a.
3. Load address High byte using programming instruction 4b.
4. Load address Low byte using programming instruction 4c.
5. Load data using programming instructions 4d and 4e.
6. Repeat steps 4 and 5 for all data bytes in the page.
7. Write the data using programming instruction 4f.
8. Poll for EEPROM write complete using programming instruction 4g, or wait for
twiry (refer to Table 151 on page 373).
9. Repeat steps 3 to 8 until all data have been programmed.
Note that the PROG_PAGELOAD instruction can not be used when programming the
EEPROM.
Reading the EEPROM 1. Enter JTAG instruction PROG_COMMANDS.
2. Enable EEPROM read using programming instruction 5a.
3. Load address using programming instructions 5b and 5c.
4. Read data using programming instruction 5d.
5. Repeat steps 3 and 4 until all data have been read.
Note that the PROG_PAGEREAD instruction can not be used when reading the
EEPROM.
Programming the Fuses 1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Fuse write using programming instruction 6a.
3. Load data high byte using programming instructions 6b. A bit value of “0” will
program the corresponding fuse, a “1” will unprogram the fuse.
4. Write Fuse High byte using programming instruction 6c.
5. Poll for Fuse write complete using programming instruction 6d, or wait for tyy, gy
(refer to Table 151 on page 373).
6. Load data low byte using programming instructions 6e. A “0” will program the
fuse, a “1” will unprogram the fuse.
7. Write Fuse low byte using programming instruction 6f.
8. Poll for Fuse write complete using programming instruction 6g, or wait for ty, gy
(refer to Table 151 on page 373).
Programming the Lock Bits 1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Lock bit write using programming instruction 7a.
3. Load data using programming instructions 7b. A bit value of “0” will program the
corresponding lock bit, a “1” will leave the lock bit unchanged.
4. Write Lock bits using programming instruction 7c.
5. Poll for Lock bit write complete using programming instruction 7d, or wait for

twiry (refer to Table 151 on page 373).

354 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Reading the Fuses and
Lock Bits

Reading the Signature Bytes

Reading the Calibration Byte

7522C-AUTO-09/06

S

Enter JTAG instruction PROG_COMMANDS.
Enable Fuse/Lock bit read using programming instruction 8a.

To read all Fuses and Lock bits, use programming instruction 8f.
To only read Extended Fuse byte, use programming instruction 8b.
To only read Fuse High byte, use programming instruction 8c.

To only read Fuse Low byte, use programming instruction 8d.

To only read Lock bits, use programming instruction 8e.

Enter JTAG instruction PROG_COMMANDS.

Enable Signature byte read using programming instruction 9a.
Load address 0x00 using programming instruction 9b.

Read first signature byte using programming instruction 9c.

Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second
and third signature bytes, respectively.

Enter JTAG instruction PROG_COMMANDS.

Enable Calibration byte read using programming instruction 10a.
Load address 0x00 using programming instruction 10b.

Read the calibration byte using programming instruction 10c.

AIMEL

I)

355

ATMEL

356 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Electrical Characteristics®

Absolute Maximum Ratings*

Operating Temperature

Storage Temperature

Voltage on any Pin except RESET

with respect to Ground
Voltage on RESET with respect to Ground....— 0.5V to +13.0V
Voltage on V¢ with respect to Ground

DC Current per I/O Pin
DC Current V¢ and GND Pins

........ —40°C to +125°C

........ —65°C to +150°C

..... — 0.5V t0 Ve +0.5V

............. —0.5Vto 6.0V

*NOTICE:

Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect

device reliability.

DC Characteristics

TA =-40°C to +125°C, V. = 2.7V to 5.5V (unless otherwise noted)

7522C-AUTO-09/06

I)

Symbol | Parameter Condition Min. Typ. Max. Units
Except XTAL1 and o)
Vi Input Low Voltage RESET pins -05 0.2 Vcc \%
XTALL1 pin - External o)
Vi1 Input Low Voltage Clock Selected -05 0.1 Vcc \%
Vo Input Low Voltage RESET pin -05 0.2Vec® \%
. Except XTAL1 and @
V4 Input High Voltage RESET pins 0.6 Vcc Vce + 0.5 \%
. XTALL1 pin - External @
ViH1 Input High Voltage Clock Selected 0.7 Vcc Vce + 0.5 \%
V2 Input High Voltage RESET pin 0.85 Vce @ Vee + 0.5 \%
Vv Output Low Voltage @ loL =18 MA, Ve = 5V 0.7 v
oL (Ports A,B,C, D, E,F, G) | Ig =8 mA, Ve = 3V 0.5
Vv Output High Voltage @ lon = =20 MA, Ve =5V 4.2 v
OoH (Ports A,B,C, D, E,F, G) | Igy =—10 mA, V¢ = 3V 2.4
| Input Leakage Ve = 5.5V, pin low 10 A
IL Current I/O Pin (absolute value) ‘ H
| Input Leakage Ve = 5.5V, pin high 10 A
IH Current I/O Pin (absolute value) : H
Rrst Reset Pull-up Resistor 30 100 kQ
Rpu I/0 Pin Pull-up Resistor 20 50 kQ
AIMEL 357

ATMEL

TA = -40°C to +125°C, V¢ = 2.7V to 5.5V (unless otherwise noted) (Continued)

Symbol | Parameter Condition Min. Typ. Max. Units
8 MHz, Vi =5V 25 mA
Power Supply Current | 16 MHz, Ve =5V 40 mA
Active Mode 4 MHz, Ve = 3V 6 mA
8 MHz, Vo =3V 11 mA
8 MHz, Vo =5V 13 mA
| Power Supply Current | 16 MHz, Ve =5V 25 mA
cc
ldle Mode 4 MHz, V¢ = 3V 4 mA
8 MHz, Vi = 3V 7 mA
WDT enabled, Vi =5V 15 350 HA
Power Supp|y Current WDT disabled, VCC =5V 2 300 IJA
Power-down Mode WDT enabled, Ve = 3V 6 200 A
WDT disabled, V¢ = 3V 1 150 A
Analog Comparator Vee =5V
Vacio Input Offset Voltage Vi, = Veol2 8.0 20 mv
Analog Comparator Vee =5V
lacik Input Leakage Current Vin = Vec/2 - 100 100 nA
taciD Analog Comparator Vee =2.7V 10 5.5V 170 ns
Propagation Delay
Common Mode Vcc/2
Note: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can sink more than the test conditions (18 mA at V.- = 5V, 8 mA at V. = 3V) under steady state

358

conditions (non-transient), the following must be observed:

All Packages:

1] The sum of all IOL, for all ports, should not exceed 400 mA.

2] The sum of all IOL, for ports AO - A7, G2, C3 - C7 should not exceed 300 mA.

3] The sum of all IOL, for ports CO - C2, GO - G1, DO - D7, XTAL2 should not exceed 150 mA.

4] The sum of all IOL, for ports BO - B7, G3 - G4, EO - E7 should not exceed 150 mA.

5] The sum of all IOL, for ports FO - F7, should not exceed 200 mA.

If 15, exceeds the test condition, V5, may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

Although each I/O port can source more than the test conditions (-20 mA at V¢ = 5V, -10 mA at V. = 3V) under steady
state conditions (non-transient), the following must be observed:

All Packages:

1] The sum of all lo, for all ports, should not exceed -400 mA.

2] The sum of all Iy, for ports AO - A7, G2, C3 - C7 should not exceed -300 mA.

3] The sum of all 15, for ports CO - C2, GO - G1, DO - D7, XTALZ2 should not exceed 1-50 mA.

4] The sum of all 15, for ports BO - B7, G3 - G4, EO - E7 should not exceed -150 mA.

5] The sum of all Iy, for ports FO - F7, should not exceed -200 mA.

If 1oy exceeds the test condition, Vo, may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

A TO0CA N 128 A Uit O

sy A\ TOOCAN128 Auto

External Clock Drive Characteristics

Figure 169. External Clock Drive Waveforms

terex
teien —* N *— tereL
« terex >
* teree >

Table 138. External Clock Drive
Vee=2.7-55V | Vec=4.5-55V
Symbol | Parameter Min. Max. Min. Max. Units
l/tc o | Oscillator Frequency 0 8 0 16 MHz
teLcL Clock Period 125 62.5 ns
tehex High Time 50 25 ns
tcLex Low Time 50 25 ns
tcLcH Rise Time 1.6 0.5 us
tcheL Fall Time 1.6 0.5 us
: K
AIMEL 359

7522C-AUTO-09/06

I)

ATMEL

Maximum Speed vs. V¢

Maximum frequency is depending on V. As shown in Figure 170., the Maximum Fre-
quency vs. V¢ curve is linear between 2.7V < V. < 4.5V. To calculate the maximum
frequency at a given voltage in this interval, use this equation:

Frequency = ae (V-VxXx)+Fy

To calculate required voltage for a given frequency, use this equation:
Voltage = b e (F—-Fy)+Vx

Table 139. Constants used to calculate maximum speed vs. V¢

Voltage and Frequency range a b VX Fy

2.7 <VCC <4.50r8<Frequency <16 8/1.8 1.8/8 2.7 8

At 3 Volt, this gives: Frequency = 1i8 ¢ (3-2,7)+8 = 19,33
Thus, when V¢ = 3V, maximum frequency will be 9.33 MHz.
At 8 MHz this gives: Voltage = %3 e (8-8)+2,7=27

Thus, a maximum frequency of 8 MHz requires V¢ = 2.7V.

Figure 170. Maximum Frequency vs. V¢, AT90CAN128

Frequency

A

16 MHz _

8 MHz _|

Safe Operating Area

N, Voltage
>

2.7V 4.5V 5.5V

360 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Two-wire Serial Interface Characteristics

Table 140 describes the requirements for devices connected to the Two-wire Serial Bus.
The AT90CAN128 Two-wire Serial Interface meets or exceeds these requirements

under the noted conditions.

Timing symbols refer to Figure 171.

Table 140. Two-wire Serial Bus Requirements (Preliminary)

Symbol | Parameter Condition Min Max Units
Vi Input Low-voltage -05 0.3 Vce \
Viu Input High-voltage 0.7 Vcc Vce + 0.5 \%
Vi Hysteresis of Schmitt Trigger Inputs 0.05 Vce @ - \%
Vo @ Output Low-voltage 3 mA sink current 0 0.4 %
t,® Rise Time for both SDA and SCL 20 2—3)(()2.)le 300 ns
e Output Fall Time from V,umin 10V} max 10 pF < C,, < 400 pF @ 20 E)?z')lcb 250 ns
tgp® Spikes Suppressed by Input Filter 0 50 @ ns
l; Input Current each 1/0 Pin 0.1V <V;<0.9Vc -10 10 HA
c® Capacitance for each 1/O Pin - 10 pF
fscL SCL Clock Frequency fo @ > max(16fgc,, 250kHz) © 0 400 kHz
fscL <100 kHz Vee =04V 1000ns
SR Q
3mA C,
Rp Value of Pull-up resistor
fscL > 100 kHz Vee 0,4V 300ns
SR Q
3mA C,
] N fscL <100 kHz 4.0 - us
tip-sTA Hold Time (repeated) START Condition
' fsoL > 100 kHz 0.6 - us
fsoL <100 kHz ® 4.7 - Hs
tow Low Period of the SCL Clock
fseL > 100 kHz () 1.3 - Hs
fscL <100 kHz 4.0 - Us
thicH High period of the SCL clock
fscL > 100 kHz 0.6 - us
. Set-up time for a repeated START fscL <100 kHz 4.7 - Hs
SUSTA | condition fseL > 100 kHz 0.6 - us
fscL <100 kHz 0 3.45 ps
thp:paT Data hold time
fscL > 100 kHz 0 0.9 s
fscL <100 kHz 250 - ns
tsu.par Data setup time
fscL > 100 kHz 100 - ns
— ATTEL 361

7522C-AUTO-09/06 I ©

ATMEL

Table 140. Two-wire Serial Bus Requirements (Continued)(Preliminary)

Symbol | Parameter Condition Min Max Units
fscL <100 kHz 4.0 - us
tsu-sto Setup time for STOP condition
' fsoL > 100 kHz 0.6 - us
Bus free time between a STOP and
fsur START condition fsc <100 kHz 4.7 - HS

Notes:
Required only for fg¢, > 100 kHz.

1
2
3. C, = capacitance of one bus line in pF.
4. fcx = CPU clock frequency

5

In AT90OCAN128, this parameter is characterized and not 100% tested.

. This requirement applies to all AT9OCAN128 Two-wire Serial Interface operation. Other devices connected to the Two-wire
Serial Bus need only obey the general fg, requirement.

6. The actual low period generated by the AT90CAN128 Two-wire Serial Interface is (1/fgc, - 2/fck), thus fox must be greater
than 6 MHz for the low time requirement to be strictly met at fg, = 100 kHz.

7. The actual low period generated by the AT90CAN128 Two-wire Serial Interface is (1/fgc, - 2/fck), thus the low time require-
ment will not be strictly met for fgo > 308 kHz when fex = 8 MHz. Still, AT90OCAN128 devices connected to the bus may
communicate at full speed (400 kHz) with other AT90OCAN128 devices, as well as any other device with a proper t, o,y accep-

tance margin.

Figure 171. Two-wire Serial Bus Timing

tHIGH

— «Tof
tLow
SCL

SUSTA |¢sj¢— | thp;sTA

fLow

tHD;DAT ¢ 51 ¢

tsu;pAT

SDA

,,,,,,,

| tgur

362 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

SPI Timing Characteristics
See Figure 172 and Figure 173 for details.

Table 141. SPI Timing Parameters

Description Mode Min. Typ. Max.
1 SCK period Master See Table 75
2 SCK high/low Master 50% duty cycle
3 Rise/Fall time Master 3.6
4 Setup Master 10
5 Hold Master 10
6 Out to SCK Master 0.5« t ns
7 SCK to out Master 10
8 SCK to out high Master 10
9 SS low to out Slave 15
10 SCK period Slave 4oty
11 SCK high/low @ Slave 2ty
12 Rise/Fall time Slave 1.6 us
13 Setup Slave 10
14 Hold Slave tex
15 SCK to out Slave 15
16 SCK to SS high Slave 20 "
17 SS high to tri-state Slave 10
18 SS low to SCK Slave 2ty

Notes: 1. In SPIProgramming mode the minimum SCK high/low period is:
- 2t ¢ for fek < 12 MHz
- 3t oL for fek >12 MHz

Figure 172. SPI Interface Timing Requirements (Master Mode)

SS

SCK /
(CPOL = 0) /

ScK
(CPOL = 1)

MISO
(Data Input)

LSB

MOSI

(Data Output) X MSB

>< LSB /l

AIMEL 363

7522C-AUTO-09/06 I ©

ATMEL

Figure 173. SPI Interface Timing Requirements (Slave Mode)

_ 18

s \ g

—

SCK ZZ

(CPOL =0)

SCK
(CPOL = 1)

MOSI
(Data Input)

N
—

A

17

MISO #

(Data Output) X MSB

LSB

CAN Physical Layer Characteristics

Only pads dedicated to the CAN communication belong to the physical layer.

Table : CAN Physical Layer Characteristics

Parameter

Condition

Min.

Units

1 TxCAN output delay

Vce=2.7V
Load=20 pF
VoVor=Vecl2

Vce=4.5V
Load=20 pF
Vou/Vow=Vecl2

5.3

2 RxCAN input delay

Vce=2.7V
VilVi=Vecl2

9+ ferko®

Vce=4.5V
VidVi=Vecl2

72+1/ ferk 0@

ns

Notes:

2. Metastable immunity flip-flop.

364

1. Characteristics for CAN physical layer have not yet been finalized.

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

ADC Characteristics

Table 142. ADC Characteristics, Single Ended Channels
Symbol | Parameter Condition Min® Typ® Max® Units
Resolution Single Ended Conversion 10 Bits
Single Ended Conversion
Vgere = 4V, Vecc = 4V 15 3 LSB
Absolute accuracy ADC clock = 200 kHz
(Included INL, DNL, - -
Quantization Error, Gain and Single Ended Conversion
Offset Error) Vrer = 4V, Ve = 4V
ADC clock = 200 kHz 15 3 LSB
Noise Reduction Mode
Single Ended Conversion
Integral Non-linearity (INL) Vgzer =4V, Vece = 4V 0.5 15 LSB
ADC clock = 200 kHz
Single Ended Conversion
Differential Non-linearity (DNL) | Vgge =4V, Vcc = 4V 0.3 15 LSB
ADC clock = 200 kHz
Single Ended Conversion
Gain Error Vgere = 4V, Vce = 4V -3 0 +3 LSB
ADC clock = 200 kHz
Single Ended Conversion
Offset Error Vger = 4V, Vcc = 4V -25 0 +25 LSB
ADC clock = 200 kHz
Clock Frequency Free Running Conversion 50 200 kHz
Conversion Time Free Running Conversion 65 260 [VES
AVce | Analog Supply Voltage Vee—0.33 Ve +03@ \%
VR&Er External Reference Voltage 2.0 AVcce \Y
Vin Input voltage GND VR&er
VinT Internal Voltage Reference 2.4 2.56 2.7 \
RRrer Reference Input Resistance 26 kQ
Rain Analog Input Resistance 100 MQ
Note: 1. Values are guidelines only.
2. Minimum for AV is 2.7 V.
3. Maximum for AV is 5.5V
AIMEL

7522C-AUTO-09/06

I)

ATMEL

Table 143. ADC Characteristics, Differential Channels

Symbol | Parameter Condition Min® Typ® Max® Units
Differential Conversion 8 Bits
Gain = 1x or 10x
Resolution
Differential Conversion 7 Bits
Gain = 200x
Gain = 1x, 10x
Absolute accuracy (8bits) Vgere = 4V, Vcc =5V 1 4 LSB
ADC clock =50 - 200 kHz
Gain = 200x
Absolute accuracy (7bits) Vger =4V, Vee = 5V 1 3 LSB
ADC clock =50 - 200 kHz
Integral Non-linearity (INL) Gain = 1x, 10x or 200x
(Accuracy after Calibration Vgere = 4V, Vcc =5V 0.5 3 LSB
for Offset and Gain Error) ADC clock =50 - 200 kHz
Gain Error Gain = 1x, 10x or 200x -4 0 +4 LSB
Gain = x1, x10 0.5 3 LSB
DNL
Gain = x200 1.0 3 LSB
Gain = 1x, 10x or 200x
Offset Error Vger = 4V, Vcc =5V -3 0 +3 LSB
ADC clock =50 - 200 kHz
Clock Frequency Free Running Conversion 50 200 kHz
Conversion Time Free Running Conversion 65 260 us
AV Analog Supply Voltage Vee—-0.3@ Vee +0.3@ \%
VR&Er External Reference Voltage | Differential Conversion 2.0 AVce - 0.5 \Y
Vin Input voltage Differential Conversion 0 AV¢c \Y,
Voier Input Differential Voltage —Vgzee/Gain +Vgee/Gain \Y,
ADC Convertion Output 511 511 LSB
ViNT Internal Voltage Reference 2.4 2.56 2.7 \
RRrer Reference Input Resistance 26 kQ
Ran Analog Input Resistance 100 MQ

Note: 1. Values are guidelines only.
2. Minimum for AV is 2.7 V.
3. Maximum for AV is 5.5 V

366 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

External Data Memory Characteristics

Table 144. External Data Memory Characteristics, V¢ = 4.5 - 5.5 Volts, No Wait-state

8 MHz Oscillator Variable Oscillator
Symbol Parameter Min. Max. Min. Max. Unit
0 Ute oL Oscillator Frequency 0.0 16 MHz
1|t ALE Pulse Width 115 1.0 te o — 10 ns
2 tavLL Address Valid A to ALE Low 57.5 0.5t -5W ns
Ad_dress Hold After ALE Low, 5 5
3a | tyaxst write access ns
Address Hold after ALE Low,
3b | tyax o read access 5 5 ns
4 tavLLe Address Valid C to ALE Low 57.5 0.5t -5W ns
5 tavrL Address Valid to RD Low 115 1.0t — 10 ns
6 tavwiL Address Valid to WR Low 115 1.0ty o — 10 ns
7 tL L ALE Low to WR Low 475 67.5 0.5tg o —15@ 05tqc +5@ | ns
8 tLLRL ALE Low to RD Low 475 67.5 0.5tg o —15@ 05tqc +5@ | ns
9 tovRH Data Setup to RD High 40 40 ns
10 | tgipv Read Low to Data Valid 75 1.0 tg . — 50 ns
11 | tgupx Data Hold After RD High 0 0 ns
12 | tpepu RD Pulse Width 115 1.0 te o — 10 ns
13 | towL Data Setup to WR Low 425 0.5t —20@ ns
14 | twhpx Data Hold After WR High 115 1.0tg . — 10 ns
15 | towwn Data Valid to WR High 125 1.0tc oL ns
16 | twuwn WR Pulse Width 115 1.0 to o — 10 ns
Notes: 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1.
2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1.
AIMEL 367

7522C-AUTO-09/06

I)

ATMEL

Table 145. External Data Memory Characteristics, V. = 4.5 - 5.5 Volts, 1 Cycle Wait-state

8 MHz Oscillator

Variable Oscillator

Symbol Parameter Min. Max. Min. Max. Unit
0 Lt ol Oscillator Frequency 0.0 16 MHz
10 | tgpy Read Low to Data Valid 200 2.0 tg . — 50 ns
12 | trire RD Pulse Width 240 2.0 te o — 10 ns
15 | toywh Data Valid to WR High 240 2.0tc oL ns
16 | twiwn WR Pulse Width 240 2.0 te o — 10 ns
Table 146. External Data Memory Characteristics, V¢ = 4.5 - 5.5 Volts, SRWn1 = 1, SRWn0 =0
8 MHz Oscillator Variable Oscillator
Symbol Parameter Min. Max. Min. Max. Unit
0 Ute oL Oscillator Frequency 0.0 16 MHz
10 | tripy Read Low to Data Valid 325 3.0tg oL — 50 ns
12 | tpipu RD Pulse Width 365 3.0t o — 10 ns
15 | toywh Data Valid to WR High 375 3.0tg oL ns
16 | tyuwm WR Pulse Width 365 3.0t o — 10 ns
Table 147. External Data Memory Characteristics, V- = 4.5 - 5.5 Volts, SRWnl =1, SRWn0 =1
8 MHz Oscillator Variable Oscillator
Symbol Parameter Min. Max. Min. Max. Unit
0 Lt ol Oscillator Frequency 0.0 16 MHz
10 | tgipy Read Low to Data Valid 200 3.0 tg . — 50 ns
12 | trire RD Pulse Width 365 3.0t o — 10 ns
14 | twhpx Data Hold After WR High 240 2.0 tg . — 10 ns
15 | toywh Data Valid to WR High 375 3.0tc oL ns
16 | twwn WR Pulse Width 365 3.0t o — 10 ns
368 ATI0CANI128 AULO m——————

7522C-AUTO-09/06

Table 148. External Data Memory Characteristics, V- = 2.7 - 5.5 Volts, No Wait-state

4 MHz Oscillator Variable Oscillator
Symbol Parameter Min. Max. Min. Max. Unit
0 Lt ol Oscillator Frequency 0.0 8 MHz
1 th ALE Pulse Width 235 teicl — 15 ns
2 | ta Address Valid A to ALE Low 115 0.5t —10® ns
Ad_dress Hold After ALE Low, 5 5
3a | tyax st write access ns
Address Hold after ALE Low,
3b | tyax o read access ° ° ns
4 | taic Address Valid C to ALE Low 115 0.5tcc —10W ns
5 tavRL Address Valid to RD Low 235 1.0tg e —15 ns
6 tavwi Address Valid to WR Low 235 1.0tg e —15 ns
7 | tow ALE Low to WR Low 115 130 0.5t c,—10@ | 051t +5@ | ns
8 | tur ALE Low to RD Low 115 130 05tec—10@ | 05ty +5@ | ns
9 tovrH Data Setup to RD High 45 45 ns
10 | tgpy Read Low to Data Valid 190 1.0tg ¢ —60 ns
11 | trupx Data Hold After RD High 0 0 ns
12 | trire RD Pulse Width 235 1.0 tg o — 15 ns
13 | toww Data Setup to WR Low 105 0.5t —20@ ns
14 | twhpx Data Hold After WR High 235 1.0tg e —15 ns
15 | toywh Data Valid to WR High 250 1.0t oL ns
16 | tyuwm WR Pulse Width 235 1.0 te o — 15 ns
Notes: 1. This assumes 50% clock duty cycle. The half period is actually the high time of the external clock, XTAL1.
2. This assumes 50% clock duty cycle. The half period is actually the low time of the external clock, XTAL1.
AIMEL 369

7522C-AUTO-09/06

I)

Table 149. External Data Memory Characteristics, Vo = 2.7 - 5.5 Volts, SRWnl1 =0, SRWn0 =1

ATMEL

4 MHz Oscillator

Variable Oscillator

Symbol Parameter Min. Max. Min. Max. Unit
0 Lt ol Oscillator Frequency 0.0 8 MHz
10 | tgpy Read Low to Data Valid 440 2.0 tg c — 60 ns
12 | trire RD Pulse Width 485 2.0te o — 15 ns
15 | toywh Data Valid to WR High 500 2.0tc oL ns
16 | twiwn WR Pulse Width 485 2.0te - 15 ns
Table 150. External Data Memory Characteristics, V¢ = 2.7 - 5.5 Volts, SRWn1 = 1, SRWn0 =0
4 MHz Oscillator Variable Oscillator
Symbol Parameter Min. Max. Min. Max. Unit
0 Ute oL Oscillator Frequency 0.0 8 MHz
10 | tripy Read Low to Data Valid 690 3.0tg oL — 60 ns
12 | tpipu RD Pulse Width 735 3.0te o — 15 ns
15 | toywh Data Valid to WR High 750 3.0tg oL ns
16 | tyuwm WR Pulse Width 735 3.0 te o — 15 ns
Table 151. External Data Memory Characteristics, Vo = 2.7 - 5.5 Volts, SRWnl1 =1, SRWn0 =1
4 MHz Oscillator Variable Oscillator
Symbol Parameter Min. Max. Min. Max. Unit
0 Lt ol Oscillator Frequency 0.0 8 MHz
10 | tgpy Read Low to Data Valid 690 3.0 tg . — 60 ns
12 | trire RD Pulse Width 735 3.0 tg o — 15 ns
14 | twhpx Data Hold After WR High 485 2.0t — 15 ns
15 | toywh Data Valid to WR High 750 3.0tc oL ns
16 | twwn WR Pulse Width 735 3.0t — 15 ns
370 ATI90CANI128 AULO m——————————

7522C-AUTO-09/06

T4

0)

T3

0, SRWnO

T2

T1

Figure 174. External Memory Timing (SRWn1l

sy A\ TOOCAN128 Auto

Address

peay

14

15

Data
16

Data

3

13
>

o

10

ALE

System Clock (CLKcpy)

(Address

Addres

Prév. data

DA7:0

:O)
D

DA7:0 (XMBK

T5

1)

T4

0, SRWnO

T2 T3

T1

Figure 175. External Memory Timing (SRWn1l

System Clock (CLK:pyy)

peay

14

1 Data
16

Address

3

>

1

o

3a,

Data

10

ALE

2
> |<>

(Address

Prev. data

DA7:0

:O)

DA7:0 (XMBK

371

7522C-AUTO-09/06

AIMEL

(G

1, SRWnO = 0)

Figure 176. External Memory Timing (SRWn1

SIM pesy
<
©o -
=
.
wn
[
@
< i) o
= S| w © ©
= 3 ol||l % o
S al = <
<) -
[od
=
o
-
“““““ - BED - -
" @ N
o Ko
8 af
~ o
= 4 © m ™
~| | B o
=] =]
< <
-
—
=
= <
3 I
IS o°
= =
\\\\\\\\\\\\ 1~~~ —~""1""~"""1" """
a a
—_ w) o @ = o
> p 2 S
o N_ © N = I o
% < a X
e s
e~ S
o e
O ~
<
£ a
1]
v
>
%]

=1)®

1, SRWnO

Figure 177. External Memory Timing (SRWn1

. T4 T5 T6 T7 |
\ |
/—\—/—\—/—\—/—\—/_
d
|
|
[
|
|
1

SIM peay
<
—
SHa
9]
(0]
ef © .
° © © po
S| Al « °|l s N
< a -
o
-
RELG T
@ ?
o
34 s
oy ¢
g e e
NI =]]
T
g 2
g g
© o°
wwwwwwwwwwwww vm R AH#\\\\ e
o a
w oo} =} o = [a]
4 0 = = x
< ~ < Il
< a N4
o
=
3
e
~
<
[a)

T1 T2
System Clock (CLK:py) _/__/_\
1
4
—

1. The ALE pulse in the last period (T4-T7) is only present if the next instruction

Note:

accesses the RAM (internal or external).

A TO0CA N 128 A Uit O

372

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Parallel Programming Characteristics

XTAL1

BS1

PAGEL

DATA

XA0

XA1

7522C-AUTO-09/06

Figure 178. Parallel Programming Timing, Including some General Timing
Requirements

T wi
XTALL SN .
ovxH txLDx
Data & Contol T
(DATA, XA0/1, BS1, BS2) S
tsvPH tpLex | tBvwL twiex
PAGEL torpL .
— bwviwH -
WR _teowe |
WLRL
o e S
RDY/BSY
> twWiLRH

Figure 179. Parallel Programming Timing, Loading Sequence with Timing
Requirements®

LOAD ADDRESS LOAD DATA LOAD DATA LOAD DATA LOAD ADDRESS
(LOW BYTE) (LOW BYTE) (HIGH BYTE) (LOW BYTE)
bpH

) IxixH , F Ny tpLxH m
B S

X ADDRO (Low Byte) >< DATA (Low Byte) >< DATA (High Byte) >< ADDRL1 (Low Byte)

Note: 1. The timing requirements shown in Figure 178 (i.e., tpyxp. txpxL, @nd ty, px) also apply
to loading operation.

AIMEL 373

I)

ATMEL

Figure 180. Parallel Programming Timing, Reading Sequence (within the Same Page)
with Timing Requirements®

LOAD ADDRESS READ DATA READ DATA LOAD ADDRESS
(LOW BYTE) (LOW BYTE) (HIGH BYTE) (LOW BYTE)
— —

oL

-
XTAL1

BS1

tBVDV

toLpbv
B

tOHDZ
-~

DATA —< ADDRO (Low Byte) DATA (Low Byte) DATA (High Byte) >L< ADDRI (Low Byte)

XAO

XAL

Note: 1. The timing requirements shown in Figure 178 (i.e., toyxn, txnxL, and ty px) also apply
to reading operation.

Table 152. Parallel Programming Characteristics, V¢ = 5V = 10%

Symbol Parameter Min. Typ. Max. Units
Vpp Programming Enable Voltage 11.5 12.5 \%
Ipp Programming Enable Current 250 UA
tovxH Data and Control Valid before XTAL1 High 67 ns
tyLxH XTAL1 Low to XTAL1 High 200 ns
ty XL XTAL1 Pulse Width High 150 ns
ty px Data and Control Hold after XTAL1 Low 67 ns
by LWL XTAL1 Low to WR Low 0 ns
txLPH XTAL1 Low to PAGEL high 0 ns
toLxH PAGEL low to XTAL1 high 150 ns
tevPH BS1 Valid before PAGEL High 67 ns
toHpL PAGEL Pulse Width High 150 ns
to1 X BS1 Hold after PAGEL Low 67 ns
twLex BS2/1 Hold after WR Low 67 ns
toLwL PAGEL Low to WR Low 67 ns
tavwL BS1 Valid to WR Low 67 ns
twiLwH WR Pulse Width Low 150 ns
tWLRL WR Low to RDY/BSY Low 0 1 us
twLRH WR Low to RDY/BSY High® 3.7 5 ms
twirH CE WR Low to RDY/BSY High for Chip Erase(® 7.5 10 ms
tyLoL XTAL1 Low to OE Low 0 ns

374 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

7522C-AUTO-09/06

Table 152. Parallel Programming Characteristics, V¢ = 5V = 10% (Continued)

Symbol Parameter Min. Typ. Max. Units
tevpv BS1 Valid to DATA valid 0 250 ns
toLpy OE Low to DATA Valid 250 ns
toHDZ OE High to DATA Tri-stated 250 ns

Notes: 1. ty rpis valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock
bits commands.
2. twirH_ceis valid for the Chip Erase command.

AIMEL 375

I)

ATMEL

376 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

AT90CAN128 Typical

Characteristics

Active Supply Current

7522C-AUTO-09/06

Icc (mA)

The following charts show typical behavior. These figures are not tested during
manufacturing. All current consumption measurements are performed with all I/O
pins configured as inputs and with internal pull-ups enabled. A sine wave generator
with rail-to-rail output is used as clock source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage,
operating frequency, loading of I/O pins, switching rate of I/O pins, code executed
and ambient temperature. The dominating factors are operating voltage and
frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as
C *Vc*f where C| = load capacitance, V. = operating voltage and f = average
switching frequency of 1/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not
guaranteed to function properly at frequencies higher than the ordering code
indicates.

The difference between current consumption in Power-down mode with Watchdog
Timer enabled and Power-down mode with Watchdog Timer disabled represents the
differential current drawn by the Watchdog Timer.

Figure 181. Active Supply Current vs. Frequency (0.1 - 1.0 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY (25°C, 0.1 - 1 MHz)

3
2,5 A
4
, A
A\ —&—550V
—a—5,00V
15 —A—4,50V
’ —— 3,30V
—=- 3,00V
! —a—270v
14 / A
//
0,5 %K
0 T T T T T T
0 0,1 0,2 0,3 04 0,5 0,6 0,7 0,8 0,9 1

Frequency (MHz)

AIMEL 377

I)

ATMEL

Figure 182. Active Supply Current vs. Frequency (1 - 16 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY (25°C, 1 - 16 MHz)

40
35 -
30
25 ——5,50V
— =500V
g 20 —a— 4,50V
< ——3,30V
ke —8-3,00V
15 —A—2,70V
10 -
5 4
0
0
Frequency (MHz)
Figure 183. Active Supply Current vs. Vcc (Internal RC Oscillator 8 MHz)
ACTIVE SUPPLY CURRENT vs. Vcc (Internal RC Oscillator 8 MHz)
25
20 - |
_ 15 ——125°C
g = 85°C
5 —&—25°C
10 —m—-40°C
5
0 ; ; ;
25 3 3,5 4 45 5 5,5

Vee (V)

378 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Figure 184. Active Supply Current vs. Vcc (Internal RC Oscillator 1 MHz)

ACTIVE SUPPLY CURRENT vs. Vcc (Internal RC Oscillator 1 MHz)

4,5

— k/“ ——125°C
T 25 .
IS —a—85°C
8 / —&—25°C

2 — —>—-40°C
1,5
1
0,5
0 ‘ ‘ ‘ ‘
2,5 3 35 4 45 5 55
Vcee (V)

Figure 185. Active Supply Current vs. Vcc (32 kHz Watch Crystal)

ACTIVE SUPPLY CURRENT vs. Vcc (32 kHz Watch Crystal)

140

120 - (

100 A

80

——25°C

Icc (UA)

60 —

40

20

2,5 3 35 4 4,5 5 55
Vee (V)

AIMEL 379

7522C-AUTO-09/06 I ©

ATMEL

Idle Supply Current Figure 186. Idle Supply Current vs. Frequency (0.1 - 1.0 MHz)

IDLE SUPPLY CURRENT vs. FREQUENCY (25°C, 0.1 - 1 MHz)

1,6
4
14 /
1,2 /.
3
1 / ——5,50V
— —&—5,00V
£ 0,8 —A—4,50V
5 ——3,30V
38 _—1 -=-300v
0,6 - ?i ——2,70V
0.4 / /
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Frequency (MHz)
Figure 187. Idle Supply Current vs. Frequency (1 - 16 MHz)
IDLE SUPPLY CURRENT vs. FREQUENCY (25°C, 1 - 16 MHz)
25
20 v Pl
//‘
. — 550V
. —=—5,00V
2 —
£ —A—4,50V
3 ——3,30V
10 -8-3,00V
——2,70V
5 ,
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 1 2 3 4 5 6 7 8 9 0 M 12 13 14 15 16 17
Frequency (MHz)

380 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 188. Idle Supply Current vs. Vcc (Internal RC Oscillator 8 MHz)

IDLE SUPPLY CURRENT vs. Vcc (Internal RC Oscillator 8 MHz)

10 ///ﬂ
e

8 - ——125°C
—a—85°C
—4—25°C

—-40°C

Icc (mA)

2,5 3 3,5 4 4,5 5 55
Vee (V)

Figure 189. Idle Supply Current vs. Vcc (Internal RC Oscillator 1 MHz)

IDLE SUPPLY CURRENT vs. Vcc (Internal RC Oscillator 1 MHz)

——125%
-=-85°C
—+—25°C
08 ——-40°C

Icc (MmA)

04 -

0,2 1

AIMEL 381

7522C-AUTO-09/06 I ©

ATMEL

Figure 190. Idle Supply Current vs. Vcc (32 kHz Watch Crystal)

IDLE SUPPLY CURRENT vs. Vcc (32 KHz Watch Crystal)

60

50

40
/>

/// D
20 /

Icc (UA)
w
o

2,5 3 3,5 4 4,5 5 55
Vcee (V)

Power-down Supply

Current
Figure 191. Power-down Supply Current vs. Vcc (Watchdog Timer Disabled)
POWER-DOWN SUPPLY CURRENT vs. Vcc (Watchdog Timer Disabled)
50
4
40 - /
R 30 | ——125°C
5 / = 85°C
8 —425°C
20 —%—-40°C
10
._.—/.—__/-—//k/d
0 * —x & : i — —
25 3 35 4 45 5 55
Vee (V)
322 ATOIOCANI28 AUTO

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 192. Power-down Supply Current vs. Vcc (Watchdog Timer Enabled)

POWER-DOWN SUPPLY CURRENT vs. Vcc (Watchdog Timer Enabled)

45 | / e 125°C
40

——85°C

35 | / —4—25°C
30 4 —>—-40°C

Icc (uA)

2,5 3 3,5 4 45 5 55
Vcee (V)

Power-save Supply

Current
Figure 193. Power-save Supply Current vs. Vcc (Watchdog Timer Disabled)

POWER-SAVE SUPPLY CURRENT vs. Vcc (Watchdog Timer Disabled)

25

22,5

20 A

17,5

—-25°C

Icc (uA)
N
(4]

Vcee (V)

AIMEL 383

7522C-AUTO-09/06 I ©

ATMEL

Standby Supply Current Figure 194. Power-save Supply Current vs. Vcc (25°C, Watchdog Timer Disabled)

STANDBY SUPPLY CURRENT vs. Vcc (25°C, Watchdog Timer Disabled)

Icc (mA)
o

// / ——6 MHZ Xtal
—a—4 MHZ Res
—4—2 MHZ Xtal
— q

—o—2 MHZ Res

0,04
0,02
0 : : :
25 3 35 4 45 5 55
Vee (V)
Pin Pull-up Figure 195. 1/0 Pin Pull-up Resistor Current vs. Input Voltage (Vcc = 5V)

I/0 PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE (Vcc = 5V)

0 /
-20
40
-60
_ ——125°C
< -=-85°C
S 801 —a-25°C
— ——-40°C
-100
-120
140
-160 + -
0 1 2 3 4 5 6
Vio (V)
384 /A T O O C A N 128 /A U T O s

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 196. 1/0 Pin Pull-up Resistor Current vs. Input Voltage (Vcc = 2.7V)

1/0 PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE (Vcc = 2.7V)

0 -

-10 4

-20

-30 1
2 40 | ——125°C
2 —=-85°C
2 50 —&—25°C
2. —x—-40°C

-60 4

-70

| 2
-80 4
-90 ; ; ; ;
0 0,5 1 15 2 2,5 3
Vio (V)
Figure 197. Reset Pull-up Resistor Current vs. Reset Pin Voltage (Vcc = 5V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE (Vcc = 5V)

< ——125°C
\E’ —&—-85°C
ﬁ —A—25°C
x —*—-40°C

-120 - T T

0 1 2 3 4 5 6
V ResET (V)

AIMEL 385

7522C-AUTO-09/06 I ©

ATMEL

Figure 198. Reset Pull-up Resistor Current vs. Reset Pin Voltage (Vcc = 2.7V)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE (Vcc = 2.7V)

< ——125°C
% —&-85°C
@ —&—25°C
x —*—-40°C
-60
70 : : : :
0 05 1 15 2 25 3
V RESET (V)
Pin Driver Strength Figure 199. I/O Pin Output Voltage vs. Source Current (Vcc = 5V)
/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT (Vcc = 5V)
5
49

. E=Set
46 \\\‘\‘\\‘\‘

— 3 ——125°C

‘>£ 45 | —=-85°C

; ‘ —A—25°C
44 —>—-40°C

0 5 IOH1(omA) 15 20
386 ATOOCANI28 AULO m——

7522C-AUTO-09/06

AT90CAN128 Auto

Figure 200. 1/0 Pin Output Voltage vs. Soure Current (Vcc = 3.0V)

1/0 PIN OUTPUT VOLTAGE vs. SOURCE CURRENT (Vcc = 3.0V)

1//
2 4
. ——125°C
i’ —=-85°C
; —A—25°C
—%—-40°C
1 4
0 ; ;
20 -15 -10 5 0
1 oH (MA)
Figure 201. 1/0 Pin Output Voltage vs. Sink Current (Vcc = 5V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT (Vcc = 5V)
1
0,9
0,8
0,7
4
. 08 ——125°C
> °
= 05 —=—-85°C
(]
>

| /‘j;././‘/‘/‘/ﬂ A5
0.4 —>—-40°C

1oL (mA)

AIMEL 387

7522C-AUTO-09/06 I ©

ATMEL

Figure 202. 1/0 Pin Output Voltage vs. Sink Current (Vcc = 3.0V)

1/0 PIN OUTPUT VOLTAGE vs. SINK CURRENT (Vcc = 3.0V)

1,5
1,25
. 3
_ ——125°C
% 0.75 —a—-85°C
; , —4—25°C
/ ——-40°C
05 | /
0,25
0
0 5 10 15 20
loL (mA)
BOD Thresholds and
Analog Comparator
Offset Figure 203. BOD Thresholds vs. Temperature (BOD level is 4.1V)

BOD THRESHOLDS vs. TEMPERATURE (BOD level is 4.1V)

44
42
— —— ‘;—_.
s 4
% —e—Rising Vcc
g —a— Falling Vcc
E 38
3,6
3,4 - - - - - -
-60 -40 -20 0 20 40 60 80 100 120 140
Temp (°C)
388 AT90CAN128 Auto m———

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 204. BOD Thresholds vs. Temperature (BOD level is 2.7V)

BOD THRESHOLDS vs. TEMPERATURE (BOD level is 2.7V)

3
2,8 1
| o —i -
g 2,6
2 —e—Rising Vce
é —a—Falling Vcc
£
F 24
2,2
2 ; ; ; ; ; ;
-60 -40 -20 0 20 40 60 80 100 120 140
Temp (°C)
Figure 205. Bandgap Voltage vs. Operating Voltage
BANDGAP VOLTAGE vs. OPERATING VOLTAGE
1,2

1,19 4

1,18 4

——125°C
—=—85°C

'\ —a—25°C

114] —*—-40°C

Bandgap Voltage (V)
@

1,11 4

1,1 T T
25 3 3,5 4 4,5 5 55
Vcee (V)

AIMEL 389

7522C-AUTO-09/06 I ©

ATMEL

Figure 206. Analog Comparator Offset vs. Common Mode Voltage (Vcc = 5V)

ANALOG COMPARATOR OFFSET vs. COMMON MODE VOLTAGE (Vce = 5V)

12,0E-3
10,0E-3 - 4
k\<>\._’¢——<>_¢_/k/'/ll
— "\n——.\./—ll_"_/"—"/'
S 8,0E-3 - \
Qo Y A r//_‘
8 S a—— —h—
S 60E-3 - ¥ —e125°C
2 < % -=-85°C
o —4—25°C
S 40E-3 —x—-40°C
@©
®
Q.
§
8 20E3-
000,0E+0
-2,0E-3 ; ; ; ; ;
0 0,5 1 15 2 2,5 3 35 4 45 5 55
Common Voltage Mode (V)
Internal Oscillator Speed
Figure 207. Watchdog Oscillator Frequency vs. Operating Voltage
WATCHDOG OSCILLATOR FREQUENCY vs. VCC
1400
1350 -
1300 - \
///l
o —————
= W‘//’)
o / o
g 1150 —=—85°C
z -— —&—25°C
= o,
£ 1100 - -40C
[
1050 -
1000
950
900 ; ; ; ;
2,5 3 35 4 4,5 5 55

Vce (V)

390 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 208. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

8,8
8,6 -
8,4
8,2
/I'\T ——27V
2 8- =40V
E —A—5,5V
78
7,6
7,4
7.2 ; ; ; ; ; ;
-60 -40 20 0 20 40 60 80 100
Temp (°C)
Figure 209. Calibrated 8 MHz RC Oscillator Frequency vs. Operating Voltage
CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. VCC
10
9,5 1
9 4
8,5 * * L g f
= M = - = - ——125°C
= . A " - —=—85°C
< 8 —k & * o
Q 3 ——25°C
o —%—-40°C
75
7 4
6,5
6 ; ; ;
2,5 3 35 4 4,5 5 55

Vcee (V)

AIMEL 391

7522C-AUTO-09/06 I ©

ATMEL

Figure 210. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

/:

13 Y
12 / ——125°C
| —=—85°C

Frc (MHz)

——25°C
10 —x—-40°C
9 i
8 4
7 4
6
5 1/
4} ; ; ; ; ; ;
0 16 32 48 64 80 96 112 128
OSCCAL Value
Current Consumption of
Peripheral Units
Figure 211. Brownout Detector Current vs. Operating Voltage
BROWNOUT DETECTOR CURRENT vs. Ve
35
30 -
25
. 20 A ——125°C
g -=-85°C
8 —4—25°C
2 5 —x—-40°C
10 -
5 .
\ﬁa:
0 ; ;
2,5 3 35 4 4,5
Vce (V)

32 AT90CAN128 Auto

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Figure 212. ADC Current vs. Operating Voltage (ADC at 1 MHz)

ADC CURRENT vs. Vcec (ADC at 1 MHz)

300
250 -
3
200 A
. ——125°C
E 150 - —a—85°C
8 —4—25°C
- —*—-40°C
100
50
0 ; ; ; ;
2,5 3 3,5 4 4,5 5 55
Vce (V)
Figure 213. AREF External Reference Current vs. Operating Voltage
AREF EXTERNAL REFERENCE CURRENT vs. Vce
200
180
160
140
z ——125°C
=] o,
& 120 —=-85°C
i —A—25°C
= —%—-40°C
100
80
60 |
40 ; ; ; ;
2,5 3 3,5 4 4,5 5 55

Vcee (V)

AIMEL 393

7522C-AUTO-09/06 I ©

ATMEL

Figure 214. Analog Comparator Current vs. Operating Voltage

ANALOG COMPARATOR CURRENT vs. Vcc

120
100
80
. O P ——125°C
E) 60 | -=—85°C
8 — —— $ —4—25°C
- —*—-40°C
40 A
20
0 ; ; ; ;
2,5 3 35 4 4,5 5 55
Vce (V)
Figure 215. Programming Current vs. Operating Voltage
PROGRAMMING CURRENT vs. Vce
25
20 /
3
- 15 4 /. —e—125°C
E b —=-385°C
3 / —a—25°C
10 —%—-40°C
5 ://:Q/
0 ; ; ; ;
2,5 3 3,5 4 4,5 5 55

Vee (V)

394 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Current Consumption in

Reset and
Reset Pulse Width Figure 216. Reset Supply Current vs. Operating Voltage (0.1 - 1.0 MHz)

(Excluding Current Through the Reset Pull-up)

RESET SUPPLY CURRENT vs. FREQUENCY (25°C, 0.1 - 1 MHz)
(EXCLUDING CURRENT THROUGH THE RESET PULL-UP)

0,25
4
0,2 1 /l
/“
/ ——550V
015 =500V
g —A—4,50V
< ——3,30V
T 01 / -8-3,00V
/% —
. // %
0 | ; ; ; ; ; ;
0 0,1 0,2 03 0,4 05 0,6 0,7 0,8 09 1
Frequency (MHz)
Figure 217. Reset Supply Current vs. Operating Voltage (1 - 16 MHz)
(Excluding Current Through the Reset Pull-up)
RESET SUPPLY CURRENT vs. FREQUENCY (1 - 16 MHz)
(EXCLUDING CURRENT THROUGH THE RESET PULL-UP)
35
5] /
2,5 1 ?
——5,50V

—&— 5,00V
—&— 4,50V
——3,30V

1’? %/ i = orov
e

Icc (mA)

&

o
-
N
w
N
[$,]
[«
~
[o2)
©
—
o
-
o
-
N
~
w
-
~
-
6]
—
[«2)
-
J

Frequency (MHz)

AIMEL 395

7522C-AUTO-09/06 I ©

ATMEL

Figure 218. Minimum Reset Pulse Width vs. Operating Voltage

MINIMUM RESET PULSE WIDTH vs. Vcc

1500
1250
1000 A
m
E ——125°C
5 | —&—-85°C
% 750 —A—25°C
z ——-40°C
o >
500 | \.\‘\:
\"\x\‘
250
0 T T T T
2,5 3 3,5 4 4,5 5 5,5

Vce (V)

396 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Decoupling
Capacitors

7522C-AUTO-09/06

The operating frequency (i.e. system clock) of the processor determines in 95% of
cases the value needed for microcontroller decoupling capacitors.

The hypotheses used as first evaluation for decoupling capacitors are:

« The operating frequency (fop) supplies itself the maximum peak levels of noise. The
main peaks are located at fop and 2 e fop.

* An SMC capacitor connected to 2 micro-vias on a PCB has the following
characteristics:

— 1.5 nH from the connection of the capacitor to the PCB,
— 1.5 nH from the capacitor intrinsic inductance.

Figure 219. Capacitor description

1.5nH
0.75nH / - capacitor- \ 0.75nH

| — T]

According to the operating frequency of the product, the decoupling capacitances are
chosen considering the frequencies to filter, fop and 2 e fop.

The relation between frequencies to cut and decoupling characteristics are defined by:

fop = ; and ZOfop =

211,JLC, 211,/LC,

where:
— L: the inductance equivalent to the global inductance on the Vcc/Gnd lines.
— C,; & C,: decoupling capacitors (C, =4 e C,).

Then, in normalized value range, the decoupling capacitors become:

Table 153. Decoupling Capacitors vs. Frequency

fop, operating frequency C, C,
16 MHz 33 nF 10 nF
12 MHz 56 nF 15 nF
10 MHz 82 nF 22 nF
8 MHz 120 nF 33 nF
6 MHz 220 nF 56 nF
4 MHz 560 nF 120 nF

These decoupling capacitors must to be implemented as close as possible to each pair
of power supply pins:

— 21-22 and 52-53 for logic sub-system,
— 64-63 for analogic sub-system.

Nevertheless, a bulk capacitor of 10-47 uF is also needed on the power distribution net-
work of the PCB, near the power source.

For further information, please refer to Application Notes AVR040 “EMC Design Consi-
derations” and AVR042 “Hardware Design Considerations” on the Atmel web site.

Alm L 397

I)

Register Summary

ATMEL

Address Name Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0 Page

(OXFF) Reserved

(OXFE) Reserved

(0xFD) Reserved

(0xFC) Reserved

(0xFB) Reserved

(OxFA) CANMSG MSG 7 MSG 6 MSG 5 MSG 4 MSG 3 MSG 2 MSG 1 MSG 0 page 260
(0xF9) CANSTMH TIMSTM15 TIMSTM14 TIMSTM13 TIMSTM12 TIMSTM11 TIMSTM10 TIMSTM9 TIMSTM8 page 260
(OxF8) CANSTML TIMSTM7 TIMSTM6 TIMSTM5 TIMSTM4 TIMSTM3 TIMSTM2 TIMSTM1 TIMSTMO page 260
(OxF7) CANIDM1 IDMSK28 IDMSK27 IDMSK26 IDMSK25 IDMSK24 IDMSK23 IDMSK22 IDMSK21 page 259
(OxF6) CANIDM2 IDMSK20 IDMSK19 IDMSK18 IDMSK17 IDMSK16 IDMSK15 IDMSK14 IDMSK13 page 259
(OxF5) CANIDM3 IDMSK12 IDMSK11 IDMSK10 IDMSK9 IDMSK8 IDMSK7 IDMSK6 IDMSK5 page 259
(OxF4) CANIDM4 IDMSK4 IDMSK3 IDMSK2 IDMSK1 IDMSKO RTRMSK — IDEMSK page 259
(OxF3) CANIDT1 IDT28 IDT27 IDT26 IDT25 IDT24 IDT23 IDT22 IDT21 page 258
(0xF2) CANIDT2 IDT20 IDT19 IDT18 IDT17 IDT16 IDT15 IDT14 IDT13 page 258
(OxF1) CANIDT3 IDT12 IDT11 IDT10 IDT9 IDT8 IDT7 IDT6 IDTS page 258
(OxF0) CANIDT4 IDT4 IDT3 IDT2 IDT1 IDTO RTRTAG RB1TAG RBOTAG page 258
(OXEF) CANCDMOB CONMOB1 CONMOBO RPLV IDE DLC3 DLC2 DLC1 DLCO page 257
(OXEE) CANSTMOB DLCW TXOK RXOK BERR SERR CERR FERR AERR page 255
(OXED) CANPAGE MOBNB3 MOBNB2 MOBNB1 MOBNBO AINC INDX2 INDX1 INDXO page 255
(0OXEC) CANHPMOB HPMOB3 HPMOB2 HPMOB1 HPMOBO CGP3 CGP2 CGP1 CGPO page 255
(OXEB) CANREC REC7 REC6 REC5 REC4 REC3 REC2 REC1 RECO page 254
(OXEA) CANTEC TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TECO page 254
(0XE9) CANTTCH TIMTTC15 TIMTTC14 TIMTTC13 TIMTTC12 TIMTTC11 TIMTTC10 TIMTTC9 TIMTTC8 page 254
(OXE8) CANTTCL TIMTTC7 TIMTTC6 TIMTTCS TIMTTC4 TIMTTC3 TIMTTC2 TIMTTC1 TIMTTCO page 254
(0XE7) CANTIMH CANTIM15 CANTIM14 CANTIM13 CANTIM12 CANTIM11 CANTIM10 CANTIM9 CANTIM8 page 254
(OXE6) CANTIML CANTIM7 CANTIM6 CANTIM5 CANTIM4 CANTIM3 CANTIM2 CANTIM1 CANTIMO page 254
(OXE5) CANTCON TPRSC7 TPRSC6 TPRSC5 TPRSC4 TPRSC3 TPRSC2 TRPSC1 TPRSCO page 253
(0XE4) CANBT3 — PHS22 PHS21 PHS20 PHS12 PHS11 PHS10 SMP page 253
(0XE3) CANBT2 — SIW1 SIW0 — PRS2 PRS1 PRS0 — page 252
(0XE2) CANBT1 — BRP5 BRP4 BRP3 BRP2 BRP1 BRPO — page 252
(0XE1) CANSIT1 — SIT14 SIT13 SIT12 SIT11 SIT10 SIT9 SIT8 page 251
(OXEO) CANSIT2 SIT7 SIT6 SITS SIT4 SIT3 SIT2 SIT1 SITO page 251
(OxDF) CANIEL — |IEMOB14 IEMOB13 IEMOB12 IEMOB11 IEMOB10 IEMOB9 IEMOB8 page 251
(OxDE) CANIE2 IEMOB7 IEMOB6 IEMOB5 IEMOB4 IEMOB3 IEMOB2 IEMOB1 IEMOBO page 251
(0xDD) CANEN1 — ENMOB14 ENMOB13 ENMOB12 ENMOB11 ENMOB10 ENMOB9 ENMOBS8 page 251
(0xDC) CANEN2 ENMOB7 ENMOB6 ENMOB5 ENMOB4 ENMOB3 ENMOB2 ENMOB1 ENMOBO page 251
(0xDB) CANGIE ENIT ENBOFF ENRX ENTX ENERR ENBX ENERG ENOVRT page 250
(0xDA) CANGIT CANIT BOFFIT OVRTIM BXOK SERG CERG FERG AERG page 249
(0xD9) CANGSTA — OVRG — TXBSY RXBSY ENFG BOFF ERRP page 248
(0xD8) CANGCON ABRQ OVRQ TTC SYNTTC LISTEN TEST ENA/STB SWRES page 247
(0xD7) Reserved

(0xD6) Reserved

(0xD5) Reserved

(0xD4) Reserved

(0xD3) Reserved

(0xD2) Reserved

(0xD1) Reserved

(0xDO) Reserved

(0XCF) Reserved

(0xCE) UDR1 UDR17 UDR16 UDR15 UDR14 UDR13 UDR12 UDR11 UDR10 page 190
(0xCD) UBRR1H — — — — UBRR111 UBRR110 UBRR19 UBRR18 page 194
(0xCC) UBRRIL UBRR17 UBRR16 UBRR15 UBRR14 UBRR13 UBRR12 UBRR11 UBRR10 page 194
(0xCB) Reserved

(0XCA) UCSR1C — UMSEL1 UPM11 UPM10 USBS1 UCSZ11 UCSZ10 UCPOL1 page 193
(0xC9) UCSR1B RXCIEL TXCIEL UDRIE1 RXEN1 TXEN1 UCSZ12 RXB81 TXB81 page 192
(0xC8) UCSR1A RXC1 TXC1 UDRE1 FE1 DOR1 UPEL U2X1 MPCM1 page 190
(0xC7) Reserved

(0xC6) UDRO UDRO7 UDRO06 UDRO05 UDRO04 UDRO03 UDRO02 UDRO1 UDROO page 190
(0xC5) UBRROH — — — — UBRRO11 UBRRO10 UBRR09 UBRRO8 page 194
(0xC4) UBRROL UBRRO7 UBRRO06 UBRRO5 UBRRO04 UBRRO3 UBRRO02 UBRRO1 UBRROO page 194
(0xC3) Reserved

(0xC2) UCSR0OC — UMSELO UPMO1 UPMOO USBSO0 UCSZ01 UCSZ00 UCPOLO page 192
(0xC1) UCSR0B RXCIEO TXCIEO UDRIEO RXENO TXENO UCSZ02 RXB80 TXB80 page 191
(0xCO0) UCSROA RXCO TXCO UDREO FEO DORO UPEO U2X0 MPCMO page 190

308 ATOOCANIZE AULO mm——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Address Name Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0 Page
(0xBF) Reserved
(0XBE) Reserved
(0xBD) Reserved
(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN — TWIE page 208
(0xBB) TWDR TWDR7 TWDR6 TWDR5 TWDR4 TWDR3 TWDR2 TWDR1 TWDRO page 210
(0xBA) TWAR TWAR6 TWARS TWAR4 TWAR3 TWAR2 TWAR1 TWARO TWGCE page 210
(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 — TWPS1 TWPSO page 209
(0xB8) TWBR TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBRO page 208
(0xB7) Reserved
(0xB6) ASSR — — — EXCLK AS2 TCN2UB OCR2UB TCR2UB page 155
(0xB5) Reserved
(0xB4) Reserved
(0xB3) OCR2A OCR2A7 OCR2A6 OCR2A5 OCR2A4 OCR2A3 OCR2A2 OCR2A1 OCR2A0 page 155
(0xB2) TCNT2 TCNT27 TCNT26 TCNT25 TCNT24 TCNT23 TCNT22 TCNT21 TCNT20 page 154
(0xB1) Reserved
(0xB0) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 page 160
(OXAF) Reserved
(OXAE) Reserved
(OXAD) Reserved
(0XAC) Reserved
(0xAB) Reserved
(0XAA) Reserved
(OxA9) Reserved
(OxA8) Reserved
(OXA7) Reserved
(OXAB) Reserved
(OXA5) Reserved
(OxA4) Reserved
(OxA3) Reserved
(0xA2) Reserved
(OXAL) Reserved
(OxA0) Reserved
(0X9F) Reserved
(OX9E) Reserved
(0x9D) OCR3CH OCR3C15 OCR3C14 OCR3C13 OCR3C12 OCR3C11 OCR3C10 OCR3C9 OCR3C8 page 137
(0x9C) OCR3CL OCR3C7 OCR3C6 OCR3C5 OCR3C4 OCR3C3 OCR3C2 OCR3C1 OCR3C0 page 137
(0x9B) OCR3BH OCR3B15 OCR3B14 OCR3B13 OCR3B12 OCR3B11 OCR3B10 OCR3B9 OCR3B8 page 137
(0x9A) OCR3BL OCR3B7 OCR3B6 OCR3B5 OCR3B4 OCR3B3 OCR3B2 OCR3B1 OCR3B0 page 137
(0x99) OCR3AH OCR3A15 OCR3A14 OCR3A13 OCR3A12 OCR3A11 OCR3A10 OCR3A9 OCR3A8 page 137
(0x98) OCR3AL OCR3A7 OCR3A6 OCR3A5 OCR3A4 OCR3A3 OCR3A2 OCR3A1 OCR3A0 page 137
(0x97) ICR3H ICR315 ICR314 ICR313 ICR312 ICR311 ICR310 ICR39 ICR38 page 138
(0x96) ICR3L ICR37 ICR36 ICR35 ICR34 ICR33 ICR32 ICR31 ICR30 page 138
(0x95) TCNT3H TCNT315 TCNT314 TCNT313 TCNT312 TCNT311 TCNT310 TCNT39 TCNT38 page 136
(0x94) TCNT3L TCNT37 TCNT36 TCNT35 TCNT34 TCNT33 TCNT32 TCNT31 TCNT30 page 136
(0x93) Reserved
(0x92) TCCR3C FOC3A FOC3B FOC3C — — — — page 136
(0x91) TCCR3B ICNC3 ICES3 — WGM33 WGM32 CS32 CS31 CS30 page 134
(0x90) TCCR3A COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3COo WGM31 WGM30 page 132
(0x8F) Reserved
(OX8E) Reserved
(0x8D) OCR1CH OCR1C15 OCR1C14 OCR1C13 OCR1C12 OCR1C11 OCR1C10 OCR1C9 OCR1C8 page 137
(0x8C) OCR1CL OCR1C7 OCR1C6 OCR1C5 OCR1C4 OCR1C3 OCR1C2 OCRI1C1 OCR1CO page 137
(0x8B) OCR1BH OCR1B15 OCR1B14 OCR1B13 OCR1B12 OCR1B11 OCR1B10 OCR1B9 OCR1B8 page 137
(0x8A) OCR1BL OCR1B7 OCR1B6 OCR1B5 OCR1B4 OCR1B3 OCR1B2 OCR1B1 OCR1B0O page 137
(0x89) OCR1AH OCR1A15 OCR1A14 OCR1A13 OCR1A12 OCR1A11 OCR1A10 OCR1A9 OCR1A8 page 137
(0x88) OCR1AL OCR1A7 OCR1A6 OCR1A5 OCR1A4 OCR1A3 OCR1A2 OCR1A1 OCR1A0 page 137
(0x87) ICR1H ICR115 ICR114 ICR113 ICR112 ICR111 ICR110 ICR19 ICR18 page 137
(0x86) ICR1L ICR17 ICR16 ICR15 ICR14 ICR13 ICR12 ICR11 ICR10 page 137
(0x85) TCNT1H TCNT115 TCNT114 TCNT113 TCNT112 TCNT111 TCNT110 TCNT19 TCNT18 page 136
(0x84) TCNTI1L TCNT17 TCNT16 TCNT15 TCNT14 TCNT13 TCNT12 TCNT11 TCNT10 page 136
(0x83) Reserved
(0x82) TCCR1C FOC1A FOC1B FOC1C — — — — — page 135
(0x81) TCCR1B ICNC1 ICES1 — WGM13 WGM12 CS12 CS11 CS10 page 134
(0x80) TCCR1A COM1A1 COMI1A0 COM1B1 COM1B0 COM1C1 COM1CO0 WGM11 WGM10 page 132
(OX7F) DIDR1 = = = = = = AIN1D AINOD page 265
(0X7E) DIDRO ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADCOD page 284
AIMEL 399
7522C-AUTO-09/06 I ®

ATMEL

Address Name Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0 Page
(0x7D) Reserved
(0x7C) ADMUX REFS1 REFS0O ADLAR MUX4 MUX3 MUX2 MUX1 MUXO0 page 280
(0x7B) ADCSRB ADHSM ACME — — — ADTS2 ADTS1 ADTSO page 284, 263
(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPSO page 282
(0x79) ADCH -/ ADC9 -/ ADC8 -/ ADC7 -/ ADC6 -/ ADC5 -/ ADC4 ADC9/ADC3 ADC8 / ADC2 page 283
(0x78) ADCL ADC7/ADC1 | ADC6/ADCO ADCS5 / - ADC4 / - ADC3/ - ADC2/ - ADC1/ - ADCO / page 283
(0x77) Reserved
(0x76) Reserved
(0x75) XMCRB XMBK — — — — XMM2 XMM1 XMMO page 31
(0x74) XMCRA SRE SRL2 SRL1 SRLO SRW11 SRW10 SRWO01 SRWO00 page 29
(0x73) Reserved
(0x72) Reserved
(0x71) TIMSK3 — — ICIE3 — OCIE3C OCIE3B OCIE3A TOIE3 page 138
(0x70) TIMSK2 = = = = = = OCIE2A TOIE2 page 157
(Ox6F) TIMSK1 — — ICIE1 — OCIE1C OCIE1B OCIE1A TOIE1 page 138
(OX6E) TIMSKO = = = = = = OCIEOA TOIEO page 108
(0x6D) Reserved
(0x6C) Reserved
(0x6B) Reserved
(0x6A) EICRB ISC71 ISC70 1ISC61 1ISC60 ISC51 1ISC50 1ISC41 1SC40 page 90
(0x69) EICRA ISC31 1ISC30 1ISC21 1SC20 ISC11 1ISC10 1ISCO01 1ISC00 page 89
(0x68) Reserved
(0x67) Reserved
(0x66) OSCCAL — CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CALO page 40
(0x65) Reserved
(0x64) Reserved
(0x63) Reserved
(0x62) Reserved
(0x61) CLKPR CLKPCE — — — CLKPS3 CLKPS2 CLKPS1 CLKPSO page 42
(0x60) WDTCR — — — WDCE WDE WDP2 WDP1 WDPO page 55
0X3F (OX5F) SREG | T H S v N z C page 11
0x3E (0X5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 page 13
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO page 13
0x3C (0x5C) Reserved
0x3B (0X5B) RAMPZ = = = = = = = RAMPZ0 page 13
0x3A (0x5A) Reserved
0x39 (0x59) Reserved
0x38 (0x58) Reserved
0x37 (0x57) SPMCSR SPMIE RWWSB — RWWSRE BLBSET PGWRT PGERS SPMEN page 317
0x36 (0x56) Reserved — — — — — — — —
0x35 (0x55) MCUCR JTD — — PUD — — IVSEL IVCE page 60, 69, 294
0x34 (0x54) MCUSR — — — JTRF WDRF BORF EXTRF PORF page 52, 295
0x33 (0x53) SMCR = = = = SM2 SM1 SMO SE page 44
0x32 (0x52) Reserved
0x31 (0x51) OCDR IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDRO page 289
0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACISO page 263
0x2F (0x4F) Reserved
Ox2E (0x4E) SPDR SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPDO page 170
0x2D (0x4D) SPSR SPIF WCOL — — — — — SPI2X page 169
0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO page 168
0x2B (0x4B) GPIOR2 GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 page 34
O0x2A (0x4A) GPIOR1 GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 page 34
0x29 (0x49) Reserved
0x28 (0x48) Reserved
0x27 (0x47) OCROA OCROA7 OCROA6 OCROAS5 OCRO0OA4 OCROA3 OCROA2 OCROAL OCROAO page 108
0x26 (0x46) TCNTO TCNTO7 TCNTO06 TCNTO5 TCNTO04 TCNTO3 TCNTO02 TCNTO1 TCNTOO page 107
0x25 (0x45) Reserved
0x24 (0x44) TCCROA FOCOA WGMO00 COMOAL COMOAO WGMO1 CS02 CS01 CS00 page 105
0x23 (0x43) GTCCR TSM — — — — — PSR2 PSR310 page 93, 160
0x22 (0x42) EEARH — — — — EEAR11 EEAR10 EEAR9 EEARS8 page 20
0x21 (0x41) EEARL EEAR7 EEAR6 EEARS5 EEAR4 EEAR3 EEAR2 EEAR1 EEARO page 20
0x20 (0x40) EEDR EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDRO page 20
0x1F (Ox3F) EECR — — — — EERIE EEMWE EEWE EERE page 21
Ox1E (Ox3E) GPIORO GPIORO7 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIORO1 GPIOR00 page 34
0x1D (0x3D) EIMSK INT7 INT6 INTS INT4 INT3 INT2 INTL INTO page 91
0x1C (0x3C) EIFR INTF7 INTF6 INTF5 INTF4 INTF3 INTF2 INTF1 INTFO page 91

400 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Address Name Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0 Page
0x1B (0x3B) Reserved
Ox1A (0x3A) Reserved
0x19 (0x39) Reserved
0x18 (0x38) TIFR3 — — ICF3 — OCF3C OCF3B OCF3A TOV3 page 139
0x17 (0x37) TIFR2 = = = = = = OCF2A TOV2 page 158
0x16 (0x36) TIFR1 — — ICF1 — OCF1C OCF1B OCF1A TOV1 page 139
0x15 (0x35) TIFRO = = = = = = OCFO0A TOVO page 108
0x14 (0x34) PORTG — — — PORTG4 PORTG3 PORTG2 PORTG1 PORTGO page 88
0x13 (0x33) DDRG — - - DDG4 DDG3 DDG2 DDG1 DDGO page 88
0x12 (0x32) PING — — — PING4 PING3 PING2 PING1 PINGO page 88
0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTFO page 87
0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDFO page 87
0XOF (Ox2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINFO page 88
OxOE (0x2E) PORTE PORTE7 PORTE6 PORTES PORTE4 PORTE3 PORTE2 PORTE1 PORTEO page 87
0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDEO page 87
0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINEO page 87
0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO page 87
0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO page 87
0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO page 87
0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTCO page 86
0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO page 86
0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO page 87
0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO page 86
0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO page 86
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO page 86
0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTAO page 86
0x01 (0x21) DDRA DDA7 DDA6 DDAS5 DDA4 DDA3 DDA2 DDAL DDAO page 86
0x00 (0x20) PINA PINA7 PINA6_ PINAS PINA4 PINA3_ PINA2 PINA1 PINAO Rage 36
Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved /O memory addresses
should never be written.
2. /0O Registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to Ox1F only.
4. When using the I/0O specific commands IN and OUT, the I/O addresses 0x00 - Ox3F must be used. When addressing I/O

Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The AT90CAN128 is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from 0x60 - OxFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

AIMEL 401

7522C-AUTO-09/06 I ©

ATMEL

Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd < Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd« Rd+Rr+C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl « Rdh:Rdl + K ZCN,\V,S 2
SUB Rd, Rr Subtract two Registers Rd « Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd « Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd < Rd-Rr-C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd« Rd-K-C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl « Rdh:RdI - K ZCN,\V,S 2
AND Rd, Rr Logical AND Registers Rd < Rd ¢ Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd < Rd e K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd < Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd <« Rd vK Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd < Rd @ Rr Z,N,V 1
COM Rd One’s Complement Rd « OxFF — Rd Z,C,N,V 1
NEG Rd Two’'s Complement Rd « 0x00 — Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd « Rd vK Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd < Rd e (OXxFF - K) Z,N,V 1
INC Rd Increment Rd < Rd + 1 ZN\V 1
DEC Rd Decrement Rd « Rd-1 ZN\V 1
TST Rd Test for Zero or Minus Rd « Rd « Rd ZN\V 1
CLR Rd Clear Register Rd « Rd ® Rd Z,N,V 1
SER Rd Set Register Rd « OxFF None 1
MUL Rd, Rr Multiply Unsigned R1:RO « Rd x Rr Z,C 2
MULS Rd, Rr Multiply Signed R1:RO « Rd x Rr Z,C 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:RO « Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:RO « (Rdx Rr)<<1 Z,C 2
FMULS Rd, Rr Fractional Multiply Signed R1:RO « (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Eractional Multiply Signed with Unsigned R1:R0O « (Rd x Rr) << 1 7.C 2
BRANCH INSTRUCTIONS
RIMP k Relative Jump PC«—PC+k +1 None 2
1IIMP Indirect Jump to (Z) PC« Z None 2
JMP k Direct Jump PC « k None 3
RCALL k Relative Subroutine Call PC« PC+k+1 None 3
ICALL Indirect Call to (Z) PC«Z None 3
CALL k Direct Subroutine Call PC « k None 4
RET Subroutine Return PC « STACK None 4
RETI Interrupt Return PC « STACK | 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd=Rr) PC« PC+2or3 None 1/2/3
CP Rd,Rr Compare Rd — Rr Z,N,\V,CH 1
CPC Rd,Rr Compare with Carry Rd-Rr—-C Z,N\V,CH 1
CPI Rd,K Compare Register with Immediate Rd - K Z,N,\V,CH 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC <~ PC + 2 or 3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC <~ PC + 2 or 3 None 1/2/3
SBIC P, b Skip if Bit in 1/O Register Cleared if (P(b)=0) PC «~ PC + 2 0r 3 None 1/2/3
SBIS P,b Skip if Bit in /O Register is Set if (P(b)=1) PC« PC+2o0r3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC«PC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC«PC+k + 1 None 1/2
BREQ k Branch if Equal if Z=1)then PC « PC+k +1 None 1/2
BRNE k Branch if Not Equal if Z=0)then PC « PC+k +1 None 1/2
BRCS k Branch if Carry Set if (C=1)thenPC« PC+k+1 None 1/2
BRCC k Branch if Carry Cleared if C=0)thenPC«PC+k+1 None 1/2
BRSH k Branch if Same or Higher if (C=0) then PC«PC+k+1 None 1/2
BRLO k Branch if Lower if C=1)thenPC« PC+k+1 None 1/2
BRMI k Branch if Minus if (N=1)then PC« PC+k+1 None 1/2
BRPL k Branch if Plus if (N=0)thenPC« PC+k+1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N ® V=0) then PC « PC+k +1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N®V=1)then PC « PC+k+1 None 1/2
BRHS k Branch if Half Carry Flag Set if (H=1)then PC« PC+k+1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if (H=0) then PC«PC+k+1 None 1/2
BRTS k Branch if T Flag Set if T=1)thenPC« PC+k +1 None 1/2
BRTC k Branch if T Flag Cleared if (T=0)then PC « PC+k +1 None 1/2
BRVS k Branch if Overflow Flag is Set if V=1)then PC« PC+k+1 None 1/2
BRVC k Branch if Overflow Flag is Cleared if (V= 0) then PC « PC + k+1 None 1/2

402

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Mnemonics Operands Description Operation Flags #Clocks
BRIE k Branch if Interrupt Enabled if (1=1) then PC« PC+k+1 None 1/2
BRID k Branch if Interrupt Disabled if (1=0)then PC« PC+k+1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register 1/0(P,b) « 1 None 2
CBI P,b Clear Bit in I/0 Register 1/0(P,b) <0 None 2
LSL Rd Logical Shift Left Rd(n+1) « Rd(n), Rd(0) < 0 Z,C NV 1
LSR Rd Logical Shift Right Rd(n) « Rd(n+1), Rd(7) « 0 ZC NV 1
ROL Rd Rotate Left Through Carry Rd(0)«—C,Rd(n+1)« Rd(n),C«Rd(7) Z,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)«—C,Rd(n)<— Rd(n+1),C«Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) <« Rd(n+1), n=0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0)«Rd(7..4),Rd(7..4)«Rd(3..0) None 1
BSET s Flag Set SREG(S) « 1 SREG(s) 1
BCLR S Flag Clear SREG(s) < 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T < Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) « T None 1
SEC Set Carry Ce«1 C 1
CLC Clear Carry C«0 C 1
SEN Set Negative Flag N« 1 N 1
CLN Clear Negative Flag N« 0 N 1
SEZ Set Zero Flag Z«1 Y4 1
CLZ Clear Zero Flag Z«0 z 1
SEI Global Interrupt Enable 11 | 1
CLI Global Interrupt Disable 1< 0 | 1
SES Set Signed Test Flag S«1 S 1
CLS Clear Signed Test Flag S« 0 S 1
SEV Set Twos Complement Overflow. Vel Vv 1
CLV Clear Twos Complement Overflow V<0 \ 1
SET Set T in SREG Te1 T 1
CLT Clear T in SREG T« 0 T 1
SEH Set Half Carry Flag in SREG He 1 H 1
CLH Clear Half Carry Flag in SREG H <« 0 H 1
DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd « Rr None 1
MOVW Rd, Rr Copy Register Word Rd+1:Rd « Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd « K None 1
LD Rd, X Load Indirect Rd « (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd « (X), X« X+ 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X« X-1,Rd « (X) None 2
LD Rd, Y Load Indirect Rd « (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd « (Y), Y« Y+1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y« Y-1,Rd« (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd « (Y +q) None 2
LD Rd, Z Load Indirect Rd « (2) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd « (Z), Z « Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z«Z-1,Rd« (2) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd «(Z+0q) None 2
LDS Rd, k Load Direct from SRAM Rd « (k) None 2
ST X, Rr Store Indirect (X) « Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) « Rr, X« X+1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X« X-1,(X) < Rr None 2
ST Y, Rr Store Indirect (Y) < Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y)«<Rr,Y«Y+1 None 2
ST -Y,Rr Store Indirect and Pre-Dec. Y« VY-1,(Y) < Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y +q) <« Rr None 2
ST Z,Rr Store Indirect (Z) < Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z)<Rr,Z«Z+1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z«Z7Z-1,(Z)«Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z+q) < Rr None 2
STS k, Rr Store Direct to SRAM (k) <« Rr None 2
LPM Load Program Memory RO « (2) None 3
LPM Rd, Z Load Program Memory Rd « (2) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd « (Z), Z « Z+1 None 3
ELPM Extended Load Program Memory RO « (RAMPZ:Z) None 3
ELPM Rd, Z Extended Load Program Memory Rd « (RAMPZ:Z) None 3
ELPM Rd, Z+ Extended Load Program Memory and Post-Inc Rd « (RAMPZ:Z), RAMPZ:Z « RAMPZ:Z+1 None 3
SPM Store Program Memory (Z) < R1:RO None -

7522C-AUTO-09/06

AIMEL

I)

403

ATMEL

Mnemonics Operands Description Operation Flags #Clocks
IN Rd, P In Port Rd « P None 1
ouT P, Rr Out Port P < Rr None 1
PUSH Rr Push Register on Stack STACK « Rr None 2
POP Rd Pop Reg.ister from Sta_ck Rd « STACK None 2
MCU CONTROL INSTRUCTIONS

NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

404 ATOOCANI28 AULO m——

Ordering Information

ATMEL

Speed
Ordering Code (MH2) Power Supply (V) Operation Range Package® Packing
-40°C to +85°C ;
AT90CAN128-15AT 16 2.7-55 RQ Tape & Reel with
Dry-pack
AT90CAN128-15AT1 16 27-55 -40°C to +105°C RQ Tape & Reel with
Dry-pack
AT90CAN128-15AZ 16 27-55 -40°C to +125°C RQ Tape & Reel with
Dry-pack
-40°C to +85°C ;
AT90CAN128-15MT 16 2.7-55 PB Tape & Reel with
Dry-pack
AT90CAN128-15MT1 16 27-55 -40°C to +105°C PB Tape & Reel with
Dry-pack
AT90CAN128-15MZ 16 2.7-55 -40°C to +125°C PB Tape & Reel with

Dry-pack

Notes: 1. Indicates Green and ROHS packaging.

Packaging Information

Package Type

RQ 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)

PB 64-Lead, Quad Flat No lead (QFN)

406 ATOOCANI28 AULO m——

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

TQFP64
64 LEADS Thin Quad Flat Package

PIN 64
[OARMAIIANT - ARLOInamn

PIN1 | ¢ -

: =L

= INDEX CORNER =1

= = |
eLg% %5 E1 E

I = =

JUDOUUUUonT vouuuuooun

— D —

/\\1 1°-13°

ﬁ'ﬁ'ﬁ'ﬁ'ﬁ'ﬁ'ﬁ'ﬂ'ﬁ'ﬂﬁ%ﬁl\

\

A1f‘ AE LA

MM INCH
SYMBOL| MIN NOM MAX MIN NOM MAX
A - - 1.20 - - . 047
A1 0.05 - 0.15 . 002 - . 006
A2 0.95 1.00 1.05 . 037 . 039 . 041
D 15.75 16.00 16.25 . 620 . 630 . 640
D1® | 13.90 | 14.00 | 14.10 | .547 | .551 . 555
E 15.75 16.00 16.25 . 620 . 630 . 640
Notes: 1. This package conforms to JEDEC reference MS-026, @
Variation AEB. E1 13.90 14.00 14.10 . 547 . 551 . 555
2. Dimensions D1 and E1 do not include mold protrusion. B 0.30 — 0.45 .012 - .018
Allowable protrusion is 0.25 mm per side. Dimensions

D1 and E1 are maximum plastic body size dimensions c 0.09 - 0.20 - 004 - - 008
including mold mismatch. L 0.45 - 0.75 .018 - . 030

3. Lead coplanarity is 0.10 mm maximum. e 0.80 TYP 0315 TYP

AIMEL 407

7522C-AUTO-09/06 I ©

ATMEL

QFN64

64 LEADS Quad Flat No lead

INDEX CORNER

T - . .
0
— SEATING PLANE
TOP VIEW olo.0s8[c]
SIDE VIEW
o poaxe ’ 4 R o INDEX CORNER
AR R R T
B e T D B MIN [NOM | MAX | MIN |NOM | MAX
i E A |0.80 1.00 |.031 039
= =] JIK|6.47|657|667]|.255].259]. 263
=t +—
i E D/E| 9.00BSC 354 BSC
K i + E AL [o00] Joos|.oo0] [ooz
= = N 64
= = a2 [075] J1oo.020] [030
i E e 0.50 BSC .020 BSC
= = L |o040]045]050].016].018].020
= = b |017]025]027].007].010].011
=]
osxt (L CLELELLEL AL LG ELOLCLELAACL L
T — EXPOSED DIE
BOTTOM VIEW ATTACH PAD

Note: Compliant JEDEC MO-220

408 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto
Document Revision
History

Changes from 7552B - 1. Correction to product ordering information.
05/06 to 7522C - 09/06

AII“EL@ 409

7522C-AUTO-09/06

sy A\ TOOCAN128 Auto

Table of Contents

FRATUTIES ... e 1
DTS od] o { o] o PSS PUPUPPURPRRPRPPP 2
[[0 Tod Q- Vo | = 1 1 ¢ 3
Automotive Quality Gradecoovvviiiiiiiiic e 4
Pin Configurationscccooei i i 5
T T =TS od] 01 o] o 7
ADoUt Code EXaMPIEScooeiieieiee e e 8
AVR CPU COT .ottt 9
INEFOAUCTION ..ottt e e e bbb ee e e e e s e anaes 9
AFCILECTUIAl OVEIVIBWciiiiiiiii ittt e ee e e e e e s e snees 9
ALU — ArithmetiC LOGIC UNIt.........ooviiiiiiiiiiiiis s ee e e 10
S = LU LS =T 0[] (= 11
General Purpose Register File ... ee e, 12
SEACK POINIEE ...t e e nae 13
Instruction EXeCUtion TiMING........ccovviiriiiieireieieiiii s ss s ss e s e s e aeaeaeseeeeeeeaeaeenene 14
Reset and Interrupt HandliNgoooioiiiiiii e e 14
Y 1T o g Lo T = ST 17
In-System Reprogrammable Flash Program Memorycccccevvvvvvvvvvvvvnninennnn. 17
SRAM Data MEIMOIY ...ciiiiii ittt a e e e e ebban s 18
EEPROM Data MEIMOIY .. .cciuiiiiieiieeiiiii ettt e ae e e e aeba s 20
FL@ I =0 0o VPP 25
External Memory INterfacCe........uu i 25
General PUrpose 1/O REQISIEIS......ccco i it a e e e aa e 34
SYSTEM ClOCK ovviiiiiiii i e e e 35
Clock Systems and their Distributioncoovviiiiiiiiiicc e, 35
CIOCK SOUICES ...ttt ettt ettt e e e e e bbb e e ee e e e s s e naes 36
Default ClOCK SOUICE ... 36
10 V251 v= LI © 1T || = 1o | 37
Low-frequency Crystal OSCIllator ... 38
Calibrated Internal RC OSCIllAtOrcooiiiiiiiiiiiii e 39
EXEEINAI ClOCK. ...ceiiiiiiei e 40
(04 [oTod Q@ 011 o LU L =11 1 = RSP 41
Timer/Counter2 OSCIlIALOr...........ooi it 41
SYStEmM CIOCK PreSCalEr.......uueeee it 42
Power Management and Sleep MOAES.........ccccceeeiiieeieeiivieieeeeen, 44
o L3 [oTo [PP PRTPPPPPPPPN 45
ADC Noise ReduCtion MOE............ccuuuiiiiiiiieiieei et 45

Alm L 411

7522C-AUTO-09/06 I ©

ATMEL

POWEr-dOWN MOGE........oiiiiiiiie e 45
POWET-SAVE MOGE.... ..t ee e e e s 45
I = 1 o] o) V1Y, o T L= 46
Minimizing Power CONSUMPLIONcooiiieiiiii e 46
System Control and RESEetovvviiiiiiiiiiii e 48
Internal Voltage RefErenCecooviiiiiie e 53
LAY] o o To TR I 141 54
Timed Sequences for Changing the Configuration of the Watchdog Timer 56
LN =] T o) TP TPRPIR 57
Interrupt Vectors in ATIOCANILZEuvuiiiie it s 57
Moving Interrupts Between Application and Boot Space..........cccccevvvvvvvevnennnnnne. 60
/O P OIS .. e ————— 62
INEFOAUCTION ..t e e e e e ee e e e e s e saeaes 62
Ports as General DIigital 1/Ouuuiiiiiiiiiiii e 63
Alternate POrt FUNCHONSoooiiiiiiiiit e 68
Register Description for 1/O-PoOrtS.........cooo i 86
EXternal INterruPLS ..ouuu e 89
Timer/Counter3/1/0 Prescalersoooovvveiiieeeiiieicceieee e, 92
OVBIVIBW ...ttt ettt et e et e e e s e s bbb e beee e eeee e e s e s nae 92
Timer/Counter0/1/3 Prescalers Register DeSCrptioncccoeeveveveveeeieieieeieieeiens 93
8-bit Timer/CounterO with PWM............cooiiiiiiiiiie e, 95
FRAIUIES ... e s 95
OVBIVIBW ...ttt ettt e et e e e s e s bbb e e eeeeeae e s s e s nae 95
Timer/Counter CIOCK SOUMCES.........uutiiiiiiiieeie et 96
L6700] 0111 S0 o | S PO U PP PP PPPPPT ROt 96
(@ 101010 | A @o] o] o= Tt =T U 1 o]| S RSP 97
Compare Match OULPUL UNit........coooiiiiiiiiicecee s e a e ee e 99
[V oTo [=TsTo] @] o T=1 =1 o o [P 100
Timer/Counter TiMiNG DIagramsS.........c.uuuuureuiieieieeei s s eeee e e eeee e e e e 103
8-bit Timer/Counter Register DeSCHPLONuuiiiiiiiiiiiii e ee e, 105
16-bit Timer/Counter (Timer/Counterl and Timer/Counter3)........ 109
FRAIUIES ... e s 109
OVBIVIBW ...ttt ettt e ettt ee e e e s e e s s bbb e e be et e e e e e e s e nannnne 109
Accessing 16-Dit REQISIEISoiviiii e 112
Timer/Counter CIOCK SOUICES........uuuiiiiiiieiieeieeii et 116
(67001 01 1] S0 o | ST T PP U PP PPPPPRRTRTPIO 116
INPUL Capture UNQL.... ..o e e e e e e e e e e e e e e e e aeaeeaes 117
OULPUL COMPATE UNITS .oveveiiiiiiis it 119
Compare Match OULPUL UNit........cooooiiiiiiicce s e e e 121

412 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Y ToTo [=Ts o] @] o T=] = Lo o HP 122
Timer/Counter TiMIiNG DIagramsS.........c.uuuuuurmiieiiiee s s eeee e e eeee e e e e 129
16-bit Timer/Counter Register DeSCIPLONccovvivviiieiieierr e 132

8-bit Timer/Counter2 with PWM and Asynchronous Operation ... 141

R ATUIES ..ot 141
L@ 1Y 1= PRSPPI 141
Timer/Counter CIOCK SOUICES.........cuvuiiiiiiiii i et e e e e e ee e e e e 143
L7010 o1 (= S 1 o PSPPI 143
OULPUL COMPATE UNIL.. . i e e e e e e e e e e e e eeaneaes 144
Compare Match OULPUL UNit.......ccoooiiiiiiiiice e e e 146
Y ToTo [T To] @] o T=] = L1 To o LP 146
Timer/Counter TiMiNg DIagrams............vuiiiiuiiiiiiiieiiseses s s e e e eeeaeaeae s e e e ereaeannns 151
8-bit Timer/Counter Register DeSCHPLONuvvieeiiiiiiis e ae e e 152
Asynchronous operation of the Timer/Counter2..............cccceoeveviivivieivvvvieniennnnn. 155
TIMEr/CouNter2 PreSCaler........cooi oot e e e e e e e e e e e e e e eaeaeanens 159
Output Compare Modulator - OCMccoovvviiiieiiiiieee e, 161
L@ 1Y 1= PRSPPI 161
)T SYSY o 1 o] (o o 161
Serial Peripheral Interface — SPl.......cccooeoiiiiiiiiiiiicce e, 163
FRATUIES ..ot e 163
SS PN FUNCHONANEY. ev et 168
[2= = 1Y o T L= 171
USART (USARTO and USARTL) ...ouiiiiiiiiiie e 172
FRATUIES ..ottt e 172
L@ YT 1= RPN 172
DUBI USART ettt ettt et ettt e e ettt ee et e e e e asaeae e nneeees 172
(04 (oo QI CT =T g T=T 7= 11 o] o ISR 174
Y= = U T = Vg = SRR 176
L0 ST AN I 01 1= 1T 4o o 177
Data Transmission — USART TranSMItterc.vvvvvvivveiiiiiiininis i en s eee e e 179
Data Reception — USART RECEIVET........ccociiiieieeeeeeeeee s a e e 181
Asynchronous Data RECEPLIONuviii it 185
Multi-processor Communication MOdEeoooeviviiiiiieiiiiii e 188
USART Register DeSCIPLIONcccceeeieie et e e e e e e e e e e aeae e 190
Examples of Baud Rate Setting............uuuveiiiiiiiiiiiieee e 196
Two-wire Serial INterfacecccceevviiiiiiiiiic e, 200
FRATUIES ..ot 200
Two-wire Serial Interface Bus Definition.........c..ccccoeeviiiiiee e 200
Data Transfer and Frame FOrmat...........cccoo oo e 201
Multi-master Bus Systems, Arbitration and Synchronization..................c.oo...... 203
Overview of the TWI MOAUIEcocooiii e 206

Alm L 413

7522C-AUTO-09/06 I ©

ATMEL

TWI Register DESCHPLIONcociiiii et r s e e e e e e e e e e e e e e e erernnes 208
L0 £ [T T 1 = Y 212
TranSMISSION MOOES......ccoiiiiiiiii et e e s e 215
Multi-master Systems and Arbitration..............ccco v 228
Controller Area Network - CAN ... 230
FRAIUIES ... e s 230
CAN PIOtOCOL ...ttt ettt e e ee e e e eeae 230
CAN CONTOIIBT ...ttt e e e e s e e bbb 235
CAN CRANNEL. ...ttt e e e e 236
[=TSz Vo [T @ 1 o=t £ 238
CAN THMIBE ettt ettt e e e e e e st bbb e aeeeaeeeaeneaan 241
ErrOr ManagEMEBNT.uuiieiiiiiii ettt e e e e e n e e e e eaaa s 242
a1 (=T U] o] £ TP 244
CAN Register DeSCHPLION.......ccci e a e e e e e e e 246
General CAN REQISIEISuuuiii et 247
/@ o T = To 1= 1= 255
Examples of CAN Baud Rate Settingcccovvvviiiiie e 261
ANalog COMPATALOF ...uuveeiiiee i e e e e e e e e 263
OVBIVIBW ...ttt ettt e e ettt ee e e e s e e s s bbb b e e beee e e e e e e s e nanneae 263
Analog Comparator Register DesCriptionccccceeeee e 263
Analog Comparator Multiplexed INpUt ... 265
Analog to Digital Converter - ADCoovviiiiiiiiiieeeeeeeeeeeeeeeeeies 266
FRAIUIES ... e s 266
(@ 0 1=T > 1[0 o PSPPI 268
Starting @ CONVEISIONuueiiii it e e s e e e e e e e e eeeeaeeaeaeanes 268
Prescaling and Conversion TIMINGe e ee e eeeeeee e e e eieeeesveveaeeennnne 269
Changing Channel or Reference Selectionueuveieiiiiiiiiiiiieinee e, 272
ADC NOISE CANCEIBT ...ttt 273
ADC COoNVErsioN RESUIL.........coiiiiiiie et 278
ADC RegiSter DESCIIPLIONuuuieieieieieis e s e e e ee e e e e e s 280
JTAG Interface and On-chip Debug Systemcccceeiiiiiviiininnn, 285
FRAIUIES ... e s 285
OVBIVIBW ...ttt ettt e e et e e et e e s e e s s bbb e e be et e e e e e e s e nannnne 285
TeSt ACCESS POt — TAP . e 285
TAP CONIOHEE ...t e e e e eeeae 287
Using the Boundary-scan Chain.............c.oo oo 288
Using the On-chip Debug SYStemccoooiiiiiiiie e 288
On-chip Debug Specific JTAG INStFUCHIONSvvvvieiiiiiiiiii e, 289
On-chip Debug Related Register in /O MEMOIYc.vevvvviiiiiiiiiiiiieeeeeeeeeeeeen, 289
Using the JTAG Programming Capabilitiescoovvvivriiiiiiiiiiieieeee e, 290
BIDlOGrapNY ... —————————————— 290

414 ATOOCANI28 AULO m——

sy A\ TOOCAN128 Auto

Boundary-scan IEEE 1149.1 (JTAG) ..covviiiiiiiiiiiiiieeeeeeeeeeeeeeee 291
FRAIUIES ... e s 291
SYSEEIM OVEIVIEW ...ttt e ee e e et e et ettt ettt et e ettt s e s e e s e s e aaaaaeaaaeaeaeaeaeanes 291
(D 1= W =T] (=] £ 291
Boundary-scan Specific JTAG INStrUCLIONSccoeviviviiiiiiei e 293
Boundary-scan Related Register in I/O MeMOryc.cccoeveiivievieieeeeeieeienen 294
Boundary-sCan ChaiNuuiiiiiiiin e 295
ATI90CAN128 Boundary-SCan Orderccceiiiiieieieieieieieeee e e 306
Boundary-scan Description Language FileS..........ccccco e, 311

Boot Loader Support — Read-While-Write Self-Programming....... 312
FRAIUIES ... e 312
Application and Boot Loader Flash Sections...........cccccoeeeveiiiiviviieieeieee, 312
Read-While-Write and No Read-While-Write Flash Sections...............ccccccee... 312
BOOt LOAAET LOCK BiLS......cuiiiiiiiiiiee ittt 315
Entering the Boot Loader Programcoeeoiiiine s e eeeeeeesee e eee e e 316
Addressing the Flash During Self-Programmingcccceevevivvivivievvvieieieennn 318
Self-Programming the FIash ..o 319

MemOory Programmingcooeeeeriieiieeiiiiiies e e ee e e e e eeee e 326
Program and Data Memory LOCK BitS..........ccoovviiiiiii e 326
FUSE BIES ...ttt e e 327
SIGNALUIE BYLES ..ottt e e e 329
LOF=110] = 11 o] N =7/ - 329
Parallel Programming OVEIVIEWccceiiiiiieeiee e e 330
Parallel Programmingeeeeeee i erese e ee e eeee e e e e e et s eaen e e 332
SPI Serial Programming OVEIVIEWc.cociiieiiiiiirie et es s enenenaaeaeaee s 338
SPI Serial Programmingccoooioi oot s s s e e e e e aeaaaaaaaeaeaeane 339
JTAG Programming OVEIVIEWc.coeviieieieiieie et e ettt s n s aanea e e e aaaaaee s 343

Electrical CharacteristicS™ccoovoviviieeieeeeeeceeeee e 357
Absolute Maximum RatingS™.........cuvuvuiiuiiiiii i er e ee e e eeeeeee e e e e eae e 357
DC CharaCteriStiCSccei ettt ettt e s bbb 357
External Clock Drive CharacteristiCsuvueiiiiiieiiiiiiiiieiee e 359
Maximum SPEEA VS. VCC ... a e n e e e e e e e 360
Two-wire Serial Interface CharacteriStiCscccuuvveiiiiiiei e 361
SPI TiMiNg CharacCteriStiCSuuiieiiiii i e a e e e e e 363
CAN Physical Layer CharacteristiCS...........coovvivviiiiiiiiieeeer v 364
ADC CharaCteIiSHICSuvuerieieiiiieie ettt e e e 365
External Data Memory CharacterisStiCScovvvviiviiiiieiieee e 367
Parallel Programming CharacteristiCsccovvviiiviveieieiiic e e 373

AT90CAN128 Typical CharacteristiCS......ccceeveeieiiieeiieeeeieeieeiiien 377
ACLIVE SUPPLY CUITENT ... e e e e e e e e e e e e ee e e e e e e are e aeeneaeanes 377
(Al SUPPIY CUITENL e e e e e e e e e e e aeaeeaeaeenes 380
Power-down SUPPLY CUMTENT........oveiieieeieieii s es s e e e e e e e e aeee e e e e aeaeaeanennanes 382

Alm L 415

7522C-AUTO-09/06 I ©

416

ATMEL

Power-save SUPPIY CUIMMENT.......u e e 383
Standby SUPPIY CUIMTENT.......eeee e e 384
T TN 1 o 384
Pin Driver SIrenQth ..o e 386
BOD Thresholds and Analog Comparator Offsetcuvvvviiiiiiiiiiiiiiiieeee e, 388
Internal OSCIllator SPEEAcevvveeiieieee e 390
Current Consumption of Peripheral UNitS..............c.uiuiiiiiiiiiiiieen e, 392
Current Consumption in Reset and Reset Pulse Width.....................ccs 395
Decoupling CapacitOrS........cccooiviiiiieeeiieie e 397
REQISTEr SUMMAIY ..uuuiiiiiie e e e ee e 398
INStrucCtion Set SUMMAIYccooooeiiieiii e 402
Ordering INformation...........oooiiviiiice e 406
Packaging Informationcooovmiiiiiiiiice e 406
TQRFPBA ...t enn s 407
QFNBZ ...t 408
Document RevisSion HiStOrY ..o 409
Changes from 7552B - 05/06 t0 7522C - 09/06..........ccvvverererninriniiiiinieaneeeenens 409
Table Of CONtENTS ..o 411

A TO0CA N 128 A Uit O

7522C-AUTO-09/06

AIMEL

Y R

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan

Atmel Operations

Memory

2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie

BP 70602

44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18

Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle

13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.

Colorado Springs, CO 80906

RF/Automotive

Theresienstrasse 2
Postfach 3535

74025 Heilbronn, Germany
Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
Tel: 1(719) 576-3300

Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123

38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00

Fax: (33) 4-76-58-34-80

Tel: 1(719) 576-3300

9F, Tonetsu Shinkawa Bldg.
Fax: 1(719) 540-1759

1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033))
Japan Scottish Enterprise Technology Park
Tel: (81) 3-3523-3551 Maxwell Building
Fax: (81) 3-3523-7581 East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof are registered trademarks, and Everywhere You Are® are
the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

@ Printed on recycled paper.

DRAFT-A6-AUTO-09/06 IxM

	Features
	Description
	Block Diagram

	Automotive Quality Grade
	Pin Configurations
	Pin Descriptions
	VCC
	GND
	Port A (PA7..PA0)
	Port B (PB7..PB0)
	Port C (PC7..PC0)
	Port D (PD7..PD0)
	Port E (PE7..PE0)
	Port F (PF7..PF0)
	Port G (PG4..PG0)
	RESET
	XTAL1
	XTAL2
	AVCC
	AREF

	About Code Examples

	AVR CPU Core
	Introduction
	Architectural Overview
	ALU - Arithmetic Logic Unit
	Status Register
	General Purpose Register File
	The X-register, Y-register, and Z-register
	RAM Page Z Select Register - RAMPZ

	Stack Pointer
	Instruction Execution Timing
	Reset and Interrupt Handling
	Interrupt Behavior
	Interrupt Response Time

	Memories
	In-System Reprogrammable Flash Program Memory
	SRAM Data Memory
	SRAM Data Access
	SRAM Data Access Times

	EEPROM Data Memory
	EEPROM Read/Write Access
	The EEPROM Address Registers - EEARH and EEARL
	The EEPROM Data Register - EEDR
	The EEPROM Control Register - EECR
	Preventing EEPROM Corruption

	I/O Memory
	External Memory Interface
	Overview
	Using the External Memory Interface
	Address Latch Requirements
	Pull-up and Bus-keeper
	Timing
	XMEM Register Description
	External Memory Control Register A - XMCRA
	External Memory Control Register B - XMCRB
	Using all Locations of External Memory Smaller than 64 KB
	Using all 64KB Locations of External Memory

	General Purpose I/O Registers
	General Purpose I/O Register 2 - GPIOR2
	General Purpose I/O Register 1 - GPIOR1
	General Purpose I/O Register 0 - GPIOR0

	System Clock
	Clock Systems and their Distribution
	CPU Clock - clkCPU
	I/O Clock - clkI/O
	Flash Clock - clkFLASH
	Asynchronous Timer Clock - clkASY
	ADC Clock - clkADC

	Clock Sources
	Default Clock Source
	Crystal Oscillator
	Low-frequency Crystal Oscillator
	Calibrated Internal RC Oscillator
	Oscillator Calibration Register - OSCCAL

	External Clock
	Clock Output Buffer
	Timer/Counter2 Oscillator
	System Clock Prescaler
	Clock Prescaler Register - CLKPR

	Power Management and Sleep Modes
	Sleep Mode Control Register - SMCR
	Idle Mode
	ADC Noise Reduction Mode
	Power-down Mode
	Power-save Mode
	Standby Mode
	Minimizing Power Consumption
	Analog to Digital Converter
	Analog Comparator
	Brown-out Detector
	Internal Voltage Reference
	Watchdog Timer
	Port Pins
	JTAG Interface and On-chip Debug System

	System Control and Reset
	Resetting the AVR
	Reset Sources
	Power-on Reset
	External Reset
	Brown-out Detection
	Watchdog Reset
	MCU Status Register - MCUSR
	Internal Voltage Reference
	Voltage Reference Enable Signals and Start-up Time
	Voltage Reference Characteristics

	Watchdog Timer
	Watchdog Timer Control Register - WDTCR

	Timed Sequences for Changing the Configuration of the Watchdog Timer
	Safety Level 1
	Safety Level 2

	Interrupts
	Interrupt Vectors in AT90CAN128
	Moving Interrupts Between Application and Boot Space
	MCU Control Register - MCUCR

	I/O-Ports
	Introduction
	Ports as General Digital I/O
	Configuring the Pin
	Toggling the Pin
	Switching Between Input and Output
	Reading the Pin Value
	Digital Input Enable and Sleep Modes
	Unconnected Pins

	Alternate Port Functions
	MCU Control Register - MCUCR
	Alternate Functions of Port A
	Alternate Functions of Port B
	Alternate Functions of Port C
	Alternate Functions of Port D
	Alternate Functions of Port E
	Alternate Functions of Port F
	Alternate Functions of Port G

	Register Description for I/O-Ports
	Port A Data Register - PORTA
	Port A Data Direction Register - DDRA
	Port A Input Pins Address - PINA
	Port B Data Register - PORTB
	Port B Data Direction Register - DDRB
	Port B Input Pins Address - PINB
	Port C Data Register - PORTC
	Port C Data Direction Register - DDRC
	Port C Input Pins Address - PINC
	Port D Data Register - PORTD
	Port D Data Direction Register - DDRD
	Port D Input Pins Address - PIND
	Port E Data Register - PORTE
	Port E Data Direction Register - DDRE
	Port E Input Pins Address - PINE
	Port F Data Register - PORTF
	Port F Data Direction Register - DDRF
	Port F Input Pins Address - PINF
	Port G Data Register - PORTG
	Port G Data Direction Register - DDRG
	Port G Input Pins Address - PING

	External Interrupts
	External Interrupt Control Register A - EICRA
	External Interrupt Control Register B - EICRB
	External Interrupt Mask Register - EIMSK
	External Interrupt Flag Register - EIFR

	Timer/Counter3/1/0 Prescalers
	Overview
	Internal Clock Source
	Prescaler Reset
	External Clock Source

	Timer/Counter0/1/3 Prescalers Register Description
	General Timer/Counter Control Register - GTCCR

	8-bit Timer/Counter0 with PWM
	Features
	Overview
	Registers
	Definitions

	Timer/Counter Clock Sources
	Counter Unit
	Output Compare Unit
	Force Output Compare
	Compare Match Blocking by TCNT0 Write
	Using the Output Compare Unit

	Compare Match Output Unit
	Compare Output Function
	Compare Output Mode and Waveform Generation

	Modes of Operation
	Normal Mode
	Clear Timer on Compare Match (CTC) Mode
	Fast PWM Mode
	Phase Correct PWM Mode

	Timer/Counter Timing Diagrams
	8-bit Timer/Counter Register Description
	Timer/Counter0 Control Register A - TCCR0A
	Timer/Counter0 Register - TCNT0
	Output Compare Register A - OCR0A
	Timer/Counter0 Interrupt Mask Register - TIMSK0
	Timer/Counter0 Interrupt Flag Register - TIFR0

	16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)
	Features
	Overview
	Registers
	Definitions
	Compatibility

	Accessing 16-bit Registers
	Code Examples
	Reusing the Temporary High Byte Register

	Timer/Counter Clock Sources
	Counter Unit
	Input Capture Unit
	Input Capture Trigger Source
	Noise Canceler
	Using the Input Capture Unit

	Output Compare Units
	Force Output Compare
	Compare Match Blocking by TCNTn Write
	Using the Output Compare Unit

	Compare Match Output Unit
	Compare Output Function
	Compare Output Mode and Waveform Generation

	Modes of Operation
	Normal Mode
	Clear Timer on Compare Match (CTC) Mode
	Fast PWM Mode
	Phase Correct PWM Mode
	Phase and Frequency Correct PWM Mode

	Timer/Counter Timing Diagrams
	16-bit Timer/Counter Register Description
	Timer/Counter1 Control Register A - TCCR1A
	Timer/Counter3 Control Register A - TCCR3A
	Timer/Counter1 Control Register B - TCCR1B
	Timer/Counter3 Control Register B - TCCR3B
	Timer/Counter1 Control Register C - TCCR1C
	Timer/Counter3 Control Register C - TCCR3C
	Timer/Counter1 - TCNT1H and TCNT1L
	Timer/Counter3 - TCNT3H and TCNT3L
	Output Compare Register A - OCR1AH and OCR1AL
	Output Compare Register B - OCR1BH and OCR1BL
	Output Compare Register C - OCR1CH and OCR1CL
	Output Compare Register A - OCR3AH and OCR3AL
	Output Compare Register B - OCR3BH and OCR3BL
	Output Compare Register C - OCR3CH and OCR3CL
	Input Capture Register - ICR1H and ICR1L
	Input Capture Register - ICR3H and ICR3L
	Timer/Counter1 Interrupt Mask Register - TIMSK1
	Timer/Counter3 Interrupt Mask Register - TIMSK3
	Timer/Counter1 Interrupt Flag Register - TIFR1
	Timer/Counter3 Interrupt Flag Register - TIFR3

	8-bit Timer/Counter2 with PWM and Asynchronous Operation
	Features
	Overview
	Definitions

	Timer/Counter Clock Sources
	Counter Unit
	Output Compare Unit
	Force Output Compare
	Compare Match Blocking by TCNT2 Write
	Using the Output Compare Unit

	Compare Match Output Unit
	Compare Output Function
	Compare Output Mode and Waveform Generation

	Modes of Operation
	Normal Mode
	Clear Timer on Compare Match (CTC) Mode
	Fast PWM Mode
	Phase Correct PWM Mode

	Timer/Counter Timing Diagrams
	8-bit Timer/Counter Register Description
	Timer/Counter2 Control Register A- TCCR2A
	Timer/Counter2 Register - TCNT2
	Output Compare Register A - OCR2A

	Asynchronous operation of the Timer/Counter2
	Asynchronous Status Register - ASSR
	Asynchronous Operation of Timer/Counter2
	Timer/Counter2 Interrupt Mask Register - TIMSK2
	Timer/Counter2 Interrupt Flag Register - TIFR2

	Timer/Counter2 Prescaler
	General Timer/Counter Control Register - GTCCR

	Output Compare Modulator - OCM
	Overview
	Description
	Timing Example
	Resolution of the PWM Signal

	Serial Peripheral Interface - SPI
	Features
	SS Pin Functionality
	Slave Mode
	Master Mode
	SPI Control Register - SPCR
	SPI Status Register - SPSR
	SPI Data Register - SPDR

	Data Modes

	USART (USART0 and USART1)
	Features
	Overview
	Dual USART
	Clock Generation
	Internal Clock Generation - Baud Rate Generator
	Double Speed Operation (U2X)
	External Clock
	Synchronous Clock Operation

	Serial Frame
	Frame Formats
	Parity Bit Calculation

	USART Initialization
	Data Transmission - USART Transmitter
	Sending Frames with 5 to 8 Data Bit
	Sending Frames with 9 Data Bit
	Transmitter Flags and Interrupts
	Parity Generator
	Disabling the Transmitter

	Data Reception - USART Receiver
	Receiving Frames with 5 to 8 Data Bits
	Receiving Frames with 9 Data Bits
	Receive Complete Flag and Interrupt
	Receiver Error Flags
	Parity Checker
	Disabling the Receiver
	Flushing the Receive Buffer

	Asynchronous Data Reception
	Asynchronous Clock Recovery
	Asynchronous Data Recovery
	Asynchronous Operational Range

	Multi-processor Communication Mode
	MPCM Protocol
	Using MPCM

	USART Register Description
	USART0 I/O Data Register - UDR0
	USART1 I/O Data Register - UDR1
	USART0 Control and Status Register A - UCSR0A
	USART1 Control and Status Register A - UCSR1A
	USART0 Control and Status Register B - UCSR0B
	USART1 Control and Status Register B - UCSR1B
	USART0 Control and Status Register C - UCSR0C
	USART1 Control and Status Register C - UCSR1C
	USART0 Baud Rate Registers - UBRR0L and UBRR0H
	USART1 Baud Rate Registers - UBRR1L and UBRR1H

	Examples of Baud Rate Setting

	Two-wire Serial Interface
	Features
	Two-wire Serial Interface Bus Definition
	TWI Terminology
	Electrical Interconnection

	Data Transfer and Frame Format
	Transferring Bits
	START and STOP Conditions
	Address Packet Format
	Data Packet Format
	Combining Address and Data Packets Into a Transmission

	Multi-master Bus Systems, Arbitration and Synchronization
	Overview of the TWI Module
	Scl and SDA Pins
	Bit Rate Generator Unit
	Bus Interface Unit
	Address Match Unit
	Control Unit

	TWI Register Description
	TWI Bit Rate Register - TWBR
	TWI Control Register - TWCR
	TWI Status Register - TWSR
	TWI Data Register - TWDR
	TWI (Slave) Address Register - TWAR

	Using the TWI
	Transmission Modes
	Master Transmitter Mode
	Master Receiver Mode
	Slave Receiver Mode
	Slave Transmitter Mode
	Miscellaneous States
	Combining Several TWI Modes

	Multi-master Systems and Arbitration

	Controller Area Network - CAN
	Features
	CAN Protocol
	Principles
	Message Formats
	CAN Bit Timing
	Arbitration
	Errors

	CAN Controller
	CAN Channel
	Configuration
	Bit Timing
	Baud Rate
	Fault Confinement
	Overload Frame

	Message Objects
	Operating Modes
	Acceptance Filter
	MOb Page
	CAN Data Buffers

	CAN Timer
	Prescaler
	16-bit Timer
	Time Triggering
	Stamping Message

	Error Management
	Fault Confinement
	Error Types
	Error Setting

	Interrupts
	Interrupt organization
	Interrupt Behavior

	CAN Register Description
	General CAN Registers
	CAN General Control Register - CANGCON
	CAN General Status Register - CANGSTA
	CAN General Interrupt Register - CANGIT
	CAN General Interrupt Enable Register - CANGIE
	CAN Enable MOb Registers - CANEN2 and CANEN1
	CAN Enable Interrupt MOb Registers - CANIE2 and CANIE1
	CAN Status Interrupt MOb Registers - CANSIT2 and CANSIT1
	CAN Bit Timing Register 1 - CANBT1
	CAN Bit Timing Register 2 - CANBT2
	CAN Bit Timing Register 3 - CANBT3
	CAN Timer Control Register - CANTCON
	CAN Timer Registers - CANTIML and CANTIMH
	CAN TTC Timer Registers - CANTTCL and CANTTCH
	CAN Transmit Error Counter Register - CANTEC
	CAN Receive Error Counter Register - CANREC
	CAN Highest Priority MOb Register - CANHPMOB
	CAN Page MOb Register - CANPAGE

	MOb Registers
	CAN MOb Status Register - CANSTMOB
	CAN MOb Control and DLC Register - CANCDMOB
	CAN Identifier Tag Registers - CANIDT1, CANIDT2, CANIDT3, and CANIDT4
	CAN Identifier Mask Registers - CANIDM1, CANIDM2, CANIDM3, and CANIDM4
	CAN Time Stamp Registers - CANSTML and CANSTMH
	CAN Data Message Register - CANMSG

	Examples of CAN Baud Rate Setting

	Analog Comparator
	Overview
	Analog Comparator Register Description
	ADC Control and Status Register B - ADCSRB
	Analog Comparator Control and Status Register - ACSR

	Analog Comparator Multiplexed Input
	Digital Input Disable Register 1 - DIDR1

	Analog to Digital Converter - ADC
	Features
	Operation
	Starting a Conversion
	Prescaling and Conversion Timing
	Differential Channels

	Changing Channel or Reference Selection
	ADC Input Channels
	ADC Voltage Reference

	ADC Noise Canceler
	Analog Input Circuitry
	Analog Noise Canceling Techniques
	Offset Compensation Schemes
	ADC Accuracy Definitions

	ADC Conversion Result
	ADC Register Description
	ADC Multiplexer Selection Register - ADMUX
	ADC Control and Status Register A - ADCSRA
	The ADC Data Register - ADCL and ADCH
	ADC Control and Status Register B - ADCSRB
	Digital Input Disable Register 0 - DIDR0

	JTAG Interface and On-chip Debug System
	Features
	Overview
	Test Access Port - TAP
	TAP Controller
	Using the Boundary- scan Chain
	Using the On-chip Debug System
	On-chip Debug Specific JTAG Instructions
	PRIVATE0 (0x8)
	PRIVATE1 (0x9)
	PRIVATE2 (0xA)
	PRIVATE3 (0xB)

	On-chip Debug Related Register in I/O Memory
	On-chip Debug Register - OCDR

	Using the JTAG Programming Capabilities
	Bibliography

	Boundary-scan IEEE 1149.1 (JTAG)
	Features
	System Overview
	Data Registers
	Bypass Register
	Device Identification Register
	Reset Register
	Boundary-scan Chain

	Boundary-scan Specific JTAG Instructions
	EXTEST (0x0)
	IDCODE (0x1)
	SAMPLE_PRELOAD (0x2)
	AVR_RESET (0xC)
	BYPASS (0xF)

	Boundary-scan Related Register in I/O Memory
	MCU Control Register - MCUCR
	MCU Status Register - MCUSR

	Boundary-scan Chain
	Scanning the Digital Port Pins
	Boundary-scan and the Two- wire Interface
	Scanning the RESET Pin
	Scanning the Clock Pins
	Scanning the Analog Comparator
	Scanning the ADC

	AT90CAN128 Boundary- scan Order
	Boundary-scan Description Language Files

	Boot Loader Support - Read-While-Write Self-Programming
	Features
	Application and Boot Loader Flash Sections
	AS - Application Section
	BLS - Boot Loader Section

	Read-While-Write and No Read-While-Write Flash Sections
	RWW - Read-While-Write Section
	NRWW - No Read-While-Write Section

	Boot Loader Lock Bits
	Entering the Boot Loader Program
	Store Program Memory Control and Status Register - SPMCSR

	Addressing the Flash During Self- Programming
	Self-Programming the Flash
	Performing Page Erase by SPM
	Filling the Temporary Buffer (Page Loading)
	Performing a Page Write
	Using the SPM Interrupt
	Consideration While Updating BLS
	Prevent Reading the RWW Section During Self- Programming
	Setting the Boot Loader Lock Bits by SPM
	EEPROM Write Prevents Writing to SPMCSR
	Reading the Fuse and Lock Bits from Software
	Preventing Flash Corruption
	Programming Time for Flash when Using SPM
	Simple Assembly Code Example for a Boot Loader
	AT90CAN128 Boot Loader Parameters

	Memory Programming
	Program and Data Memory Lock Bits
	Fuse Bits
	Latching of Fuses

	Signature Bytes
	Calibration Byte
	Parallel Programming Overview
	Signal Names
	Pin Mapping
	Commands
	Parameters

	Parallel Programming
	Enter Programming Mode
	Considerations for Efficient Programming
	Chip Erase
	Programming the Flash
	Programming the EEPROM
	Reading the Flash
	Reading the EEPROM
	Programming the Fuse Low Bits
	Programming the Fuse High Bits
	Programming the Extended Fuse Bits
	Programming the Lock Bits
	Reading the Fuse and Lock Bits
	Reading the Signature Bytes
	Reading the Calibration Byte

	SPI Serial Programming Overview
	Signal Names
	Pin Mapping
	Parameters

	SPI Serial Programming
	Data Polling Flash
	Data Polling EEPROM

	JTAG Programming Overview
	Programming Specific JTAG Instructions
	Data Registers
	Programming Algorithm

	Electrical Characteristics(1)
	Absolute Maximum Ratings*
	DC Characteristics
	External Clock Drive Characteristics
	Maximum Speed vs. VCC
	Two-wire Serial Interface Characteristics
	SPI Timing Characteristics
	CAN Physical Layer Characteristics
	ADC Characteristics
	External Data Memory Characteristics
	Parallel Programming Characteristics

	AT90CAN128 Typical Characteristics
	Active Supply Current
	Idle Supply Current
	Power-down Supply Current
	Power-save Supply Current
	Standby Supply Current
	Pin Pull-up
	Pin Driver Strength
	BOD Thresholds and Analog Comparator Offset
	Internal Oscillator Speed
	Current Consumption of Peripheral Units
	Current Consumption in Reset and Reset Pulse Width

	Decoupling Capacitors
	Register Summary
	Instruction Set Summary
	Ordering Information
	Packaging Information
	TQFP64
	QFN64

	Document Revision History
	Changes from 7552B - 05/06 to 7522C - 09/06

	Table of Contents

