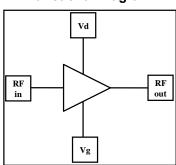


1 - 22 GHz Wideband Amplifier

Features

◆ Frequency Range : 1.0 - 22.0GHz

12dB Nominal gain


Noise Figure: 2.1 @ 8GHzP1 dB: 10 dBm at 10GHz.

- Input Return Loss > 12 dB
- Output Return Loss > 12 dB
- ◆ DC decoupled input and output
- ◆ 0.15 µm InGaAs pHEMT Technology
- Chip dimension: 3.0 x 1.2 x 0.1 mm

Typical Applications

- Wideband LNA/Gain block
- Electronic warfare
- Test Instrumentation

Functional Diagram

Description

The AMT2175012 is a broadband pHEMT GaAs MMIC TWA designed to operate over 1GHz to 22 GHz frequency range. The design employs 6 cascode pHEMT cells in a distributed ampifier topology, to ensure larger bandwidth, flat gain and good return losses. The device offers a typical small signal gain of 11 dB over the operating frequency band and has a Noise figure less than 4 dB in 2-20GHz band. The P1dB is 10dBm at 10GHz. The Input & output are matched to 50Ω with a VSWR better than 1.6:1. The chip is unconditionally stable over the entire operating frequency range.

The AMT2175012 is suitable for a variety of wideband electronic warfare systems such as radar warning receivers, jammers and instrumentation. In addition, the chip may also be used as a predriver or a gain block.

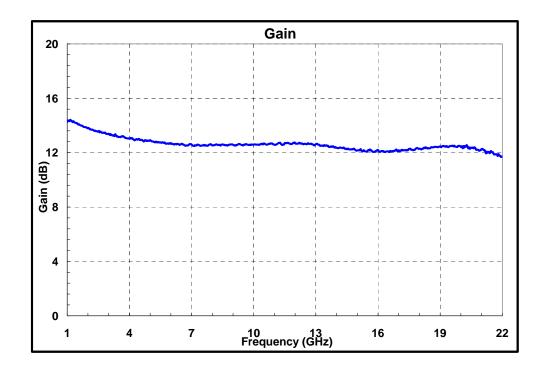
Absolute Maximum Ratings⁽¹⁾

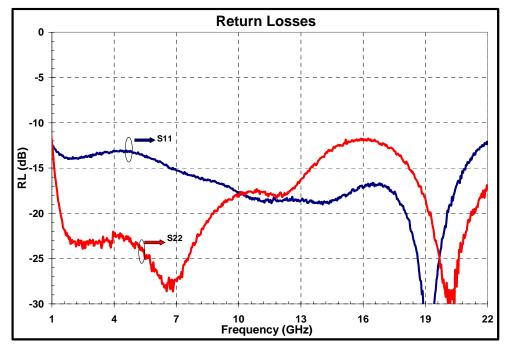
Parameter	Absolute Maximum	Units
Positive DC voltage	+8	V
RF input power	+16	dBm
Supply Current	150	mA
Storage Temperature	-55 to +150	°C
Operating Temperature	-40 to +85	°C

1. Operation beyond these limits may cause permanent damage to the component

Electrical Specifications @ T_A = 25 °C , Z_o =50 Ω ,Vd = 2V, Vg =-0.25V

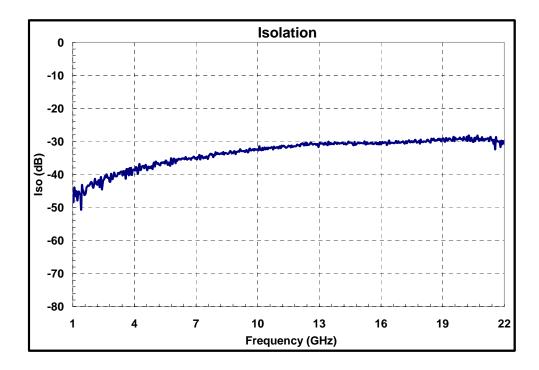
Parameter	Min.	Тур.	Max.	Units
Frequency Range	1.0	_	22.0	GHz
Gain	10	12	-	dB
Gain Flatness	-	± 1.3	-	dB
Noise Figure (mid-band)	-	2.5	-	dB
Input Return Loss	10	12	-	dB
Output Return Loss	10	12	-	dB
Output Power (P1 dB)	_	10	_	dBm
Third Order Intercept point	_	19	_	dBm
Supply Current	_	55	65	mA

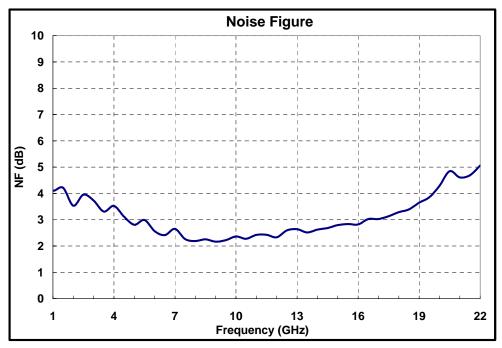

Note:


- 1. Electrical specifications mentioned above are measured in a test fixture.
- 2. For optimal performance, the gate voltage Vg should be tuned to achieve a drain current of 55mA.
- 3. The negative gate supply(Vg) can be tuned from 0V to -0.3V

Test fixture data

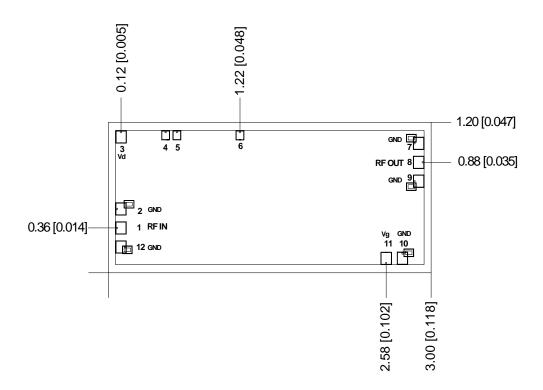
Vd=+2V, Vg=-0.25V, Total Current =55 mA, $T_A=25\,^{\circ}\mathrm{C}$




Astra Microelectronic Technologies Limited, Hyderabad, INDIA

Test fixture data

Vd=+2V, Vg=-0.25V, $Total\ Current=55\ mA$, $T_A=25\ ^{\circ}C$



Astra Microelectronic Technologies Limited, Hyderabad, INDIA

Rev. 1.0 January 2008

Mechanical Characteristics

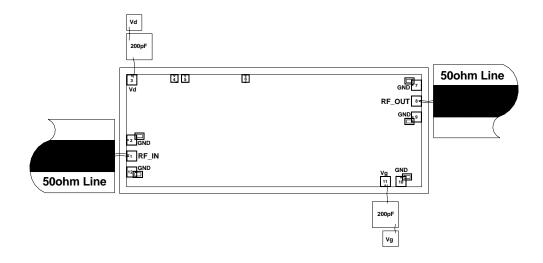
Units: millimeters (inches)

Note:

1. All RF and DC bond pads are 100µm x 100µm

2. Pad no. 1: RF In

3. Pad no. 3: Vd


4. Pad no. 8: RF out

5. Pad no. 11 : Vg

Recommended Assembly Diagram

Note:

- 1. Two 1 mil (0.0254mm) bond wires of minimum length should be used for RF input and output.
- 2. Input and output 50 ohm lines are on 5mil Alumina/RT Duroid substrate.
- 3. The supply voltages are Vd=2.0V, Vg=-0.25V.
- 4. $0.1 \mu F$ capacitors may be additionally used as a second level of bypass at the power supplies for reliable operation.

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of 150 - $200\mu m$ length of wedge bonds is advised. Single Ball bonds of $250-300\mu m$ though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice

Phone: +91-40-30618000 Email: info@astramtl.com
Fax: +91-40-23378944 URL: www.astramtl.com