

1-26 GHz Ultra-wideband Amplifier

Features

- ◆ Ultra-wideband performance
- ◆ 9.0 dB Nominal gain
- ◆ Noise Figure: 4.5 @12GHz
- ◆ P1 dB: 12 dBm at 10GHz.
- ◆ Input Return Loss > 10 dB
- ◆ Output Return Loss > 10 dB
- DC decoupled input and output
- ◆ 0.15 µm InGaAs pHEMT Technology
- Chip dimension: 3.0 x 1.13 x 0.1 mm

Functional Diagram

Typical Applications

- ◆ Wideband LNA/Gain block
- Electronic warfare
- Test Instrumentation

Description

The AMT2175011 is a broadband pHEMT GaAs MMIC TWA designed to operate over 2GHz to 20 GHz frequency range. The design employs a 4-stage, cascode-connected pHEMT structure to ensure flat gain and good return loss. The device offers a typical small signal gain of 9 dB over the operating frequency band and has a Noise figure of 5 dB in 8-18GHz band. The P1dB is 12dBm at 10GHz. The Input & output are matched to 50Ω with a VSWR better than 1.9:1. The chip is unconditionally stable over the entire operating frequency range.

The AMT2175011 is suitable for a variety of wideband electronic warfare systems such as radar warning receivers, jammers and instrumentation. In addition, the chip may also be used as a pre-driver or a gain block. The die has been fabricated using a reliable 0.15µm InGaAs pHEMT technology.

Absolute Maximum Ratings (1)

Parameter	Absolute Maximum	Units
Positive DC voltage	+8	V
RF input power	+16	dBm
Supply Current	150	mA
Operating Temperature	-55 to +85	°C
Storage Temperature	-65 to +150	°C

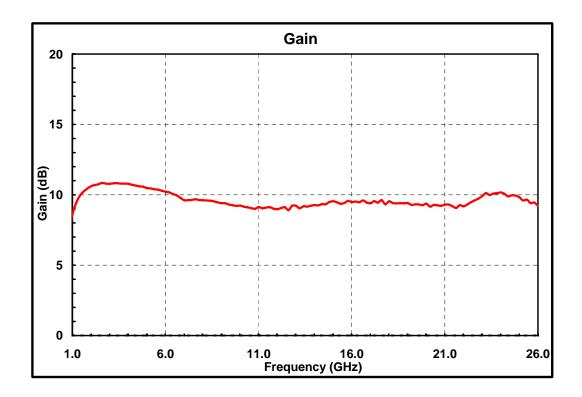
1. Operation beyond these limits may cause permanent damage to the component

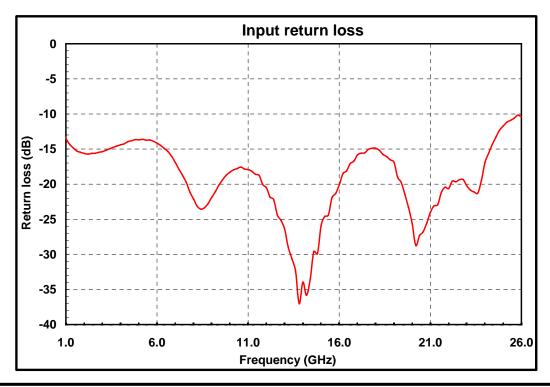
Rev. 1.0 February 2007

Electrical Specifications @ T_A = 25 $^{\circ}C$, Z_o =50 Ω

Parameter	Min.	Тур.	Max.	Units
Frequency Range	1.0	_	26.0	GHz
Gain	8.5	9.5	11.0	dB
Gain Flatness	_	± 1.2	_	dB
Noise Figure	4.5	6.0	_	dB
Input Return Loss	10	12	_	dB
Output Return Loss	10	12	_	dB
Output Power (P1 dB)	_	12	_	dBm
Saturated output power (Psat)	_	16	_	dBm
Supply Current	_	90	100	mA

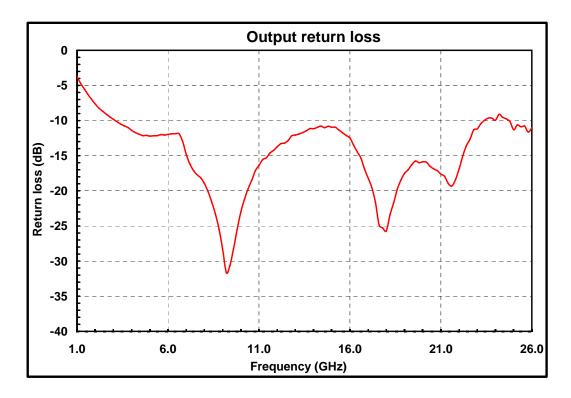
Note:


- 1. Electrical specifications mentioned above are measured in a test fixture.
- 2. The amplifier is biased with two positive supplies (VDD & VG2) and a single negative gate supply (VG1). The recommended bias conditions for the chip are VDD=5.0V/90mA, VG1=-0.3V, VG2=4.5V.


Page 2 of 7 URL: www.astramtl.com Fax: +91-40-23378944

Test fixture data

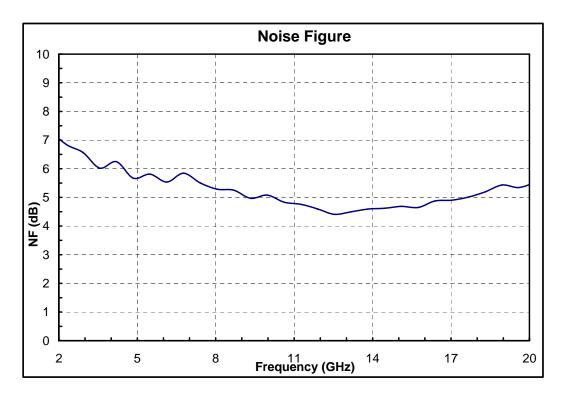
VD= +5V, Vg2 =4.5V Vg1 = -0.3V, Total Current =90 mA, T_A = 25 °C

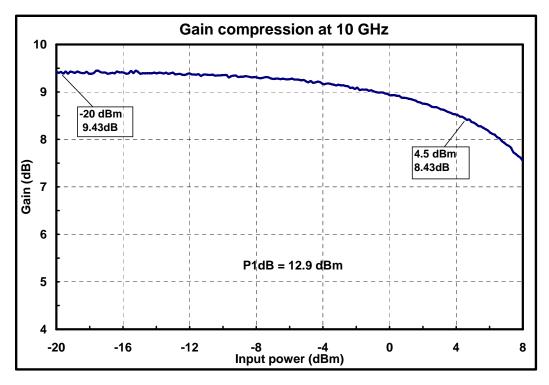



Astra Microelectronic Technologies Limited, Hyderabad, INDIA

Test fixture data

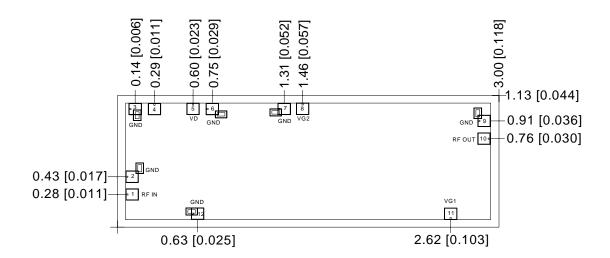
VD= +5V, Vg2 =4.5V Vg1 = -0.3V, Total Current =90 mA, T_A = 25 °C





Test fixture data

VD= +5V, Vg2 =4.5V Vg1 = -0.3V, Total Current =90 mA, T_A = 25 °C



Rev. 1.0 February 2007

Mechanical Characteristics

Units: millimeters [inches]

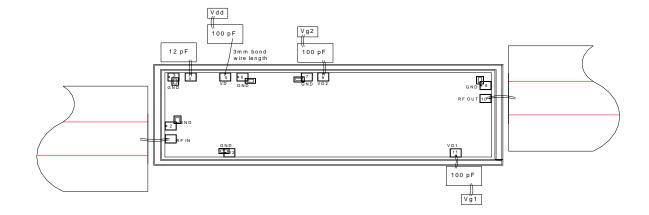
All RF and DC bond pads are 100µm x 100µm

Note:

1. Pad no. 01: RF IN

2. Pad no. 05: VD

3. Pad no. 08: VG2


4. Pad no. 10: RF OUT

5. Pad no. 11: VG1

Rev. 1.0 February 2007

Recommended Assembly Diagram

Note:

- 1. Two 1 mil (0.0254mm) bond wires of minimum length should be used for RF input and output.
- 2. 3mm long minimum bond length is to be used at the VD i.e., at Pad no. 5
- 3. Two 1 mil (0.0254mm) bond wires of minimum length should be used from chip bond pad to 12pF, 100pF capacitor.
- 4. Input and output 50 ohm lines are on 5mil Alumina/RT Duroid substrate.
- 5. The supply voltages are VD=5.0V, Vq1=-0.3V, Vq2=+4.5V
- 6. 0.1 µF capacitors may be additionally used as a second level of bypass at the power supplies for reliable operation.

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of 150 - 200µm length of wedge bonds is advised. Single Ball bonds of 250-300µm though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice