Cyclone III LS FPGAs

Introducing Cyclone III LS Devices

- Low power
- 200K LE for under 0.25 Watt
- TSMC 60-nm low-power (LP) process
- Quartus II software power-aware design flow
- Information assurance design capabilities
- Anti-tamper
- Design security
- Design separation
- IP, design examples, etc.
- High functionality
- Densities ranging from 70K to 200K LEs
- Up to 8 Mbits of embedded memory
- Up to 396 embedded multipliers

High-Functionality AND Low-Power Solution

- Increase processing bandwidth and lower power
- 200K logic elements, 8.2 Mbits of embedded RAM, and 39618×18 multipliers for less than 0.25 Watt static power
- Increase energy efficiency or extend battery life
- Cyclone III LS FPGAs have the market's lowest power profile
- Jump-start new designs using reference examples
- Re-use Altera's Video and Image Processing (VIP) Suite: IP, kits, and reference designs
- Protect IP investments in new products
- Cyclone III LS FPGAs enable hardware-based security

Cyclone II/ LS FPGA provides DSP and data processing AND low power

Extending Low-Power Leadership

Double the resources for less than 0.25 Watt

At $85^{\circ} \mathrm{C}$ junction temperature

© 2009 Altera Corporation- Public
ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

1

The Value of Security Features

■ "...estimated competing gray market sales cost the company between $\$ 200$ and $\$ 300$ Million in lost revenue during FY 2006."

■ "One out of every ten IT products contains counterfeit semiconductors."

Security critical for revenue and brand image

[^0]5

Protect IP With Anti-Tamper and Design Security

The most comprehensive IP protection in an FPGA

Design Separation Feature

Benefits

Example design requirements

- Redundancy required for high up-time and reliability
- Easily design single chip redundancy and information assurance applications
- Reduce board complexity

Data Assurance With Design Separation Feature

- Physically isolated partitions with design separation
- Protect against time-dependent faults and SEU
- Increase system up-time
- Achieve a higher level of integration on a single device

Example - Video and Image Processing Trends

Video and imaging application examples

- Medical/industrial/military imaging
- Video surveillance
- Video conferencing

High functionality • Video standards continue to evolve, driving higher data rates (e.g. H.264)

- Processing requirements are outpacing DSP performance

Lower R\&D \$

- ASIC design cycles do not meet time-to-market needs
- Frequently require re-spins and sizable NRE
- Extending battery life or increasing energy efficiency

Lower power

- Thermal dissipation can interfere with sensitive CCD image capture devices

Example - Industrial Trends

- Standardization of Industrial Ethernet (IE) protocols
- FPGA supports all IE protocols with one hardware platform
- Energy efficiency
- FPGA enables cost-effective variable motion control solutions, increasing efficiency by up to 85%
- Secure IP for revenue protection
- The most comprehensive IP protection in an FPGA
- Long product life cycles
- Obsolescence-proof to avoid costly re-designs

[^1]10

Redundancy in Industrial Motor Control

Cyclone III FPGA

Cyclone III LS FPGA

- Reduce board space by up to 50% with design separation
- Reduce BOM cost with integration
- Secure IP with anti-tamper and design security

[^2]
Example - Military Market Trends

- Size, weight, and power (SWaP)
- Support next-generation software-defined radio (SDR) waveforms with small footprint and low power, e.g. MUOS, SRW
- Night-vision goggles
- Secure communications
- Crypto modernization moving towards standardization
- Interoperability
- Common criteria for equipment in US, Canada, and Europe - NIST, FIPS, IPsec
- COTS
- Reduce cost
- Reduce time to market
- Increased product life cycle with COTS products

Existing SDR Application

- Next-generation SDR waverforms require:
- More memory and logic resources for networking in the field
- Low power for extended battery life
- Small footprint for board space
- Data security
- IP security and anti-tamper

Next Generation SDR

- Reduce board space by up to 50%
- Increase battery life by up to 2 X
- Single-chip secure SDR solution

[^3]
Cyclone III LS FPGAs - Device Resources

Product line	LEs	Memory (Mbits)		18×18 multipliers	PLLs	Global clocks	Static power* (mW)	Security features
EP3CLS70	70,208	3.1	333	200	4	20	164	
EP3CLS100	100,488	4.5	483	276	4	20	170	
EP3CLS150	150,848	6.1	666	320	4	20	233	
EP3CLS200*	198,464	8.2	891	396	4	20	245	

Core (MHz)	Memory (MHz)	Multipliers (MHz)	LVDS (Mbps)	DDR / DDR2 (Mbps)	QDR II (Mbps)
402	238	200	640	333	600

Performance shown for slowest speed grade (C8)

[^4]
Device Packaging and I/O Matrix

Product line	U484 0.8 mm 19×19		F484 1.0 mm 23×23		F780 1.0 mm 29×29	
	1/0	LVDS	1/0	LVDS	I/O	LVDS
EP3CLS70	278	78	278	78	413	177
EP3CLS100	-278	-78	278	78	413	177
EP3CLS150	-	-	210	78	413	177
EP3CLS200	-	-	210	78	413	177

Highest density + smallest package

Commercial ($-7,-8$) and industrial (-i7) speed grades supported

[^5]16

Cyclone III LS Key Architectural Features

[^6]
Cyclone III LS FPGAs - Rollout Schedule

Device	General rollout	Commercial -7	Industrial -7	Commercial -8
EP3CLS200	June 2009 - ES 4Q 2009 - Production	4Q 2009	4Q 2009	F484 - July F780 - Aug.
EP3CLS150	4Q 2009	Dec. 2009	Dec. 2009	Nov. 2009
EP3CLS100	1Q 2010	1 1Q 2010		
EP3CLS70	2Q 2010			

Now shipping

[^7]
Cyclone III LS FPGA Dev Kit

Shipments begin Sept. - Oct. 2009

[^8]

Summary

- The most comprehensive IP protection in an FPGA
- Anti-tamper to prevent cloning or counterfeiting
- Design security using state-of-the-art 256-bit AES
- Design separation for information assurance
- Design examples to jump-start your design
- The FPGA industry's most efficient low-power devices per density and package size
- 200K LE density for under 0.25 Watt (static power)
- 100K LE density in $19 \times 19 \mathrm{~mm}$ and 200 K LE in $23 \times 23 \mathrm{~mm}$
- Increased data and imaging processing
- 100\% more on-chip memory
- 80% more on-chip multipliers
- FPGAs and software shipping now

[^0]: Sources: New Momentum White Papers (http://www.newmo.com/downloads.html)
 "Fighting High Tech Counterfeiting with High Tech Solutions" and "Intellectual Property Fraud Prevention"
 © 2009 Altera Corporation- Public
 ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

[^1]: Source: SIA
 © 2009 Altera Corporation- Public
 ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

[^2]: © 2009 Altera Corporation- Public
 ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

[^3]: © 2009 Altera Corporation- Public
 ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

[^4]: * Pstatic from EPE, junction temperature $=85^{\circ} \mathrm{C}$
 © 2009 Altera Corporation- Public
 ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

[^5]: © 2009 Altera Corporation- Public
 ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

[^6]: © 2009 Altera Corporation- Public
 ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

[^7]: © 2009 Altera Corporation- Public
 ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

[^8]: © 2009 Altera Corporation- Public
 ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

